聚酰胺薄膜层析常用展开系统

聚酰胺薄膜层析常用展开系统

聚酰胺薄膜层析常用展开系统

NC膜,PVDF膜和尼龙膜的区别

NC膜、PVDF膜、尼龙膜的应用及差别 硝酸纤维素膜(nitrocellulose filter membrane,简称NC膜),NC膜在Northern Blot、Southern Blot、Western Blot中都需要用到,杂交技术有固相杂交和液相杂交之分。固相杂交技术目前较为常用,先将待测核酸结合到一定的固相支持物上,再与液相中的标记探针进行杂交。固相支持物常用硝酸纤维素膜。 PVDF膜即聚偏二氟乙烯膜(polyvinylidene fluoride)是蛋白质印迹法中常用的一种固相支持物。PVDF膜是疏水性的,膜孔径有大有小,随着膜孔径的不断减小,膜对低分子量的蛋白结合就越牢固。大于20000的蛋白选用0.45um的膜,小于20000的蛋白选用0.2um 的膜。PVDF膜使用是需预处理,用甲醇处理的目的是活化膜上的正电基团,使其更容易与带负电的蛋白结合。PVDF膜具有较高的机械强度,是印迹法中的理想固相支持物材料。 尼龙膜是一种合成的长链聚酰胺薄膜,对核酸和蛋白质具有很强的结合能力,能代替硝酸纤维素薄膜用于分子印迹和杂交实验。 NC膜、PVDF膜、尼龙膜的差别:尼龙膜是较理想的核酸固相支持物,有多种类型;硝酸纤维素膜是目前应用最广的一种固相支持物,价格最便宜;PVDF膜介于二者之间。 1. 就结合能力而言:尼龙膜结合DNA和RNA能力可达480-600μg/cm2,可结合短至10bp的核酸片段;硝酸纤维素膜结合DNA和RNA能力可达80-100μg/cm2,对于200bp 的核酸片段结合能力不强;PVDF膜结合DNA和RNA能力可达125-300μg/cm2。 2. 就温度适应性而言:尼龙膜经烘烤或紫外线照射后,核酸中的部分嘧啶碱基可与膜上的正电荷结合;硝酸纤维素膜依靠疏水性相互作用结合DNA,结合不牢固;PVDF膜结合牢固,耐高温,特别适合于蛋白印迹。 就韧性而言:尼龙膜较强;硝酸纤维素膜较脆,易破碎;PVDF膜较强。 3. 就重复性而言: ⑴、尼龙膜可反复用于分子杂交,杂交后,探针分子可经碱变性被洗脱下来;硝酸纤维素膜不能重复使用;PVDF膜可以重复使用。 ⑵、NC膜的使用也很简便,比如不需要甲醛预处理,只要在无离子水面浸润排出膜内气泡,再在电泳缓冲液中平衡几分钟就可以了;比如NC膜很容易封闭,也不需要特别严谨的清洗条件。转移到NC膜上的蛋白在合适的条件下可以稳定保存很长时间,不过要注意的是纯的硝纤膜在比较脆,又容易卷,操作要小心,不适合用于需要多次重复清洗的用途。因为经不起多次“折磨”。选择硝纤膜时要注意的是选择合适的孔径,通常20KD以上的大分子蛋白用0.45um孔径的膜,小于20KD的话建议选择0.2um的,如果小于7KD的话最好选择 0.1um的膜。另外还要注意选择纯的NC膜混有含醋酸纤维(CM)的NC膜结合力会有所降低。 ⑶、由于NC膜上结合的蛋白会因为一些去污剂而被代替,因此在封闭时最好使用较温和的Tween20,而且浓度不要超过0.3%(据说0.05%效果最好)。一般而言,NC膜越纯,其

NC膜,PVDF膜和尼龙膜的区别

NC膜、PVDF膜、xx膜的应用及差别 硝酸纤维素膜(nitrocellulosefiltermembrane,简称NC膜),NC膜在NorthernBlot、SouthernBlot、WesternBlot中都需要用到,杂交技术有固相杂交和液相杂交之分。固相杂交技术目前较为常用,先将待测核酸结合到一定的固相支持物上,再与液相中的标记探针进行杂交。固相支持物常用硝酸纤维素膜。 PVDF膜即聚偏二氟乙烯膜(polyvinylidenefluoride)是蛋白质印迹法中常用的一种固相支持物。PVDF膜是疏水性的,膜孔径有大有小,随着膜孔径的不断减小,膜对低分子量的蛋白结合就越牢固。大于200的蛋白选用 0.45um的膜,小于200的蛋白选用 0.2um的膜。PVDF膜使用是需预处理,用甲醇处理的目的是活化膜上的正电基团,使其更容易与带负电的蛋白结合。PVDF膜具有较高的机械强度,是印迹法中的理想固相支持物材料。 尼龙膜是一种合成的长链聚酰胺薄膜,对核酸和蛋白质具有很强的结合能力,能代替硝酸纤维素薄膜用于分子印迹和杂交实验。 NC膜、PVDF膜、xx膜的差别: 尼龙膜是较理想的核酸固相支持物,有多种类型;硝酸纤维素膜是目前应用最广的一种固相支持物,价格最便宜;PVDF膜介于二者之间。 1.就结合能力而言: 尼龙膜结合DNA和RNA能力可达480-600μg/cm2,可结合短至10bp的核酸片段;硝酸纤维素膜结合DNA和RNA能力可达80-100μg/cm2,对于200bp 的核酸片段结合能力不强;PVDF膜结合DNA和RNA能力可达125- 300μg/cm2。 2.就温度适应性而言:

