矩阵求逆中的上三角阵求逆

矩阵求逆中的上三角阵求逆
矩阵求逆中的上三角阵求逆

矩阵求逆中的上三角阵求逆

1.背景

? 常见方法:

– 伴随矩阵法 – 初等行变换法

– Gauss-Jordan 消元法 – 矩阵分解法

? L-U 分解法 ? QR 分解法 ? SVD 分解 ? 满秩分解 ? Jordan 分解

? 矩阵分解后再求逆矩阵的优点:

– 三角阵大量元素为0,

– 正交阵的逆是其转置矩阵, – 酉矩阵的逆是其共轭转置矩阵, 这些特性利于求得逆矩阵。

2.L-U 矩阵分解法

? 分三个步骤:

– L-U 分解

– 上三角阵求逆

– 矩阵乘法

3.上三角阵求逆

我们采用初等行变换先得到三角矩阵逆矩阵的一般公式。对于n 阶上三角矩阵U ,得到增广矩阵如下:

1112121

22212

11.1n n n n nn u u u l u u A l l u ????????????=?????

??????

?

1112131411

12131422232422

2324133

3433

3444441111u u u u v v v v u u u v v v U U u u v v u v -???????????????????==??????????????

?

??

?111.

A U L ---=

1112122

21

01(|)001n n nn

U U U U U U I U ??

?

?= ? ? ??

?

L L M M O M O L

在求逆过程中,先计算逆矩阵主对角线上得元素值,即取原矩阵主对角元素的倒数。然

后再求与矩阵主对角线平行且最接近的那一个斜列上元素值,接着依次求所有主对角线平行斜列的元素值。

由以上步骤可以给出U 逆矩阵V 的计算公式:

1

1(1,2,...,)

(1,2,...,1;1,...,)

ii ii

j kj ik k i ij ii v i n u v u v i n n j i n u =+?==????

?

?=-=--=+??

∑ 由上式及步骤分析可以得到逆矩阵求解流程如下:

1112

122200

0n n V V V V V V ??

? ?

?

???

L L M M O M L

在流程图帮助下我们可以做出脉动阵列,方便于硬件处理。 对于下三角矩阵,我们可以做如下处理: ()()()()1

11

T

T

T T

L L L ---=

=

先计算下三角矩阵L 的转置,再求上三角矩阵T L 的逆,最后得到1L -。

4.上三角阵求逆的脉动结构

? 除法运算 乘加运算

基于Verilog的下三角矩阵求逆设计与实现

基于V erilog的下三角矩阵求逆设计与实现 杨丰瑞1,熊军洲2 (1.重庆重邮信科(集团)股份有限公司重庆400065) (2.重庆邮电大学通信与信息工程学院重庆400065) 摘要:矩阵运算广泛应用于各类电路计算中,矩阵运算的硬件实现能够充分发挥硬件的速度和并行性,其中矩阵求逆是矩阵运算中重要的运算。根据矩阵求逆算法的基本思想,本文提出了一种最大阶数可达16×16的矩阵求逆方案,通过硬件描述语言Verilog建模,用Design Compile进行综合及进行modelsim仿真,仿真结果表明这种设计结构能够正确的计算出下三角矩阵的逆矩阵。 关键词:矩阵求逆,Verilog, 实现 【中图分类号】TN492 【文献标识码】A Design and Implementation of Inverse Down Triangle Matrix Calculation Based on V erilog Y ang Fengrui1,Xiong Junzhou2 (1.Chongqing Chongyou Information Technolog (Group)CO.,LTD.Chongqing) (2.Chongqing University Of Post and Telecommunications School Of Communication and Information Engineering,Chongqing) Abstract: Matrix operation is widely used in different kinds of circuit calculation. Hardware implementation of matrix operation can fully realize the speed and parallel of the hardware. Matrix inversion is a kind of very important matrix operation. According to the algorithm of inverse matrix calculation ,this article gives a design on inverse matrix which can reach a biggest rand of 16×16.The system is described in V erilog, which is compiled by Design Compile and verified in modelsim. The result shows that this design structure can be used for inverse matrix calculation. Key words: inverse matrix; Verilog; implementation 1 引言 矩阵运算是数字信号处理领域的基本操作,广泛应用于各类电路计算当中。而矩阵求逆的难点在于矩阵求逆。目前传统的矩阵求逆算法多用处理器串行计算来实现,严重制约着计算速度的提高。为此,作者在研究并行处理结构和并行算法[1~2]的基础上,试图寻求一种适合硬件实现的求逆算法及其硬件结构。此外,在专用集成电路设计方面我国起步较晚,在矩阵求逆的硬件实现方面的研究还不多。随着集成电路制造工艺的提高,采用大量超大规模集成单元和微处理器构成多处理器并行系统已经成为提高计算速度的有效手段。因而,矩阵求逆算法的研究实现有着十分重要的意义。由于可逆矩阵都可以通过LU分解分成一个上三角矩阵和一个下三角矩阵[3],而要求的原矩阵的逆可以通过这两个三角矩阵的逆相乘得到[4],所以本文主要探讨的是下三角矩阵求逆的硬件实现。

