小学数学典型应用题10:行船问题(含解析)

小学数学典型应用题10:行船问题(含解析)
小学数学典型应用题10:行船问题(含解析)

小学数学典型应用题10:行船问题(含解析)

行船问题

【含义】

行船问题也就是与航行有关的问题。

解答这类问题要弄清船速与水速,船速是船只本身航行的速度;

也就是船只在静水中航行的速度;

水速是水流的速度,船只顺水航行的速度是船速与水速之和;

船只逆水航行的速度是船速与水速之差。

【数量关系】

(顺水速度+逆水速度)÷2

=船速(顺水速度-逆水速度)÷2

=水速顺水速=船速×2-逆水速

=逆水速+水速×2逆水速

=船速×2-顺水速

=顺水速-水速×2

解题思路和方法

简单的题目可直接利用公式,复杂的题目变通后再利用公式,利用线段图分析可以让解题事半功倍。

例1:

某船在同一条河中顺水船速是每小时20千米,逆水船速是每小时10千米,这条河的水流速度是每小时 _____ 千米?

解:

顺水船速=船速+水流速度,逆水船速=船速-水流速度,

可以看出,顺水船速比逆水船速多2个水流速度,

因此,水流速度=(20-10)÷2=5(千米/时)。

例2:

某条大河水流速度是每小时5千米,一艘静水船速是每小时20千米的货轮逆水航行5小时能到达目的地,

这艘货轮原路返回到出发地需要多少小时?

解:

1、逆水速度=静水船速-水流速度,

所以货轮逆水速度是20-5=15(千米/时),

行驶5小时共行了15×5=75(千米)。

2、原路返回时是顺水航行,顺水速度是静水船速+水速,

即20+5=25(千米/时),

所以返回用时75÷25=3(小时)。

例3:

小船在两个码头间航行,顺水需4小时,逆水需5小时,若一只木筏顺水漂过这段距离需 _____ 小时?

解:

1、我们可以假设一个路程。

假设两个码头之间的距离是200千米,

顺水需4小时,则顺水的速度是每小时200÷4=50(千米),逆水需5小时,则逆水的速度是每小时200÷5=40(千米)。

2、根据“水速=(顺水行驶速度-逆水行驶速度)÷2”得到,

水流速度是每小时(50-40)÷2=5(千米)。

3、一只木筏顺水漂过的速度就是水流速度,

所以木筏顺水漂过这段距离需要200÷5=40(小时)。

【精品】小学数学计算题专题八-小学计算综合(四)(含答案)

小学计算综合(四)一、口算。

二、计算下面各题。(能简算的要简算) 0.025 × 999 × 2.8 × 40 ÷ 2.8 7-(2-2.3) 4.85×3 -3.6+6.15×3

0.025 × 999 × 2.8 × 40 ÷ 2.8 三、解方程或比例。

12-4x=2.4 1.2:7.8=0.4:x 【参考答案】: 一、【答案】: 10000 72 9.95 4 1.4 1213 25 78 275 23 274 9.24 20 1 211 36 0.008 7 21 76 36 0.8 301 0.1 5.77 2.9 13 89.91 54, 17,213,19,710,83,0.66,49,100,1 12 23 1013 二、

【解析】: 通过观察我们可以发现4/5=0.8原式得 0.25×0.8+0.025=0.2+0.025=0.225 【答案】:0.225 【易错提示】: 没有找到运算的关键点,直接相乘导致的计算错误。 【解析】: 通过观察可以发现11÷7=711,71×4=74 。所以原式得9.6-711+7 4然 后利用乘法结合律得9.6-(711-7 4 )=9.6-1=8.6。 【答案】:8.6 【易错提示】:直接运算导致的运算失误。 【解析】: 首先可以观察小括号内分数的分母7和5都是35的因数,可以直接进行约分,避免先通分在计算的繁琐,然后利用乘法分配律得到 75×35+54×35+43=25+28+43=53+4 3 =53+0.75=53.75。 【答案】:53.75 【易错提示】: 运算顺序的掌握以及乘法分配律的正确运用。 【解析】: 通过观察可以看出22是11的2倍,34是17的2倍,运用乘法交换律可以得到22×115×(34×17 4 )=10×8=80. 【答案】:80 【易错提示】: 忽视运用乘法交换律直接相乘。 【解析】: 运用加法交换律原式得19+11-(2013+20 7 )=30-1=29 【答案】:29