糖类硅胶G薄层层析实验方法

糖类硅胶G薄层层析实验方法 【目的和要求】 1、了解并初步掌握吸附层析的原理。 2、学习薄层层析的一般操作及定性与定量鉴定的方法。 【原理】 薄层层析是一种广泛应用于氨基酸,多肽,核苷酸,脂肪类,糖脂和生物碱等多种物质的分离和鉴定的层析方法。由于层析是在吸附剂或支持介质均匀涂布的薄层上进行的,所以称之为薄层层析。 薄层层析的主要原理是,根据样品组分与吸附剂的吸附力及其在展层溶剂中的分配系数的不同而使混合物分离。当展层溶剂移动时,会带着混合样品中的各组分一起移动,并不断发生吸附与解吸作用以及反复分配作用。根据各组分在溶剂中溶解度不同和吸附剂对样品各组分的吸附能力的差异,最终将混合物分离成一系列的斑点。如果把标准样品在同一层析薄板上一起展开,便可通过在同一薄板上的已知标准样品的Rf值和未知样品各组分的Rf值进行对照,就可初步鉴定未知样品各组分的成分。 薄层层析根据所支持物的性质和分离机制的不同包括吸附层析,离子交换层析和凝胶过滤等。糖的分离鉴定可用吸附剂或支持剂中添加适宜的黏合剂后再涂布于支持板上,可使薄层粘牢在玻璃板(或涤沦片基)这类基底上。 硅胶G是一种已添加了黏合剂石膏(CaSO4)的硅胶粉,糖在硅胶G薄层上的移动速度与糖的相对分子质量和羟基数等有关,经适当的溶剂展开后,糖在硅胶G薄析上的移动距离为戊糖>已糖>双糖>三糖。若采用硼酸溶液代替水调制硅胶G制成的薄板可提高高糖的分离效果。如对已分开的斑点显色,而将与它位置相当的另一个未显色的斑点从薄层上与硅胶G 一起刮下,以适当的溶液将糖从硅胶G上洗脱下来,就可用糖的定量测定方法测出样品中各组分的糖含量。 薄层层析的展层方式有上行,下行和近水平等。一般常采用上行法,即在具有密闭盖子的玻璃缸(即层析缸)中进行,将适量的展层溶液倒于缸底,把点有样品的薄层板放入缸中即可(如图1所示)。保证层析缸内有充分展层溶剂的饱和蒸气是实验成功的关键。与纸层析,柱层析等方法比较,薄层层析有明显的优点:操作方便,层析时间短,可分离各种化合物,样品用量少(0。1至几十向微克的样品均可分离),比纸层析灵敏度高10~100倍,显色和观察结果方便,如薄层由无机物制成,可用浓硫酸,浓盐酸等腐蚀性显色剂。因此,薄层层析是一项实验常用的分离技术,其应用范围主要在生物化学,医药卫生,化学工业,家业生产,食品和毒理分析等领域,对于天然化合物的分离和鉴定也已广泛应用。 【操作方法】 1、硅胶G薄层板的制备将制备薄层用的玻璃板预先用洗液洗干净并烘干,玻璃板要求表面光滑。称取硅胶G粉6g,加入12mL 0.1mol/L硼酸溶液,用玻棒在烧杯中慢慢搅拌至硅胶浆液分散均匀,黏稠度适中,然后倾倒在干净,干燥的坡璃板上,倾斜玻璃或用玻棒将硅胶G由一端向另一端推动,使硅胶G铺成厚薄均匀的薄层。待薄板表面水分开干燥后置于烘箱内,待温度升至110℃后活化30min。冷却至室温后取出,置于干燥器中备用(注意:避免薄板骤热,骤冷使薄层断裂或在展层过程中脱落)。制成的薄层板,要求表面平整,厚薄均匀。 手工涂布薄板的方法:(1)玻棒涂布:选用一根直径为1~1.2cm的玻璃棒或玻璃管在两端绕几圈胶布,胶布的圈数视薄层的厚度而定,常用厚度为0.56~1.0mm,把吸附剂倒在玻璃板上,用这根玻璃棒在玻璃上将吸附剂向一个方向推动,即成薄板。(2)倾斜涂布:将吸附剂浆液倒在玻璃上,然后倾斜使吸附剂漫布于玻板上面成薄层。 2、点样取制备好的薄板一块,在距底边1.5cm处划一条直线,在直线上每隔1.5~2cm作为