三角矩阵

三角矩阵 在中,三角矩阵是的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在等分支中三角矩阵十分重要。一个可逆矩阵A可以通过变成一个下三角矩阵L与一个上三角矩阵U的乘积。 描述 一个如下形状的: 被称为下三角矩阵;同样的,一个如下形状的矩阵: 被称为上三角矩阵。 上(下)三角矩阵乘以系数后也是上(下)三角矩阵;上(下)三角矩阵间的加减法和运算的结果仍是上(下)三角矩阵;上(下)三角矩阵的逆也仍然是上(下)三角矩阵。这些事实说明:所有上(下)三角矩阵的集合以及相应的运算构成一个方形矩阵集合的一个子代数。然而要注意的是上三角矩阵与下三角矩阵的乘积一般并不是三角矩阵。 特殊的三角矩阵 严格三角矩阵

一个上(下)三角矩阵是严格上(下)三角矩阵其上的系数都为零。所有的是严格上(下)三角矩阵也形成一个子代数。所有的严格三角矩阵都是。 单位三角矩阵 一个上(下)三角矩阵是单位上(下)三角矩阵其上的系数都为1。单位三角矩阵都是幺幂矩阵。高斯矩阵 高斯矩阵是是单位三角矩阵中的一种,除了一列的系数以外,其他系数都是零。这类矩阵是中基本操作的矩阵体现,因此也叫做基元矩阵或高斯变换矩阵。一个下三角的高斯矩阵为: 高斯矩阵的逆仍然是高斯矩阵。实际上, 即是说一个高斯矩阵的逆是将其非对角线上元素加上负号后得到的矩阵。

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快 捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素在矩 阵中的位置。比如,或表示一个矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称为付对 角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称 为单位矩阵,记为,即:。如一个阶方阵的主对角线上(下)方的元素都是零,则称为下(上)三角矩阵,例如, 是一个阶下三角矩阵,而则是一个阶上三角矩阵。今后我们用表示数域上的矩阵构成

总结求矩阵的逆矩阵的方法

总结求矩阵的逆矩阵的方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

总结求矩阵的逆矩阵的方法 课程名称: 专业班级: 成员组成: 联系方式:

摘要:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数 研究的主要内容之一.本文将给出几种求逆矩阵的方法. 关键词:矩阵逆矩阵方法 Method of finding inverse matrix Abstract: Matrix in linear algebra is the main content,many prictical problems with the matrix theory is simple and fast. The inverse matrix andmatrix theory the important content, the solution of inverse matrix nature has become one of the main research contents of linear algebra. The paper will give some method of finding inverse matrix. Key words: Matrix inversematrix method