小学六年级数学试题

小学六年级数学试题一、填空。(24分) 1、()的3 5是27;48的 5 12是()。 2、比80米多1 2是()米;300吨比()吨少 1 6。 3、()互为倒数,()的倒数是它本身。 4、()∶()= 3 7=9÷()= () 35 5、18∶36化成最简单的整数比是(),18∶36的比值是()。 6、“红花朵数的2 3等于黄花的朵数”是把()的朵数看作单位“1”,关系 式是()。 7、甲数和乙数的比是4∶5,则甲数是乙数的 () () ,乙数是甲乙两数和的 () () 。w w w .x k b 1.c o m 8、在○里填上><或= 5 6÷1 3○ 5 6× 1 3 4 9○ 4 9÷ 2 7 7 10× 5 2○ 7 10÷ 5 2 9、3 4×()= 3 4÷()= 3 4+()=1 10、用48厘米的铁丝围成一个三角形(接口处不计),这个三角形三条边的长度 比是3∶4∶5,最长的边是()厘米。 新|课|标| 第|一|网 二、判断。(5分) 1、4米长的钢管,剪下1 4米后,还剩下3米。() 2、20千克减少1 10后再增加 1 10,结果还是20千克。() 3、松树的棵数比柏树多1 5,柏树的棵数就比松树少 1 5。() 4、两个真分数的积一定小于1。() 5、一桶油用去它的1 5后,剩下的比用去的多。() 三选择。(6分)w w w .x k b 1.c o m 1、一个比的比值是7 8,如果把它的前项和后项同时扩大3倍,这时的比值是

()。 A、7 8B、 7 24C、 21 8 2、李冬坐在教室的第二列第四行,用数对(2,4)来表示,王华坐在第六列第一行,可以用()来表示。 A、(1,6 ) B、(6,1) C、(0,6) 3、下面各组数中互为倒数的是()。 A、0.5和2 B、1 8和 7 8C、 4 3和 1 3 4、有30本故事书,连环画是故事书的5 6,连环画有()。 A、36 B、30 C、25 5、一袋土豆,吃了它的3 5,吃了30千克,这袋土豆原有()千克。 A、20 B、50 C、18 6、一个数的加上23,和是37,这个数是()。 A、35 B、14 C、150 四、做一做。写出图中标有字母的各点的位置。(6分)新课标第一网A(5,9 )B()C()D() E()F()G() 五、计算题。(32分) 1、直接写得数。(4分)

小学数学应用题各类型详解大全

小学数学应用题各类型详解大全 小学数学典型应用题大全 小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。 应用题可分为一般应用题与典型应用题。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题。

小学数学应用题各类型详解大全 目录 1 归一问题 (1) 2 归总问题 (1) 3 和差问题 (2) 4 和倍问题 (3) 5 差倍问题 (4) 6 倍比问题 (5) 7 相遇问题 (6) 8 追及问题 (7) 9 植树问题 (8) 10 年龄问题 (9) 11 行船问题 (100) 12 列车问题 (111) 13 时钟问题 (133) 14 盈亏问题 (133) 15 工程问题 (14) 16 正反比例问题 (16) 17 按比例分配问题 (17) 18 百分数问题 (18) 19 “牛吃草”问题 (200) 20 鸡兔同笼问题 (21) 21 方阵问题 (23) 22 商品利润问题 (24) 23 存款利率问题 (25) 24 溶液浓度问题 (26) 25 构图布数问题 (27) 26 幻方问题 (28) 27 抽屉原则问题 (29) 28 公约公倍问题 (30) 29 最值问题 (31) 30 列方程问题 (32)

1 归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解:(1)买1支铅笔多少钱? 0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。 例2 3台拖拉机3天耕地90公顷, 5台拖拉机6 天耕地多少公顷? 解:(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷) 列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。 例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解:(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨) (3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次) 答:需要运3次。 2 归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型 1 归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 2 归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】先求出总数量,再根据题意得出所求的数量。 例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解(1)这批布总共有多少米? 3.2×791=2531.2(米) (2)现在可以做多少套?2531.2÷2.8=904(套) 列成综合算式 3.2×791÷2.8=904(套) 答:现在可以做904套。。 3 和差问题 【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。 【数量关系】大数=(和+差)÷2 小数=(和-差)÷2 【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

小学六年级数学分数应用题较难

一、抓住和不变 1、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多10吨,甲乙原 来各有多少吨? 2、甲乙两个仓库共有水泥180吨,如果甲把它的1/3给乙,甲还比乙多1/5,甲乙原来各有多少吨? 3、某校五年级学生参加大扫除的人数是未参加的1/4,后来又有2个同学主动参加,实际参加的人数是未参加人数的1/3,问某班五年级有学生多少人? 4、煤气收款员到一幢楼里收煤气差价款,他走出楼时一算,没交款的户数占已交款户数的1/8。如果少收2户,则没交款的户数恰好占已交款户数的1/6,这幢楼有多少住户? 5、甲、乙两人原有钱的比是3:4,后来甲又给乙50元,这时甲钱是乙的1/2,原来两人各有多少元钱? 6、小明放一群鸭子,岸上的只数是水中的3/4,从水中上岸9只后,水中的只数与岸上的只数同样多,这群鸭子有多少只? 1