双向拉伸尼龙薄膜BOPA薄膜的特性及应用

双向拉伸尼龙薄膜BOPA薄膜的特性及应用 双向拉伸尼龙薄膜(BOPA)是生产各种复合包装材料的重要材料,目前成为继BOPP、BOPET 薄膜之后的第三大包装材料。 BOPA薄膜的生产原料 BOPA薄膜是以聚酰胺6(尼龙6)为原材料制成的。聚酰胺分子内含有极性酰胺基 (-CO-NH-),其中的-NH-基能和-C=O基形成氢键,氢键的形成是聚酰胺具有较高结晶性的重要因素之一,但不是所有聚酰胺中的分子都能结晶,还有一部分非结晶性的聚酰胺存在活字印刷,这部分非结晶性的聚酰胺分子链中的酰胺基可以与水分子配位,即具有吸水性。有人提出聚酰胺6分子中每2个酰胺基可以与3个水分子配位,其中1个水分子以强的氢键存在,另外2个水分子以松散的结合状态存在。水渗透到尼龙中使现存的键变弱贴纸印刷,正是由于其分子结构的这些特点,聚酰胺6具有以下特性:优异的力学性能、耐磨性和耐腐蚀性;具有自润滑性;耐高温;具有良好的氧气阻隔性、耐穿刺和耐撕裂性;缺点是吸水性强。 BOPA薄膜的特点和主要用途 与其他薄膜相比,BOPA薄膜比PE、BOPP薄膜具有更高的强度,比EVOH、PVDC薄膜具有低成本和环保方面的优势,是食品保鲜、保香的理想材料嘉兴印刷,特别适合于冷冻、蒸煮、抽真空包装,且无毒无害。具体表现在以下几个方面: (1)良好的透明性和光泽度,雾度低。 (2)优异的韧性和耐穿刺性。 (3)极好的气体(氧气、氮气、二氧化碳)、香味和气味阻隔性。 (4)优异的耐油性、耐油脂性和耐化学溶剂性。 (5)便于加工,可进行涂敷、金属化处理,或与其他基材复合等。 (6)适用温度范围广泛(-60℃-150℃)。 (7)耐热性强。 BOPA薄膜的制造方法 按生产工艺的不同凹版印刷,BOPA薄膜的制造方法可分为平膜法和管膜法,在此重点介绍平膜法。目前,平膜BOPA薄膜的生产方法分为两大类:两步法和同步法。同步法双向拉伸工艺过程为:原料干燥→熔融挤出→冷却铸片→铸片测厚→同时双向拉伸→热定型→薄膜测厚→牵引、切边→收卷→分切→包装入库。两步法双向拉伸工艺是先进行纵向拉伸再进行横向拉伸,其他工序与同步法双向拉伸工艺基本相同。两步法双向拉伸技术有一个最大的缺点:弓形效应大。这种效应会导致生产的相当大一部分BOPA薄膜产品无法满足最终用户

DNS-氨基酸的制备和鉴定-

DNS-氨基酸的制备和鉴定 实验目的 1.了解并掌握DNS-氨基酸的制备和鉴定的原理 2.掌握制备Dansyl氨基酸和聚酰胺薄膜层析法的操作和方法 实验原理 荧光试剂5-二甲氨基-1-萘磺酰氯(dansyl-Cl,简称DNS-Cl)在碱性条件下与氨基酸(肽或蛋白质)的氨基结合成带有荧光的DNS-氨基酸(DNS-肽或DNS-蛋白质),DNS-氨基酸再经酸水解可释放出DNS-氨基酸,其反应式如下: 图1:DNS-氨基酸生成反应机理图2:单项层析结果示意图DNS-Cl能与所有的氨基酸生成具荧光的衍生物,其中赖氨酸、组氨酸、酪氨酸、天冬酰胺等氨基酸可生成双DNS-氨基酸衍生物。这些衍生物相当稳定,可用于蛋白质的氨基酸组成的微量分析,灵敏度可达10-10~10-9mol水平,比茚三酮法高10倍以上,比过去常用的FDNB 法高100倍。将Edman法和DNS法结合起来(称为Edman-DNS法)应用于蛋白质结构的序列分析上作,可以提高Edman法的灵敏度及其分析速度。 DNS-Cl在pH过高时,水解产生副产物DNS-OH,即: 图3:DNS-Cl在pH过高水解产生DNS-OH