正文: 1.引言:矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 2.求矩阵的逆矩阵的方法总结: 2.1 矩阵的基本概念 矩阵,是由个数组成的一个行列的矩形表格,通常用大写字母表示,组成矩阵的每一个数,均称为矩阵的元素,通常用小写字母其元素表示,其中下标都是正整数,他们表示该元素 在矩阵中的位置。比如,或表示一个 矩阵,下标表示元素位于该矩阵的第行、第列。元素全为零的矩阵称为零矩阵。 特别地,一个矩阵,也称为一个维列向量;而一个矩阵,也称为一个维行向量。 当一个矩阵的行数与烈数相等时,该矩阵称为一个阶方阵。对于方阵,从左上角到右下角的连线,称为主对角线;而从左下角到右上角的连线称 为付对角线。若一个阶方阵的主对角线上的元素都是,而其余元素都是零,则称为单位矩阵,记为,即:。如一个阶

(完整版)逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A 、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B 为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA 是可逆矩阵, 且 (E-A )1-= E + A + A 2+…+A 1-K 证明 因为E 与A 可以交换, 所以 (E- A )(E+A + A 2+…+ A 1-K )= E-A K , 因A K = 0 ,于是得 (E-A)(E+A+A 2+…+A 1-K )=E , 同理可得(E + A + A 2+…+A 1-K )(E-A)=E , 因此E-A 是可逆矩阵,且 (E-A)1-= E + A + A 2+…+A 1-K . 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A 2+…+(-1)1-K A 1-K . 由此可知, 只要满足A K =0,就可以利用此题求出一类矩阵E ±A 的逆矩阵. 例2 设 A =? ? ?? ? ???? ???0000 30000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证

A 2 =????????? ???0000000060000200, A 3=? ? ?? ? ? ? ?? ???00000000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3= ? ? ?? ? ???????1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵. 例1 求矩阵A 的逆矩阵.已知A=???? ? ?????521310132. 解 [A I]→??????????100521010310001132→???? ? ?????001132010310100521 → ??????????--3/16/16/1100010310100521→???? ??????-----3/16/16/110012/32/10103/46/136/1001

三角矩阵

三角矩阵 在线性代数中,三角矩阵是方形矩阵的一种,因其非零系数的排列呈三角形状而得名。三角矩阵分上三角矩阵和下三角矩阵两种。上三角矩阵的对角线左下方的系数全部为零,下三角矩阵的对角线右上方的系数全部为零。三角矩阵可以看做是一般方阵的一种简化情形。比如,由于带三角矩阵的矩阵方程容易求解,在解多元线性方程组时,总是将其系数矩阵通过初等变换化为三角矩阵来求解;又如三角矩阵的行列式就是其对角线上元素的乘积,很容易计算。有鉴于此,在数值分析等分支中三角矩阵十分重要。一个可逆矩阵A可以通过LU分解变成一个下三角矩阵L与一个上三角矩阵U的乘积。 描述 一个如下形状的矩阵: 被称为下三角矩阵;同样的,一个如下形状的矩阵: 被称为上三角矩阵。 上(下)三角矩阵乘以系数后也是上(下)三角矩阵;上(下)三角矩阵间的加减法和乘法运算的结果仍是上(下)三角矩阵;上(下)三角矩阵的逆也仍然是上(下)三角矩阵。这些事实说明:所有上(下)三角矩阵的集合以及相应的运算构成一个方形矩阵集合的一个子代数。然而要注意的是上三角矩阵与下三角矩阵的乘积一般并不是三角矩阵。 特殊的三角矩阵

严格三角矩阵 一个上(下)三角矩阵是严格上(下)三角矩阵当且仅当其主对角线上的系数都为零。所有的是严格上(下)三角矩阵也形成一个子代数。所有的严格三角矩阵都是幂零矩阵。 单位三角矩阵 一个上(下)三角矩阵是单位上(下)三角矩阵当且仅当其主对角线上的系数都为1。单位三角矩阵都是幺幂矩阵。 高斯矩阵 高斯矩阵是是单位三角矩阵中的一种,除了一列的系数以外,其他系数都是零。这类矩阵是高斯消去法中基本操作的矩阵体现,因此也叫做基元矩阵或高斯变换矩阵。一个下三角的高斯矩阵为: 高斯矩阵的逆仍然是高斯矩阵。实际上,