抓住部分不变 1、有科技书和文艺书360本,其中科技书占总数的1/9,现在又买来一些科技书,此时科技书占总数的1/6。又买来多少本科技书? 2、有10千克蘑菇,它们的含水量是99%,稍经晾晒,含水量下降到98%,晾晒后的蘑菇重多少千克? 3、现有质量分数为20%的食盐水80克。把这些食盐水变为质量分数为75%的食盐水,需要再加食盐多少克? 4、有一堆糖果,其中奶糖占45%,再放 16块水果糖后,奶糖就占25%,那么,这堆糖中奶糖有多少块? 5、在阅览室里,女生占全室人数的1/3, 后来又进来5名女生,这时女生占全室人数的5/13,阅览室原有多少人? 抓住差不变 1、王叔叔和李叔叔每月工资收入比为 3:2,他们两家每月支出为1200元,两家每月结余的钱数比为9;4,王叔叔和李叔叔每月工资各为多少元? 2

小学数学基本应用题数量关系的种类

小学数学基本应用题数量关系的种类 在小学数学教学中,教好解答应用题的准确解法,将是重要一环.在教学中,从一年级开始,把应用题的数量关系讲明白,把类型分清楚,使学生清晰理解和掌握各种类型中的数量关系,将是关键的一环。也是为今后解答复合应用题打好基础的重要一步。 在小学教学基本类型应用题的数量关系中,可分为十一种:加法2种;减法3种;乘法2种;除法4种。现分述如下: 一、加法的种类:(2种) 1.已知一部分数和另一部分数,求总数。 例:小明家养灰兔8只,养白兔4只。一共养兔多少只? 想:已知一部分数(灰兔8只)和另一部分数(白兔4只)。求总数。 列式:8 4=12(只)答:(略) 2.已知小数和相差数,求大数。 例:小利家养白兔4只,灰兔比白兔多3只。灰兔有多少只? 想:已知小数(白兔4只)和相差和(灰兔比白兔多3只),求大数。(灰兔的只数。)列式:4 3=7(只)答:(略) 二、减法有3种: 1.已知总数和其中一部分数,求另一部分数。 例:小丽家养兔12只,其中有白兔8只,其余的是灰兔,灰兔有多少只? 想:已知总数(12只),和其中一部分数(白兔8只),求另一部分数(灰兔有多少只?)列式:12—8=4(只) 2.已知大数和相差数,求小数。 例:小强家养白兔8只,养的白兔比灰兔多3只。养灰兔多少只? 想:已知大数(白兔8只)和相差数(白兔比灰兔多3只),求小数(灰兔有多少只?)列式:8-3=5(只) 3.已知大数和小数,求相差数。 例:小勇家养白兔8只,灰兔5只。白兔比灰兔多多少只? 想:已知大数(白兔8只)和小数(灰兔5只),求相差数。(白兔比灰兔多多少只?)列式:8-5=3(只) 三、乘法有2种:

小学数学典型应用题(30类)汇编大全

小学数学典型应用题 小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。任何一道应用题都由两部分构成。第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。应用题的条件和问题,组成了应用题的结构。应用题可分为一般应用题与典型应用题。没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。这本资料主要研究以下30类典型应用题: 1 归一问题 【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解(1)买1支铅笔多少钱?0.6÷5=0.12(元) (2)买16支铅笔需要多少钱?0.12×16=1.92(元) 列成综合算式0.6÷5×16=0.12×16=1.92(元) 答:需要1.92元。 例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷? 解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷) (2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷) 列成综合算式 90÷3÷3×5×6=10×30=300(公顷) 答:5台拖拉机6 天耕地300公顷。 例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次? 解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨) (2)7辆汽车1次能运多少吨钢材? 5×7=35(吨) (3)105吨钢材7辆汽车需要运几次? 105÷35=3(次) 列成综合算式 105÷(100÷5÷4×7)=3(次) 答:需要运3次。 2 归总问题 【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。 【数量关系】1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】先求出总数量,再根据题意得出所求的数量。 例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解(1)这批布总共有多少米? 3.2×791=2531.2(米) (2)现在可以做多少套?2531.2÷2.8=904(套) 列成综合算式 3.2×791÷2.8=904(套) 答:现在可以做904套。 例2小华每天读24页书,12天读完了《红岩》一书。小明每天读36页书,几天可以读完《红岩》? 解(1)《红岩》这本书总共多少页? 24×12=288(页) (2)小明几天可以读完《红岩》? 288÷36=8(天) 列成综合算式 24×12÷36=8(天) 答:小明8天可以读完《红岩》。 例3食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?