在DNS-Cl过量时,会产生DNS-NH 2 ,即: 图4:DNS-Cl过量产生DNS-NH 2 DNS-氨基酸在紫外光照射下呈现黄绿色荧光,而DNS-OH和DNS-NH 2 产生蓝色荧光,可彼此区分开。 DNS-氨基酸可用聚酰胺薄膜层析法进行分离和鉴定,在薄膜上检测灵敏度为0.01ug(相当于10—10mol)。由于它具有灵敏度高,分辨力强,快速,操作方便等优点,已被广泛应用于各种化合物的分析。 层析法是利用混合物中各组分物理化学性质的差异(如吸附力、分子形状及大小、分子亲和力、分配系数等),使各组分在两相(一相为固定的,称为固定相;另一相流过固定相,称为流动相)中的分布程度不同,即各组分所受的固定相的阻力和流动相的推力影响不同,从而使各组分以不同的速度移动而达到分离的目的。 聚酰胺是—类化学纤维原料,由己二酸与己二胺聚合而成的称锦纶66 。因为在这类物质分子中都含有大量酰胺基团,故统称聚酰胺。它对很多极性物质有吸附作用,这是由于聚酰胺的一C=O及>NH基能与被分离物质之间形成氢键。如酚类(包括黄酮类、鞣质等)和酸类<如核苷酸、氨基酸等)是以其羟基与酰胺键的羰基形成氢键;硝基化合物和醌类等物质与酰胺键的氨基形成氢键。被分离物质形成氢键能力的强弱,确定吸附能力的差异。在层析过程中,层层溶剂与被分离物质在聚酰胺表面竞相形成氢键。因此选择适当的展层溶剂,使被分离物质在溶剂与聚酰胺表面之间的分配系数能有较大差异,经过吸附与解吸的展层过程,可以一一分离。 实验器材 1.聚酰胺薄膜(7×7cm) 2.电吹风一个 3.紫外灯一台 4.点样管(4支) 5.吸管 6.量筒

薄层层析的原理与操作

薄层层析的原理与操作 薄层色谱,或称薄层层析(thin-layer chromatography),是以涂布于支持板上的支持物作为固定相,以合适的溶剂为流动相,对混合样品进行分离、鉴定和定量的一种层析分离技术。这是一种快速分离诸如脂肪酸、类固醇、氨基酸、核苷酸、生物碱及其他多种物质的特别有效的层析方法,从50年代发展起来至今,仍被广泛采用。 一、基本原理 薄层层析是把支持物均匀涂布于支持板(常用玻璃板,也可用涤纶布等)上形成薄层,然后用相应的溶剂进行展开。薄层层析可根据作为固定相的支持物不同,分为薄层吸附层析(吸附剂)、薄层分配层析(纤维素)、薄层离子交换层析(离子交换剂)、薄层凝胶层析(分子筛凝胶)等。一般实验中应用较多的是以吸附剂为固定相的薄层吸附层析。 吸附是表面的一个重要性质。任何两个相都可以形成表面,吸附就是其中一个相的物质或溶解于其中的溶质在此表面上的密集现象。在固体与气体之间、固体与液体之间、吸附液体与气体之间的表面上,都可能发生吸附现象。 物质分子之所以能在固体表面停留,这是因为固体表面的分子(离子或原子)和固体内部分子所受的吸引力不相等。在固体内部,分子之间相互作用的力是对称的,其力场互相抵消。而处于固体表面的分子所受的力是不对称的,向内的一面受到固体内部分子的作用力大,而表面层所受的作用力小,因而气体或溶质分子在运动中遇到固体表面时受到这种剩余力的影响,就会被吸引而停留下来。吸附过程是可逆的,被吸附物在一定条件下可以解吸出来。在单位时间内被吸附于吸附剂的某一表面积上的分子和同一单位时间内离开此表面的分子之间可以建立动态平衡,称为吸附平衡。吸附层析过程就是不断地产生平衡与不平衡、吸附与解吸的动态平衡过程。 例如用硅胶和氧化铝作支持剂,其主要原理是吸附力与分配系数的不同,使混合物得以分离。当溶剂沿着吸附剂移动时,带着样品中的各组分一起移动,同时发生连续吸附与解吸作用以及反复分配作用。由于各组分在溶剂中的溶解度不同,以及吸附剂对它们的吸附能力的差异,最终将混合物分离成一系列斑点。如作为标准的化合物在层析薄板上一起展开,则可以根据这些已知化合物的Rf值(后面介绍Rf值)对各斑点的组分进行鉴定,同时也可以进一步采用某些方法加以定量。 薄层层析有许多优点:它保持了操作方便、设备简单、显色容易等特点,同时展开速率快,一般仅需15~20分钟;混合物易分离,分辨力一般比以往的纸层析高10~100倍,它既适用于只有0.01μg的样品分离,又能分离大于500mg的样品作制备用,而且还可以使用如浓硫酸、浓盐酸之类的腐蚀性显色剂。薄层层析的缺点是对生物高分子的分离效果不甚理想。 二、固定相支持剂的选择和处理 在薄层层析时,对支持剂的选择主要考虑两方面:一是支持剂的性质与适用范围;二是支持剂的颗粒大小。一般来说,所选吸附剂应具有最大的比表面积和足够的吸附能力,它对欲分离的不同物质应有不同的吸附能力,即有足够的分辨力;所选吸附剂与溶剂及样品组分不会发生化学反应。吸附力的强弱规律可概括如下:吸附力与两相间界面张力的降低成正比,某物质溶液中被吸附的程度与其在溶剂中的溶解度成反比。极性吸附剂易吸附极性物质,非极性吸附剂易吸附非极性物质。同族化合物的吸附程度有一定的变化方向,例如,同系物极性递减,而被非极性表面吸附的能力将递增。