矩阵求逆方法大全-1

求逆矩阵的若干方法和举例 苏红杏 广西民院计信学院00数本(二)班 [摘 要] 本文详细给出了求逆矩阵的若干方法并给出相应的例子,以供学习有关矩阵方面 的读者参考。 [关键词] 逆矩阵 初等矩阵 伴随矩阵 对角矩阵 矩阵分块 多项式等 引 言 在我们学习《高等代数》时,求一个矩阵的逆矩阵是一个令人十分头痛的问题。但是,在研究矩阵及在以后学习有关数学知识时,求逆矩阵又是一个必不可缺少的知识点。为此,我介绍下面几种求逆矩阵的方法,供大家参考。 定义: n 阶矩阵A 为可逆,如果存在n 阶矩阵B ,使得E BA AB ==,这里E 是n 阶单位矩阵,此时,B 就称为A 的逆矩阵,记为1-A ,即:1-=A B 方法 一. 初等变换法(加边法) 我们知道,n 阶矩阵A 为可逆的充分必要条件是它能表示成一系列初等矩阵的乘积A=m Q Q Q 21, 从而推出可逆矩阵可以经过一系列初等行变换化成单位矩阵。即,必有一系列初等矩阵 m Q Q Q 21使 E A Q Q Q m m =-11 (1) 则1-A =E A Q Q Q m m =-11 (2) 把A ,E 这两个n 阶矩阵凑在一起,做成一个n*2n 阶矩阵(A ,E ),按矩阵的分块乘法,(1)(2)可以合并写成 11Q Q Q m m -(A ,E )=(11Q Q Q m m -,A ,E Q Q Q m m 11 -)=(E ,1-A ) (3) 这样就可以求出矩阵A 的逆矩阵1-A 。 例 1 . 设A= ???? ? ??-012411210 求1-A 。 解:由(3)式初等行变换逐步得到: ????? ??-100012010411001210→ ????? ??-100012001210010411 →???? ? ??----123200124010112001→

矩阵及逆矩阵的求法

矩阵的可逆性与逆矩阵的求法 目录 摘要 (1) 第1章.矩阵 (2) 1.1矩阵的定义 (2) 1.2矩阵的运算 (2) 第2章.矩阵的可逆性及逆矩阵 (5) 2.1矩阵的基本概念 (5) 2.2矩阵可逆的判断方法 (6) 2.3矩阵可逆性的求法 (10) 第3章.逆矩阵的拓展 (17) 3.1广义逆矩阵的引入 (17) 3.2广义逆矩阵的定义及存在 (17) 第4章.总结 (21) 参考文献 (22) 致谢 (23) 附件:论文英文简介

矩阵的可逆性与逆矩阵的求法 [摘要]:矩阵理论是现代代数学的重要分支理论之一,它也为现代科技及现代经济理论研究提供不可或缺的数学支持。在线性代数研究中引入矩阵的目的之一就是为了研究线性方程组B AX 求解及更一般的矩阵方程求解提供数学工具,其中矩阵的可逆性及逆矩阵的求法是最主要的内容。本文从矩阵的基本概念及运算入手,主要探讨和归纳矩阵可逆性的四种判定方法和求逆矩阵的五种方法,并引进Matlab这一数学软件求逆矩阵的程序,同时关注广义逆矩阵意义及求法。 [关键词]:矩阵可逆性逆矩阵广义逆求法