小学数学计算题80以内×1位第81~100篇及答案

1、77×4= 2、78×6= 3、79×6= 4、72×6= 5、67×9= 6、68×9= 7、69×6= 8、76×6= 9、79×3=10、66×4=11、80×9=12、80×6=13、69×6=14、77×4=15、71×7=16、75×7=17、68×8=18、74×6=19、78×8=20、72×4=21、66×3=22、70×4=23、72×9=24、79×4=25、69×9=26、76×6=27、71×8=28、76×3=29、73×8=30、67×9=31、73×5=32、72×7=33、70×5=34、78×3=35、77×5=36、77×3=37、76×4=38、77×8=39、77×5=40、71×5=41、74×3=42、76×3=43、69×7=44、79×6=45、68×9=46、66×4=47、76×5=48、66×4=49、75×7=50、69×6=51、74×6=52、75×7=53、74×3=54、67×9=55、66×3=56、69×5=57、70×5=58、75×9=59、73×7=60、76×5=

1、67×9= 2、66×4= 3、76×5= 4、72×7= 5、76×4= 6、67×6= 7、79×6= 8、74×9= 9、73×9=10、77×9=11、73×8=12、66×7=13、73×7=14、69×9=15、72×8=16、76×7=17、67×7=18、78×6=19、69×7=20、69×5=21、74×6=22、67×6=23、73×8=24、76×4=25、74×7=26、68×6=27、74×8=28、76×8=29、75×4=30、80×8=31、79×8=32、71×5=33、77×6=34、68×4=35、73×3=36、71×4=37、78×7=38、70×6=39、76×5=40、77×8=41、80×6=42、72×7=43、71×8=44、71×5=45、71×3=46、76×4=47、71×7=48、68×3=49、74×5=50、77×6=51、73×7=52、66×9=53、79×8=54、69×4=55、73×8=56、66×5=57、68×4=58、69×5=59、76×5=60、66×3=

六年级数学应用题总复习(带答案)

六年级数学应用题总复习(带答案) 六年级数学应用题1 一、分数的应用题 1、一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶? 2、一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米? 3、修筑一条公路,完成了全长的2/3后,离中点16.5千米,这条公路全长多少千米? 4、师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个? 5、仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋? 6、甲乙两地相距1152千米,一列客车和一列货车同时从两地对开,货车每小时行72千米,比客车快 2/7,两车经过多少小时相遇? 7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的3/5,一条裤子多少元? 8、饲养组有黑兔60只,白兔比黑兔多1/5,白兔有多少只? 9、学校要挖一条长80米的下水道,第一天挖了全长的1/4,第二天挖了全长的1/2,两天共挖了多少米?还剩下多少米?

六年级数学应用题2 二、比的应用题 1、一个长方形的周长是24厘米 ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘米? 2、一个长方体棱长总和为 96 厘米 ,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少? 3、一个长方体棱长总和为 96 厘米 ,高为4厘米 ,长与宽的比是3 ∶2 ,这个长方体的体积是多少? 4、某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人? 5、有两筐水果,甲筐水果重32千克,从乙筐取出20%后,甲乙两筐水果的重量比是4:3,原来两筐水果共有多少千克? 6、做一个600克豆沙包,需要面粉红豆和糖的比是3:2:1,面粉红豆和糖各需多少克? 7、小明看一本故事书,第一天看了全书的1/9,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页? 8、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少? 六年级数学应用题3 三、百分数的应用题 1、某化肥厂今年产值比去年增加了 20%,比去年增加了500万元,今年产值是多少万元?

【最新推荐】小学数学应用题类型汇总 (1)

小学数学应用题类型汇总 第一章:已知单位相同的数的应用题的解题公式 1、已知单位相同的两个数:①求共是多少用加法;②求多多少、少多少、大多少、小多少、增加多少、减少多少、相差多少都用减法算; ③求大数是小数的几倍用“大数÷小数=倍数”的方法计算;④求一个数是另一个数的几分之几用“一个数÷另一个数= ”的方法计算。 2、已知单位相同的两个数,是在原数上增加一个数后是多少用加法。(简记为增加了用加法) 3、已知单位相同的两个数,是在原数上减少一个数后是多少用减法。(简记为减少了用减法) 4、已知两个数共是多少,又知其中一个数是多少,求另一个数是多少用减法。 5、已知三个数共是多少,又知其中两个数各是多少(或者共是多少),求第三个数是多少用减法。 第二章:已知相差多少的应用题的解题公式 1、已知甲数比乙数多多少,就是甲数多,乙数少;又知少的求多的用“小数+相差的数=大数”的方法计算;又知多的求少的用“大数相差的数=小数”的方法计算。(简记为求多的用加法,求少的用减法)