尼龙膜常见问题汇总

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/c711939049.html,) 尼龙膜常见问题汇总 PA—分子链段中含有许多重复的酰胺基团(-CO-NH-)的线性高聚物,其比重为1.14g/cm3。聚酰胺(Polyamide,PA)指主链上具有酰胺基团的聚合物,通常称为尼龙(Nylon)。 目前国内使用的尼龙薄膜都是由已内酰胺开环聚合得到的尼龙6制成的,属定向薄膜。而尼龙膜就生产成型工艺上分有:流涎法(CPA)、吹筒膜法(IPA)、双向拉伸法(BOPA)。拉伸法又分为同步拉伸和异步拉伸两种不同工艺。 尼龙膜属于定向薄膜,而定向薄膜的性能特点是: ①经纵横向拉伸,聚合物分子有高度的取向,因此失去热封性,如BOPP、PET、BOPA 等; ②提高了结晶度,物力学性能大大提高,透明度也提高; ③引发撕裂强度很大,但继发撕裂强度大大降低。 1、为什么尼龙薄膜印刷后有时会产生色迁移和色渗透? 色迁移和色渗透是两个不同的概念: ①色迁移:主要是墨层中颜料的小分子在一定温度作用下做剧烈的布郎运动,从而脱离靠微弱的分子间力形成的晶格,跟随其它有机分子一起做迁移运动,散布颜色;

②色渗透:则是指塑料印刷基材上下叠合,下边基材表面被移印了上面基材印刷的图案。 主要原因是:印刷有墨膜的塑料薄膜聚合物中,高分子剧烈运动,形成有间隙的孔隙,当温度升高时,其孔隙也扩张变大,而此时,颜料分子也做剧烈的布朗运动,它们就会扩散,透过孔隙形成渗透。特别是青莲色、桃红色等更易出现色渗透现象。 颜料分子的扩散渗透主要是在塑料薄膜的高分子链热运动时的非结晶区内进行。尼龙膜、非线型的聚乙烯等类型的薄膜属于无定型塑料,由于它们结晶度低,分子间隙大,特别是在高温和湿度大的环境下,容易热变形,吸水量大,遇热水解。所以这类型塑料膜就越容易发生某些颜色的渗透现象。 2、为什么尼龙膜复合CPP,成品有零星的起泡现象? 这种情况多是胶水气泡过高或是尼龙膜受潮造成的,以及复合层残留溶剂太多引起。在南方潮湿的气侯环境下,这是蒸煮包装的常见问题,这时要加大胶槽里胶水的循环量,扼制气泡的发生,或是加大印刷和复合机的烘干温度,或者在胶水里增加不大于5%的固化剂,而且天气好时(湿度小于70%)印刷好的尼龙膜要马上复合,或用铝箔纸包好,不要搁置太久(5min以内),以免尼龙膜吸水受潮,而产生气泡。 3、为什么尼龙膜容易吸潮? 尼龙主要由二元酸、二无胺或由氨基酸基经缩聚而成。因为聚酰胺分子内含有极广性酰胺基,但在生产中并不是聚酰胺中的分子都能结晶及分子配位,还有部分非结晶的聚酰胺极性基因的存在,这部分非结晶的聚酰胺分子链中的酰胺基可以与水配位,即具有吸水性,可吸收极性很强的水分子,严重时会在膜表面形成一层水膜,使尼龙膜的阻隔性和气密性大大下降。 4、尼龙膜用做表层复合再水煮易产生脱层的原因?

《生物化学》实验指导(8个实验)

生物化学实验指导 吕杰编著 新疆大学资源与环境科学学院生态学教研室

内容介绍 《生物化学实验指导》是新疆大学资源与环境科学学院《生物化学》课程组的教师在参考国内重点院校、科研院所的生物化学实验与实习教材的基础上,结合教师的教学经验汇编而成。该实习指导围绕教学大纲设计了8个实验内容。

目录 实验一氨基酸纸层析 (4) 实验二DNS-CL法测定N末端氨基酸 (5) 实验三考马斯亮蓝法测定蛋白质的浓度 (7) 实验四酪蛋白的制备 (8) 实验五葡萄糖标准曲线的绘制 (10) 实验六酵母蔗糖酶的提取及活力测定 (12) 实验七酵母RNA的分离及组分鉴定 (14) 实验八维生素C的定量测定 (16)