矩阵可逆性的判断和可逆矩阵的求法是矩阵理论学习的重点与难点,也是研究矩阵性质及运算中必不可少的一部分。本文在分析和归纳判断矩阵的可逆性和逆矩阵的求法,给出了四种判断矩阵可逆的方法,其中有初等矩阵的应用,有行列式的应用,还有向量的线性无关和线性方程组的应用。逆矩阵的求法给出了五种方法:分别是行变换、列变换、伴随矩阵、分块矩阵法以及Matlab 软件的解法,同时也讨论了广义逆矩阵的求法。对矩阵可逆性的判断与逆矩阵的求法将会给矩阵的学习带来很大的帮助。 第1章 矩 阵 1.1矩阵的定义 定义1 由st 个数ij c 排成一个s 行t 列的表 ???? ?? ? ??st s s t t c c c c c c c c c 2 1 2222111211 叫作一个s 行t 列(或t s ?)矩阵,ij c 叫作这个矩阵的元素。 定义2 矩阵的行(列)初等变换指的是对一个矩阵施行的下列变换: )(i 交换矩阵的两行(列); )(ii 用一个不等于零的数乘矩阵的某一行(列),即用一个不等于零的数乘矩阵的某一行(列)的元素; )(iii 用某一数乘矩阵的某一行(列)后加到另一行(列),即用某一数乘矩阵的某一行(列)的每一元素后加到另一行(列)的对应元素上。 矩阵的初等变换在线性方程组求解,求矩阵的秩及求矩阵的逆矩阵方面都有重要的作用。 1.2矩阵运算 定义1 数域F 的数a 与F 上一个n m ?矩阵)(ij a A =的乘积aA 指的是n m ?矩阵 )(ij aa ,求数与矩阵的乘积的运算叫作数与矩阵的乘法。 定义2 两个n m ?矩阵)(),(ij ij b B a A ==的和B A +指的是n m ?矩阵)(ij ij b a +,求两

上三角矩阵代数

上三角矩阵代数 摘 要 本文主要研究上三角代数的性质及其与路代数的关系,建立了上三角代数与有向图的路代数的同构映射.定义了可上三角化代数()n P K 和上三角化矩阵P , ()n P K 是所有形如1P TP -的矩阵的集合所形成的代数(它的结合法是矩阵的加法和乘法),其中T ∈()n T K ,P ∈()n M K ,且P 可逆,称P 为()n P K 的上三角化矩阵.初步探讨了()n M K 的子代数是否是可上三角化代数,若是可上三角化代数,其上三角化矩阵是否唯一.具体讨论了n=2的情况,最终由()n M K 的可上三角化子代数的个数有限得出()n M K 至少有一个可上三角化代数的上三角化矩阵不唯一地结论. 关键词:上三角矩阵代数,有向图,路代数,可上三角化代数,上三角化矩阵 HIGHER TRIANGULAR MATRIX ALGEBRAS

ABSTRACT In this paper, we study upper triangular matrix algebras, and its connection with path algebras. The isomorphism between upper triangular matrix algebra and the corresponding path algebra is given. As a generalization, upper triangulable matrix algebras ()n P K and upper triangulable matrix P are defined and studied. ()n P K consisting of all matrices like 1P TP -(its combination is the addition and multiplication of matrices), Among them T ∈()n T K ,P ∈()n M K and P is reversible. we call P is the upper triangulable matrix of ()n P K . We also discuss whether the subalgebra of ()n M K is a upper triangular matrix algebra and the upper triangulable matrix of a upper triangular matrix algebra is unique. We also give a concrete example of n=2 to illustrate our theory. Finally we draw a conclusion that there is at least one upper triangular matrix algebra of ()n M K which its upper triangulable matrix is not unique . KEY WORDS : upper triangle matrix algebras ,quivers ,path algebras ,upper triangular matrix algebras ,upper triangulable matrix 目录

矩阵求逆中的上三角阵求逆

矩阵求逆中的上三角阵求逆 1.背景 ? 常见方法: – 伴随矩阵法 – 初等行变换法 – Gauss-Jordan 消元法 – 矩阵分解法 ? L-U 分解法 ? QR 分解法 ? SVD 分解 ? 满秩分解 ? Jordan 分解 ? 矩阵分解后再求逆矩阵的优点: – 三角阵大量元素为0, – 正交阵的逆是其转置矩阵, – 酉矩阵的逆是其共轭转置矩阵, 这些特性利于求得逆矩阵。 2.L-U 矩阵分解法 ? 分三个步骤: – L-U 分解 – 上三角阵求逆 – 矩阵乘法 3.上三角阵求逆 我们采用初等行变换先得到三角矩阵逆矩阵的一般公式。对于n 阶上三角矩阵U ,得到增广矩阵如下: 1112121 22212 11.1n n n n nn u u u l u u A l l u ????????????=????? ?????? ? 1112131411 12131422232422 2324133 3433 3444441111u u u u v v v v u u u v v v U U u u v v u v -???????????????????==?????????????? ? ?? ?111. A U L ---=