2、已知甲数比乙数少多少,就是甲数少,乙数多,又知少的求多的用“小数+相差的数=大数”的方法计算;又知多的求少的用“大数—相差的数=小数”的方法计算。(简记为求多的用加法,求少的用减法) 3、已知两个数共是多少,又知两个数相差多少,用“(和+差)÷2=大数”“(和—差)÷2=小数”的方法计算。 第三章:已知每份是多少的应用题的解题公式 1、已知每份是多少,又知份数,求共是多少用乘法(每份的数×份数=总数);已知每份是多少,又知共是多少,求份数用包含除法(总数÷每份的数=份数)。 2、归总应用题: ①用“每份的数×份数=总数”求出共是多少; ②在总数不变的情况下,每份的数发生变化后,用“总数÷变化后每份的数=变化后的份数”求出变化后的份数; ③在总数不变的情况下,用“总数÷变化后的份数=变化后的每份的数”求出变化后每份的数是多少。 3、总分应用题 ①已知一个总数

小学数学典型应用题行程问题

行程问题经典题型(一) 1、甲、乙两地相距6千米,某人从甲地步行去乙地,前一半时间平均每分钟行80米,后一半时间平均每分钟行70米。问他走后一半路程用了多少分钟? 2、小明从家到学校有两条一样长的路,一条是平路,另一条是一半上坡路、一半下坡路。小明上学走两条路所用的时间一样多。已知下坡的速度是平路的1.5倍,那么上坡的速度是平路的多少倍? 3、一只小船从甲地到乙地往返一次共用2小时,回来时顺水,比去时的速度每小时多行驶8千米,因此第二小时比第一小时多行驶6千米。那么甲、乙两地之间的距离是多少千米? 4、一条电车线路的起点站和终点站分别是甲站和乙站,每隔5分钟有一辆电车从甲站发出开往乙站,全程要走15分钟。有一个人从乙站出发沿电车线路骑车前往甲站。他出发的时候,恰好有一辆电车到达乙站。在路上他又遇到了10辆迎面开来的电车。到达甲站时,恰好又有一辆电车从甲站开出。问他从乙站到甲站用了多少分钟? 5、甲、乙两人在河中游泳,先后从某处出发,以同一速度向同一方向游进。现在甲位于乙的前方,乙距起点20米,当乙游到甲现在的位置时,甲将游离起点98米。问:甲现在离起点多少米? 6、甲、乙两辆汽车同时从东西两地相向开出,甲每小时行56千米,乙每小时行48千米,两车在离两地中点32千米处相遇。问:东西两地的距离是多少千米?

7、李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。0.5小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果3人同时在途中某地相遇。问:骑车人每小时行驶多少千米? 8、快车和慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇。已知慢车从乙地到甲地用12.5小时,慢车到甲地停留0.5小时后返回,快车到乙地停留1小时后返回,那么两车从第一次相遇到第二次相遇需要多少时间? 9、某校和某工厂之间有一条公路,该校下午2时派车去该厂接某劳模来校作报告,往返需用1小时。这位劳模在下午1时便离厂步行向学校走来,途中遇到接他的汽车,便立刻上车驶向学校,在下午2时40分到达。问:汽车速度是劳模步行速度的几倍? 10、已知甲的步行的速度是乙的1.4倍。甲、乙两人分别由A,B两地同时出发。如果相向而行,0.5小时后相遇;如果他们同向而行,那么甲追上乙需要多少小时? 11、猎狗发现在离它10米的前方有一只奔跑着的兔子,马上紧追上去。兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。问狗追上兔时,共跑了多少米路程?

小学数学计算题50以内加法第91-100篇及答案

1、19+13= 2、27+16= 3、19+19= 4、21+20= 5、16+20= 6、24+15= 7、25+21= 8、20+21= 9、22+19=10、29+16=11、17+13=12、24+16=13、26+17=14、16+14=15、20+21=16、24+17=17、22+21=18、17+21=19、22+14=20、24+14=21、18+13=22、27+18=23、28+14=24、28+19=25、26+18=26、17+18=27、26+16=28、27+21=29、28+19=30、29+17=31、16+20=32、25+13=33、28+17=34、29+14=35、25+18=36、27+19=37、26+14=38、24+16=39、24+16=40、25+14=41、28+21=42、16+18=43、20+20=44、23+21=45、26+15=46、19+21=47、24+16=48、29+13=49、29+16=50、28+14=51、28+16=52、18+14=53、18+13=54、24+21=55、23+20=56、26+21=57、22+18=58、22+16=59、27+20=60、16+13=