实验一氨基酸纸层析 一、实验目的 1、通过氨基酸的纸层析分离,学习纸层析的基本原理和操作方法。 二、实验原理 纸层析:是以滤纸作为支持物的分配层析法,是20世纪40年代发展起来的一种生化分离技术。由于设备简单,操作方便,所需样品量少,分辨力较高等优点而广泛的用于物质的分离,并可进行定性和定量的分析。缺点是展开时间较长。 分配层析法:是利用物质在两种或两种以上不同的混合溶剂中的分配系数不同,而达到分离的目的的一种实验方法。 在一定条件下,一种物质在某种溶剂系统中的分配系数是一个常数即α=溶质在固定相的浓度/溶质在流动相的浓度。溶剂系统:由有机溶剂和水组成,水和滤纸纤维素有较强的亲和力,因而其扩散作用降低形成固定相,有机溶剂和滤纸亲和力弱,所以在滤纸毛细管中自由流动,形成流动相,由于混合液中各种氨基酸的分配系数值不同,其在两相中的分配数量及移动速率(即迁移率Rf值)就不同,从而达到分离的目的。 三、实验材料、仪器和试剂: 1、实验材料:标准氨基酸溶液 2、仪器: 层析缸,层析纸,毛细管,天平,吹风机等。 3、试剂: (1)氨基酸标准溶液:0.1M丙氨酸和0.1M谷氨酸标准溶液。 (2)溶剂系统:正丁醇:甲酸:水=15:3:2(体积比)摇匀; (3)0. 1%的茚三酮丙酮溶液;茚三酮1—5克,丙酮100毫升 四、实验步骤: 纸层析 (1) 取一长方形滤纸,在滤纸纵向对应的两边距边沿2cm 处,用铅笔轻轻的各画两条平行线,一条作前沿标志,一条作点样线,在点线上每隔2cm 画一个“+”作为点样位置,共5个点。 (2) 点样:用毛细管点样,其中2个点用毛细管点上氨基酸的标准溶液;中间间隔一点,另2点点上未知氨基酸的溶液。每个点样点重复点5次,每点一次用电吹风吹干后再点下次,点样点的直径应控制在2mm左右,点样完毕用大头针将滤纸做成筒形,点样面向外,注意纸的两边不要接触。 (3) 展层:向层析缸中加入层析溶剂,液层不要超过点样线(高约1.5cm,约50-60ml 溶剂),将滤纸点样点朝下放入层析溶剂中,将层析缸密闭,待溶剂到达标志线后取出,吹干。 (4)显色:用喷雾器将茚三酮显色剂均匀喷在滤纸上,吹风机热风吹干显色。 五.结果分析: (1)用铅笔将层析色谱轮廓和中心点描出来; (2) 测量原点至色谱中心和至溶剂前沿的距离,计算各种氨基酸色谱的Rf 值。 Rf=组分移动的距离/溶剂前沿移动的距离 =原点至组分斑点中心的距离/原点致溶剂前沿的距离 六、思考题: 1、何谓分配层析法和分配系数?

EHA高阻隔尼龙薄膜

EHA高阻隔尼龙薄膜 EHA是由PA6共挤EVOH同步双向拉伸而成的高阻隔塑料薄膜,是基于先进的磁驱动线性电机同步双向拉伸设备和工艺而设计的独特产品。集BOPA的机械强度大、韧性好以及EVOH对气体的高阻隔性等优点于一身,可用于休闲风味食品、冷鲜食品、肉制品、酱料、日化产品及电子军工等产品的包装,能起到对气体的高阻隔、保香保味的作用,并可以实现精美印刷。可以直接取代含BOPA包装结构中的BOPA层,不需要任何其它工艺和材料的改变。EHA国内首创是由厦门长塑实业有限公司(全球最大的BOPA 双向拉伸尼龙薄膜生产商、全球领先的软包装材料供应商)生产研发。 名称EHA 特性耐高温/气体高阻隔/保香/环保等应用冷鲜食品/肉制品/酱料/日化等包装 【目录】 (一)产品特性(二)产品结构 (三)应用范围(四)技术指标 (五)发展前景 【正文】 (一)产品特性 1.相比普通BOPA薄膜有极高的气体阻隔性。 2.对内容物有较好的保香保味作用。 3.节省材料的使用,环保节能。 4.材料厚度均匀,继承BOPA良好的印刷性能,可以用于9色以上套印,精美里印。 5.各项性能(强度,收缩率,平整度,光洁度,雾度等)优异。

(二) EHA 产品结构 (三) 应用范围 EHAp ——普通牌号: 可用于对气体高阻隔性及保香保味有要求的普通巴氏杀菌方式的腌制蔬菜、水果果冻包装、 热灌装酱料、奶粉、电子、日化包装及辐照杀菌等其它杀菌方式的包装。 推荐应用结构:EHAp//PE 、EHAp//CPP 、BOPET//EHAp//PE 、BOPET//EHAp//CPP 等 如:水煮杀菌包装:BOPET //EHAp//PE EHAr ——高温蒸煮牌号: 可用于对气体高阻隔性及保香保味有要求的风味休闲食品、肉制品、宠物食品及医疗器械等 产品的包装。耐121℃高温蒸煮。 推荐应用结构:EHAr//CPP 、BOPET//EHAr//CPP 等 如:蒸煮包装: EHAr//CPP (四) EHA 技术指标 EHAp: BOPET PE EHAp CPP EHAr