1112122 21 01(|)001n n nn U U U U U U I U ?? ? ?= ? ? ?? ? L L M M O M O L 在求逆过程中,先计算逆矩阵主对角线上得元素值,即取原矩阵主对角元素的倒数。然 后再求与矩阵主对角线平行且最接近的那一个斜列上元素值,接着依次求所有主对角线平行斜列的元素值。 由以上步骤可以给出U 逆矩阵V 的计算公式: 1 1(1,2,...,) (1,2,...,1;1,...,) ii ii j kj ik k i ij ii v i n u v u v i n n j i n u =+?==???? ? ?=-=--=+?? ∑ 由上式及步骤分析可以得到逆矩阵求解流程如下: 1112 122200 0n n V V V V V V ?? ? ? ? ??? L L M M O M L 在流程图帮助下我们可以做出脉动阵列,方便于硬件处理。 对于下三角矩阵,我们可以做如下处理: ()()()()1 11 T T T T L L L ---= = 先计算下三角矩阵L 的转置,再求上三角矩阵T L 的逆,最后得到1L -。 4.上三角阵求逆的脉动结构 ? 除法运算 乘加运算

逆矩阵的几种求法与解析(很全很经典)

逆矩阵的几种求法与解析 矩阵是线性代数的主要内容,很多实际问题用矩阵的思想去解既简单又快捷.逆矩阵又是矩阵理论的很重要的内容, 逆矩阵的求法自然也就成为线性代数研究的主要内容之一.本文将给出几种求逆矩阵的方法. 1.利用定义求逆矩阵 定义: 设A、B 都是n 阶方阵, 如果存在n 阶方阵B 使得AB= BA = E, 则称A 为可逆矩阵, 而称B为A 的逆矩阵.下面举例说明这种方法的应用. 例1 求证: 如果方阵A 满足A k= 0, 那么EA是可逆矩阵, 且 (E-A)1-= E + A + A2+…+A1-K 证明因为E 与A 可以交换, 所以 (E- A )(E+A + A2+…+ A1-K)= E-A K, 因A K= 0 ,于是得 (E-A)(E+A+A2+…+A1-K)=E, 同理可得(E + A + A2+…+A1-K)(E-A)=E, 因此E-A是可逆矩阵,且 (E-A)1-= E + A + A2+…+A1-K. 同理可以证明(E+ A)也可逆,且 (E+ A)1-= E -A + A2+…+(-1)1-K A1-K. 由此可知, 只要满足A K=0,就可以利用此题求出一类矩阵E±A的逆矩阵.

例2 设 A =? ? ?? ? ???? ???000030000020 0010,求 E-A 的逆矩阵. 分析 由于A 中有许多元素为零, 考虑A K 是否为零矩阵, 若为零矩阵, 则可以采用例2 的方法求E-A 的逆矩阵. 解 容易验证 A 2=???? ????? ???0000 000060000200, A 3=? ? ?? ? ? ? ?? ???0000 0000 00006000 , A 4=0 而 (E-A)(E+A+ A 2+ A 3)=E,所以 (E-A)1-= E+A+ A 2+ A 3 =? ? ?? ? ???? ???1000 31006210 6211. 2.初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法.如果A 可逆,则A 可通过初等变换,化为单位矩阵I ,即存在初等矩阵S P P P ,,21Λ使 (1)s p p p Λ21A=I ,用A 1-右乘上式两端,得: (2) s p p p Λ21I= A 1- 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1-. 用矩阵表示(A I )??? →?初等行变换 为(I A 1-),就是求逆矩阵的初等行变换法,它是实际应用中比较简单的一种方法.需要注意的是,在作初等变换时只允许作行初等变换.同样,只用列初等变换也可以求逆矩阵.