1、22+13= 2、21+18= 3、26+19= 4、16+20= 5、24+16= 6、20+18= 7、29+19= 8、29+15= 9、16+16=10、22+18=11、22+21=12、19+17=13、20+13=14、16+16=15、28+18=16、20+21=17、28+14=18、18+21=19、16+18=20、26+14=21、24+21=22、26+19=23、22+14=24、29+15=25、19+17=26、21+20=27、27+20=28、25+20=29、29+20=30、20+13=31、20+14=32、20+21=33、26+17=34、28+13=35、21+18=36、25+13=37、29+19=38、27+14=39、17+16=40、17+14=41、16+13=42、29+15=43、25+16=44、21+17=45、25+20=46、24+13=47、28+19=48、17+13=49、20+19=50、16+21=51、26+20=52、29+13=53、17+17=54、18+21=55、28+17=56、22+16=57、27+20=58、28+21=59、29+21=60、23+13=

(完整版)小学六年级数学应用题大全(附标准答案)

六年级数学应用题大全 六年级数学应用题1 一、分数的应用题 1、 一缸水,用去12 和5桶,还剩30%,这缸水有多少桶? 5÷(12 -30%)=5÷0.2=25(桶) 2、 一根钢管长10M ,第一次截去它的710 ,第二次又截去余下的13 ,还剩多少M ? 10×(1-710 )×(1-13 )=10×310 ×23 =2(M ) 3、 修筑一条公路,完成了全长的23 后,离中点16.5千M ,这条公路全长多少千M ? 16.5÷(23 -12 )=99(千M ) 4、 师徒两人合做一批零件,徒弟做了总数的27 ,比师傅少做21个,这批零件有多少个? 21÷(1-27 -27 )=49(个) 5、仓库里有一批化肥,第一次取出总数的25 ,第二次取出总数的13 少12袋,这时仓库里还剩24袋,两次共取出多少袋? 解:设两次共取出x 袋 25 x +(13 x -12)+24=x 解得:x=45 6、甲乙两地相距1152千M,一列客车和一列货车同时从两地对开,货车每小时行72千M,比客车快 27 ,两车经过多少小时相遇? 72÷(1+27 )=56(km/h ) 1152÷(72+56)=9(h ) 7、一件上衣比一条裤子贵160元,其中裤子的价格是上衣的35 ,一条裤子多少元? 解:设一条裤子x 元 (x +160)×35 = x 解得:x=240 8、饲养组有黑兔60只,白兔比黑兔多15 ,白兔有多少只? 60×(1+15 )=72(只) 9、学校要挖一条长80M 的下水道,第一天挖了全长的14 ,第二天挖了全长的12 ,两天共挖了多少M?还剩下多少M? 80×(14 +12 )=60(M ) 80-60=20(M ) 六年级数学应用题2 二、比的应用题 1、 一个长方形的周长是24厘M ,长与宽的比是 2:1 ,这个长方形的面积是多少平方厘M ? 24÷2÷(2+1)=4(cm ) (4×2)×(4×1)=32(cm 2 ) 2、 一个长方体棱长总和为 96 厘M ,长、宽、高的比是 3∶2 ∶1 ,这个长方体的体积是多少? 96÷4÷(3+2+1)=4(cm ) (4×3)×(4×2)×(4×1)=384( cm 3)