聚酰胺薄膜层析法分离氨基酸

生物化学实验报告 题目:聚酰胺薄膜层析法分离氨基酸——DNS-Cl 法 姓名:余振洋 学号:200900140156 系年级:09级生科3班 同组者:张刚刚 时间:2011/4/16 一.【实验目的】 1.了解并掌握DNS-氨基酸制备和鉴定的原理及方法。 2.掌握聚酰胺薄膜层析法分离氨基酸的操作和方法。 二.【实验原理】 荧光试剂5-二甲氨基-1-萘磺酰氯(5-dimethylamino-1-naphthylene sulfonyl chloride ,Dansyl ch1oride ,简称DNS-Cl )在弱碱性(pH9.0 左右)条件下可与氨基酸的α-氨基反应,生成带黄色荧光的 DNS- 氨基酸。 DNS-氨基酸可用聚酰胺薄膜层析法分离,所得层析图与DNS-标准氨基酸层析图谱相对比,可借此鉴定样品中氨基酸的种类,用此法鉴定蛋白质N-末端氨基酸比FDNB 法灵敏100倍,仅 10-10~10-9mo1样品即可检出,产物也比DNP-氨基酸稳定,且操作简便、快速。 DNS-Cl 在pH 值过高时,会水解产生副产物DNS-OH ,反应时如下: 9 PH 9.9 37℃,1h DNS —Cl 氨基酸 DNS —氨基酸

在DNS-Cl过量时,又会产生DNS-NH2,反应式如下: 在紫外光照射下,DNS-OH 和DNS-NH2 产生蓝色荧光,而 DNS- 氨基酸产生黄色荧光,可彼此区分开。 三.【实验材料】 1.器材: 小离心管 紫外灯(波长254nm或265nm)。 37℃恒温水浴。 电吹风。 层析缸(10cm×20cm)。 毛细管(点样管)。 聚酰胺薄膜。 容量瓶(100ml)。 移液管(2ml)。 培养皿,移液枪,移液管。

QCSP薄层层析检测法

1. 目的:规范薄层层析检测法,保证检测结果的准确性。 2. 范围:所有需作薄层层析检测的品种。 3. 责任人:QC主任、检验员对本SOP的实施负责。 4. 程序: 4.1 薄层色谱法:系将供试品溶液点样于薄层板上,经展开、检视后所得的色谱图, 与适宜的对照物按同法所得的色谱图作对比,用以进行药品的鉴别或杂质检查。 4.2仪器与材料 4.2.1 薄层板:薄层板可采用自制或市售。 4.2.1.1 自制薄层板:除另有规定外,玻板要求光滑、平整,洗净后不附水珠, 晾干。最常用的固定相有硅胶G、硅胶GF<[254]> 、硅胶H、硅 胶HF<[254]>,其次有硅藻土、硅藻土G、氧化铝、氧化铝G、微晶纤 维素、微晶纤维素F<[254]>等。其颗料大小,一般要求粒径为5~40μm。 4.2.1.2 薄层板的涂布:一般可分无黏合剂和含黏合剂两种。前者系将固定相 直接涂布于玻板上, 后者系在固定相中加入一定量的黏合剂,一般常 用10%~15%煅石膏(CaSO 4.2H 2 O在140℃加热4小时),混匀后加水适 量使用,或用羧甲基纤维素钠水溶液(0.5%~0.7%)适量调成糊状, 均匀涂布于玻板上。使用涂布器涂布应能使固定相在玻板上涂成一层 符合厚度要求的均匀薄层。 4.2.1.3 市售薄层板:分普通薄层板和高效薄层板,如硅胶薄层板、硅胶GF254 薄层板、聚酰胺薄膜和铝基片薄层板等。 4.2.2 点样器:使用微量注射器或定量毛细管,应能使点样位置正确、集中。 4.2.3 展开容器:使用适合薄层板大小的玻璃制薄层色谱展开缸,并有严密的盖

子,底部应平整光滑,或有双槽。 4.2.4 显色剂:主要为10%硫酸乙醇溶液或其他合适的显色剂(见相关品种项下的 规定)。主要采用喷雾显色、浸渍显色或置碘蒸气中显色,用以检出斑点。 4.2.5 显色装置:喷雾显色要求用压缩气体或气馕使显色剂呈均匀细雾状喷出; 浸渍显色可用专用玻璃器皿或用适宜的玻璃缸代替;蒸气熏蒸显色可用双 槽玻璃缸或适宜大小的干燥器代替。 4.2.6 检视装置:为装有可见光、短波紫外光(254nm)、长波紫外光(365nm) 光源的可见紫外检测器。 4.3 操作方法 4.3.1 薄层板制备:自制薄层板,除另有规定外,将1份固定相和3份水在研钵 中按同一方向研磨混合,去除表面的气泡后,倒至玻板上平稳地进行涂布 (厚度为0.2~0.3mm),置水平台上于室温下晾干,再在110℃活化30分 钟后,置有干燥剂的干燥箱中备用。使用前检查其均匀度(可通过透射光 和反射光检视)。 4.3.2 市售薄层板:临用前一般应110℃在活化30分钟。聚酰胺薄膜不需活化。 铝基片薄层板可根据需要进行剪裁,但须注意剪裁后的薄层板底边的硅胶 层不得有破损。如在存放期间被空气中杂质污染,使用前可用适宜的溶剂 在展开容器中上行展开预洗, 再置110℃活化后,置于干燥器中备用。 4.3.3 点样:除另有规定外,用点样器点样于薄层板上,一般为圆点,点样基线 距底边2.0cm,样点直径为2~4mm,点间距离可视斑点扩散情况以不影响检 出为宜,一般为1.0~2.0cm。点样时应注意勿损伤薄层板表面。 4.3.4 展开:

氨基酸聚酰胺薄膜层析

氨基酸聚酰胺薄膜层析——DNS-Cl法 一、实验目的: 1.掌握聚酰胺薄膜层析技术的基本方法和应用。 2.熟悉蛋白质及肽的N末端氨基酸DNS分析法。 二、实验原理: .1.层析技术 ①概念:是利用化合物中各组分的物理性质的差别(如溶解度、吸附能力、分子形状和大小、分子极性等)使各组分在两相中的分布不同,从而使各组分以不同速度随流动相向前移动而达到分离的目的。 ②特点:分离效率高,能分离各种性质相类似的物质。不仅可用于少量物质的分离纯分,也可用于大量物质的分离纯化和制备。 ③层析法的分类 气相层析(以气体为流动相的层析法) 液相层析(以液体为流动相的层析法,此为生物化学领域里常用的方法) I.吸附层析:薄层吸附层析、吸附柱层析 II.分配层析:纸层析、柱层析、薄层层析 III.离子交换层析 IV.凝胶层析:柱层析、薄膜层析 V.亲和层析 ④纸层析法(paper chromatography)是生物化学上分离、鉴定氨基酸混合物的常用技术,可用于蛋白质的氨基酸成分的定性鉴定和定量测定。纸层析法是用滤纸为支持物进行层析的方法,所用展层溶剂大多由水和有机溶剂组成,滤纸纤维与水的亲和力强,与有机溶剂的亲和力弱,因此在展层时,水是固定相,有机溶剂是流动相。溶剂由下向上移动的,称上行法;由上向下移动的,称下行法。将样品点在滤纸上(此点称为原点),进行展层,样品中的各种氨基酸在两相溶剂中不断进行分配。由于它们的分配系数不同,不同氨基酸随流动相移动的速率就不同,于是就将这些氨基酸分离开来,形成距原点距离不等的层析点。 溶质在滤纸上的移动速率用Rf值表示:Rf=原点到层析斑点的距离/原点到溶剂前沿的距离在一定条件下某种物质的Rf值是常数。Rf值的大小与物质的结构、性质、溶剂系统、温度、湿度、层析滤纸的型号和质量等因素有关。只要条件(如温度、展层溶剂的组成)不变,Rf 值是常数,故可根据Rf值作定性判断。

薄板层析

薄层色谱法(英语:Thin layer chromatography,简称TLC,又称为薄层层析)是一种用于分离混合物的色谱技术。[1]在化学分析特别是对于有机化合物的分析中,薄层色谱是极为重要的分离方法。 薄层色谱在覆盖有很薄一层吸附剂的玻璃板、塑料片或铝箔上进行。吸附剂又称为薄层色谱固定相:常为硅胶、氧化铝或纤维素。操作时先将混合物样品用毛细管点于板上,而后在密闭的层析缸中,用单一或混合溶剂作为流动相,通过毛细作用缓慢地将混合物试样中的成份由下而上带到板的顶端。由于样品中各组分对于吸附剂的作用力不同,且在洗脱溶剂的溶解度也不同,导致各组分的上升速度有差异而最终在板上形成不同的斑点,达到分离混合物的目的。[2] 薄层色谱可用于: ?监测反应进程 ?在已经有对照样品的条件下鉴定化合物 ?测定物质的纯度 下列为使用薄层色谱的实例: ?分析神经酰胺与脂肪酸 ?检测在食物和水中的农药或杀虫剂

?在法医的工作中,分析纤维的染料成份 ?化验放射性药物的放化纯度 ?鉴定药用植物和它们的组成[3] 高效薄层色谱是对经典薄层色谱的改进法之一,该法中色谱的灵敏度和分辨力都有很大的提高,可以准确地检出极微量的物质。[编辑]薄层板的制作 TLC板通常可在市场上直接购买,如硅胶G板或聚酰胺板等,根据其固定相标准颗粒大小范围而分为不同规格,通常颗粒越细分离效果越好。将吸附相(如硅胶)与少量惰性粘合剂(硫酸钙)和水混合形成的浆状物,均匀地铺于以玻璃片、厚铝箔或塑料制成的载板上。铺过固定相的板先晾干,然后在烤炉内于110℃加热三十分钟进行活化。用于分析鉴定时吸附剂厚度一般为 0.1–0.25 毫米,而用于制备时(见下文)则为0.5–2.0 毫米。[4] [编辑]薄层层析技术 展开一个TLC板,一个紫色的斑点被分离为一个红色斑点与一个蓝 色斑点

相关文档
最新文档