矩阵的三角分解

§4矩阵的三角分解 矩阵的三角分解定理:设n n A R ×∈,如果A 的前 n-1个顺序主子式 det()0,1,2,,1i A i n ≠=? , 则A 可分解为一个单位下三角矩阵L 与一个上三角矩阵U 的乘积,且这种分解是唯一的。

证明: 1.存在性:利用高斯消去法来构L 和U (1)(2)() 1122det()0,1,2,,1i i ii A a a a i n =≠=? 1L A U ?=,A LU = 21 1 2 1 00101n n m L m m ??????=?? ???? , (1) (1)(1)11 121(2)(1)222()0 n n n nn a a a a a U a ??? ???=?? ??????

2.唯一性:分A 非奇异和奇异两种情况来证 (1)A 非奇异 考虑到A 的前n-1个顺序主子式非零,得 det()0,1,2,,i A i n ≠= 设1122A LU L U ==,12,L L 为单位下三角矩阵,12,U U 为上三角矩阵。 因A 非奇异,所以1U 可逆,从而 11 2121L L U U ??=

11 2121 11 2121(,) L L E U U L L U U ?????==因为单位下三角阵为上三角阵2121,L L U U ?== (2)A 奇异 因det()0,1,2,,1i A i n ≠=? ,det()0n A = ()0,1,2,,1i ii a i n ?≠=? ,() 0n nn a = 设1122A LU L U ==,12,L L 为单位下三角矩阵,12,U U 为上三角矩阵。对它们进行矩阵

逆矩阵的几种求法与解析(很全很经典)

E-A) 1= E + A + 2 K1 + … +A (E- A )(E+A + A 2+…+ A K 1)= E-A K (E-A) (E+A+A 2 + …+A K 1)=E, 逆矩阵的几种求法与解析 矩阵是线性代数的主要内容 ,很多实际问题用矩阵的思想去解既简单又快捷 .逆矩阵又是矩阵理论的很重要的内容 , 逆矩阵的求法自然也就成为线性代数研究的主要内容之一 .本文将给出几种求逆矩阵的方法 . 1. 利用定义求逆矩阵 定义:设A、B都是n阶方阵,如果存在n阶方阵B使得AB= BA = E,则称A 为可逆矩阵,而称B为A的逆矩阵.下面举例说明这种方法的应用. 例1 求证:如果方阵A满足A k= 0,那么EA是可逆矩阵,且 证明因为E与A可以交换,所以 因A K= 0 ,于是得 同理可得( E + A + A 2 + … +A K 1 )(E-A)=E , 因此E-A是可逆矩阵,且 (E-A) 1 = E + A + A 2 +…+A K 1 同理可以证明 (E+ A) 也可逆,且

E-A 的逆矩阵. (E+ A) 1 = E -A + A 2+…+ (-1 ) K1A K1 . 由此可知,只要满足A K =0,就可以利用此题求出一类矩阵E A 的逆矩阵. 例2 设 A = 00 20 00 03 ,求 0003 0000 分析 由于A 中有许多元素为零,考虑A K 是否为零矩阵,若为零矩阵,则可以 采用例2的方法求E-A 的逆矩阵. 解 容易验证 00 2 0 0 0 0 6 2 00 0 6 3 0 0 0 0 4 A 2 = ■ A 3= , A 4 =0 00 0 0 0 0 0 0 00 0 0 0 0 0 0 而 (E-A)(E+A+ A 2 + A 3 )=E , 所以 1 1 2 6 1 2 3 0 1 2 6 (E-A) E+A+ A 2 + A . 0 0 1 3 0 0 0 1 2. 初等变换法 求元素为具体数字的矩阵的逆矩阵,常用初等变换法 ?如果A 可逆,则A 可通过 初等变换,化为单位矩阵I ,即存在初等矩阵R,P 2 , P S 使 (1) p 1 p 2 p s A=I ,用 A 1 右乘上式两端,得: (2) p 1 p 2 p s I= A 1 比较(1)(2)两式,可以看到当A 通过初等变换化为单位矩阵的同时,对单 位矩阵I 作同样的初等变换,就化为A 的逆矩阵A 1. 用矩阵表示( A I ) 为( I A 1 ),就是求逆矩阵的初等行变换法, 它是实际应用中比较简单的一种方法 .需要注意的是,在作初等变换时只允许作行初 等

相关文档
最新文档