小学数学各类应用题类型及解题方法

差倍问题: 已知两个数的差及两个数的倍数关系,求这两个数的应用题,叫做差倍问题。基本关系式是:两数差÷倍数差=较小数。 例:有两堆煤,第二堆比第一堆多40吨,如果从第二堆中拿出5吨煤给第一堆,这时第二堆煤的重量正好是第一堆的3倍。原来两堆煤各有多少吨? 分析:原来第二堆煤比第一堆多40吨,给了第一堆5吨后,第二堆煤比第一堆就只多40-5×2吨,由基本关系式列式是: (40-5×2)÷(3-1)-5 =(40-10)÷2-5 =30÷2-5 =15-5 =10(吨)第一堆煤的重量10+40=50(吨)→第二堆煤的重量 答:第一堆煤有10吨,第二堆煤有50吨 和差问题: 已知两个数的和与差,求这两个数的应用题,叫做和差问题。一般关系式有:(和-差)÷2=较小数(和+差)÷2=较大数。 例:甲乙两数的和是24,甲数比乙数少4,求甲乙两数各是多少? (24+4)÷2 =28÷2 =14 乙数(24-4)÷2 =20÷2 =10 甲数 答:甲数是10,乙数是14 还原问题: 已知一个数经过某些变化后的结果,要求原来的未知数的问题,一般叫做还原问题。 还原问题是逆解应用题。一般根据加、减法,乘、除法的互逆运算的关系。由题目所叙述的的顺序,倒过来逆顺序的思考,从最后一个已知条件出发,逆推而上,求得结果。 例:仓库里有一些大米,第一天售出的重量比总数的一半少12吨。第二天售出的重量,比剩下的一半少12吨,结果还剩下19吨,这个仓库原来有大米多少吨? 分析:如果第二天刚好售出剩下的一半,就应是19+12吨。第一天售出以后,剩下的吨数是(19+12)×2吨。以下类推。 列式:[(19+12)×2-12]×2 =[31×2-12]×2 =[62-12]×2 =50×2 =100(吨)答:这个仓库原来有大米100吨。 置换问题: 题中有二个未知数,常常把其中一个未知数暂时当作另一个未知数,然后根据已知条件进行假设性的运算。其结果往往与条件不符合,再加以适当的调整,从而求出结果。 例:一个集邮爱好者买了10分和20分的邮票共100张,总值18元8角。这个集邮爱好者买这两种邮票各多少张? 分析:先假定买来的100张邮票全部是20分一张的,那么总值应是20×100=2000(分),比原来的总值多2000-1880=120(分)。而这个多的120分,是把10分一张的看作是20分一张的,每张多算20-10=10(分),如此可以求出10分一张的有多少张。 列式:(2000-1880)÷(20-10)=120÷10 =12(张)→10分一张的张数 100-12=88(张)→20分一张的张数或是先求出20分一张的张数,再求出10分一张的张数,方法同上,注意总值比原来的总值少。 五盈亏问题(盈不足问题): 题目中往往有两种分配方案,每种分配方案的结果会出现多(盈)或少(亏)的情况,通常把这类问题,叫做盈亏问题(也叫做盈不足问题)。

小学数学 经典应用题

小学数学经典应用题 1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张 桌子和一把椅子各多少元? 2、3箱苹果重45千克。一箱梨比一箱苹果多5千克,3箱梨重多少千克? 3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。甲比乙速度快,甲每小时比乙快多少千米? 4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。每支铅笔多少钱? 7. 有甲乙两个仓库,每个仓库平均储存粮食32.5吨。甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨? 8. 甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。甲、乙两队每天共修多少米? 9.学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元? 10、一列火车和一列慢车,同时分别从甲乙两地相对开出。快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米? 11. 某玻璃厂托运玻璃250箱,合同规定每箱运费20元,如果损坏一箱,不但不付运费还要赔偿100元。运后结算时,共付运费4400元。托运中损坏了多少箱玻璃?

12. 五年级一中队和二中队要到距学校20千米的地方去春游。第一中队步行每小时行4千米,第二中队骑自行车,每小时行12千米。第一中队先出发2小时后,第二中队再出发,第二中队出发后几小时才能追上一中队? 13. 某厂运来一堆煤,如果每天烧1500千克,比计划提前一天烧完,如果每天烧1000千克,将比计划多烧一天。这堆煤有多少千克? 14. 妈妈让小红去商店买5支铅笔和8个练习本,按价钱给小红3.8元钱。结果小红却买了8支铅笔和5本练习本,找回0.45元。求一支铅笔多少元? 15. 根据一辆客车比一辆卡车多载10人,可求6辆客车比6辆卡车多载的人数,即多用的(8-6)辆卡车所载的人数,进而可求每辆卡车载多少人和每辆大客车载多少人。 16. 某筑路队承担了修一条公路的任务。原计划每天修720米,实际每天比原计划多修80米,这样实际修的差1200米就能提前3天完成。这条公路全长多少米? 17. 某鞋厂生产1800双鞋,把这些鞋分别装入12个纸箱和4个木箱。如果3个纸箱加2个木箱装的鞋同样多。每个纸箱和每个木箱各装鞋多少双? 18. 某工地运进一批沙子和水泥,运进沙子袋数是水泥的2倍。每天用去30袋水泥,40袋沙子,几天以后,水泥全部用完,而沙子还剩120袋,这批沙子和水泥各多少袋? 19. 学校里买来了5个保温瓶和10个茶杯,共用了90元钱。每个保温瓶是每个茶杯价钱的4倍,每个保温瓶和每个茶杯各多少元? 20. 两个数的和是572,其中一个加数个位上是0,去掉0后,就与第二个加数相同。这两个数分别是多少?

五年级上册数学计算题大全300道 人教版(含解析)

五年级上册数学计算题大全300道 第一卷 一、单选题 1.循环小数8.1818……的循环节是() A. 18 B. 181 C. 818 2.下列各式中,得数最大的是() A. 43.5÷5.06 B. 100.6÷9.7 C. 3.65×4.5 3.爸爸给小明新买了12个羽毛球,花费了19.4元,那么1个大约()元。 A. 1.6 B. 1.65 C. 1.62 4.商是循环小数的算式是()。 A. 7.8÷1.6 B. 15÷12 C. 8÷6 D. 5.4÷0.18 5.6.33636…用循环小数的简便记法表示是() A. B. C. 二、判断题 6.两个数相除,除不尽时,商一定是循环小数 7.判断对错. 0.757575是循环小数. 8.26.653653是循环小数。 9.1.1414141是纯循环小数。 10.8÷0.012=8000÷12。 三、填空题 11.一个数的4倍是3.6,求这个数,列式为________ 12.计算: (1)704÷0.8=________ (2)490÷0.7=________ 13.用简便方法计算 2.38÷2.5÷0.4 =2.38÷________ =________ 14.直接写得数 0.75÷15=________ 3.2+1.68=________ 7.5-(2.5+3.8)=________ ×5.6=________ 8.1- =________ × =________ 0.375×4=________ ÷ =________ 15.填上适当的数. 0.78÷0.13=________÷13=________

8.4÷0.12=84÷________=________÷12=________ 6.25÷2.5=________÷25=________ 0.45÷0.5=45÷________=________÷5=________ 四、计算题 16.直接写出得数。 1.4×1= 6.2-2= 0.68×1000= 25÷0.1= 63÷9= 65÷1000= 7.2÷0.8= 44.3+55.7= 17.直接写出得数。 8.1+0.9= 0.2×0.4= 9.1÷0.7= 1.2×0.99×8= 3.57-0.7= 4.5÷0.45= 3.8×0.1= 3.8×8.2+3.8×1.8= 五、解答题 18.牛奶每瓶2.3元,妈妈给了明明36元去买牛奶。明明可以买多少瓶牛奶? 六、综合题 19.一个没有拧紧的水龙头每天大约滴水1.8千克,请计算: (1)一年(按365 天计算)浪费多少千克水? (2)把这些水分装在饮水桶中(每桶水约重15千克),大约能装多少桶? 答案解析部分 一、单选题 1.【答案】A 【解析】【解答】小数部分“18”依次不断重复出现,循环节就是18. 故答案为:A 【分析】一个数的小数部分从某一位起,一个或几个数字依次重复出现的无限小数叫循环小数.其中依次不断重复出现的数字就是循环节. 2.【答案】C 【解析】【解答】解:43.5÷5.06≈8.60 100.6÷9.7≈10.37 3.65× 4.5≈16.43 因为16.43>10.37>8.60, 所以得数最大的是选项C. 故选:C. 【分析】先根据小数乘除法运算的计算法则求出算式的结果,再比较它们的大小即可求解. 3.【答案】C 【解析】【解答】19.4÷12≈1.62(元)

小学数学应用题种类型类-小学数学应用题解法及类形

小学数学应用题的21种类型类,讲解详细,内容全面,例题经典 1、归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。 【数量关系】 总量÷份数=1份数量 1份数量×所占份数=所求几份的数量 另一总量÷(总量÷份数)=所求份数 【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。 例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱 解(1)买1支铅笔多少钱0.6÷5=0.12(元)(2)买16支铅笔需要多少钱0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。2、归总问题 【含义】 解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】 1份数量×份数=总量 总量÷1份数量=份数 总量÷另一份数=另一每份数量 【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。 例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套 解(1)这批布总共有多少米3.2×791=2531.2(米) (2)现在可以做多少套2531.2÷2.8=904(套)列成综合算式3.2×791÷2.8=904(套) 答:现在可以做904套。 3、和差问题 【含义】 已知两个数量的和与差,求这两个数量各是多少,

这类应用题叫和差问题。 【数量关系】 大数=(和+差)÷2 小数=(和-差)÷2 【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。 例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人 解甲班人数=(98+6)÷2=52(人) 乙班人数=(98-6)÷2=46(人) 答:甲班有52人,乙班有46人。 4、和倍问题 【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。 【数量关系】 总和÷(几倍+1)=较小的数 总和-较小的数=较大的数 较小的数×几倍=较大的数 【解题思路和方法】简单的题目直接利用公式,复杂的题目变通后利用公式。 例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵 解(1)杏树有多少棵248÷(3+1)=62(棵)(2)桃树有多少棵62×3=186(棵) 答:杏树有62棵,桃树有186棵。 5、差倍问题 【含义】 已知两个数的差及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。 【数量关系】 两个数的差÷(几倍-1)=较小的数 较小的数×几倍=较大的数 【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。 例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵 解(1)杏树有多少棵124÷(3-1)=62(棵)(2)桃树有多少棵62×3=186(棵) 答:果园里杏树是62棵,桃树是186棵。

相关文档
最新文档