观察分岔与混沌现象(MATLAB)

观察分岔与混沌现象(MATLAB)
观察分岔与混沌现象(MATLAB)

Matlab 实验报告

实验目的:用Matlab 观察分岔与混沌现象。

题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图

算法设计:

1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。

2、根据课本上给的例题,编写程序代码来绘图。

程序代码:

clear;clf;

hold on

axis([0,3,-3,3]);

grid

for a=0:0.005:3

x=[0.1];

for i=2:150

x(i)=a*sin(pi*x(i-1));

end

pause(0.1)

for i=101:150

plot(a,x(i),'k.');

end

end

图像:

结果分析:在λ取值在[0,0.3]区间内时,y的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。

进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。程序代码如下:

clear;clf;

hold on

axis([0,6,-6,6]);

grid

for a=0:0.05:6

x=[0.1];

for i=2:150

x(i)=a*sin(pi*x(i-1));

end

pause(0.1)

for i=101:150

plot(a,x(i),'k.');

end

end

图像:

0123456

分析:由图像可见,随着 取值范围的增大,图像呈现出周期性的特点。

总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。

2、由于图像是由大量点构成的,所以在编程的时候注意循环

语句的应用。

分岔与混沌理论与应用作业

分岔与混沌理论与应用 学院: 专业: 姓名: 学号:

我对混沌理论的认识 1、混沌理论概述 混沌是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性--不可重复、不可预测,这就是混沌现象。混沌现象起因于物体不断以某种规则复制前一段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为简单,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。 混沌理论,是近三十年才兴起的科学革命,它与相对论与量子力学同被列为二十世纪的最伟大发现和科学传世之作。混沌的发现揭示了我们对规律与由此产生的行为之间--即原因与结果之间--关系的一个基本性的错误认识。我们过去认为,确定性的原因必定产生规则的结果,但它们可以产生易被误解为随机性的极不规则的结果。我们过去认为,简单的原因必定产生简单的结果(这意昧着复杂的结果必然有复杂的原因),但简单的原因可以产生复杂的结果。我们认识到,知道这些规律不等于能够预言未来的行为。这一思想已被一群数学家和物理学家,其中包括威廉·迪托(William Ditto)、艾伦·加芬科(Alan Garfinkel)和吉姆·约克(Jim Yorke),变成了一项非常有用的实用技术,他们称之为混沌控制。实质上,这一思想就是蝴蝶效应。初始条件的小变化产生随后行为的大变化,这可以是一个优点;你必须做的一切,是确保得到你想要的大变化。对混沌动力学如何运作的认识,使我们有可能设计出能完全实现这一要求的控制方案。这个方法已取得若干成功。 2、分叉的概述 分叉理论研究动力系统由于参数的改变而引起解的拓扑结构和稳定性变化的过程。在科学技术领域中,许多系统往往都含有一个或多个参数。当参数连续改变时,系统解的拓扑结构或定性性质在参数取某值时发生突然变化,这时即产

蔡氏电路MATLAB混沌仿真

蔡氏电路的Matlab混沌 仿真研究 班级: 姓名: 学号:

摘要 本文首先介绍非线性系统中的混沌现象,并从理论分析与仿真计算两个方面细致研究了非线性电路中典型混沌电路,即蔡氏电路反映出的非线性性质。通过改变蔡氏电路中元件的参数,进而产生多种类型混沌现象。最后利用软件对蔡氏电路的非线性微分方程组进行编程仿真,实现了双涡旋和单涡旋状态下的同步,并准确地观察到混沌吸引子的行为特征。 关键词:混沌;蔡氏电路;MATLAB仿真 Abstract This paper introduce s the chaos phenomenon in nonlinear circuits. Chua’s circuit was a typical chaos circuit, thus theoretical analysis and simulation was made to research it. Many kinds of chaos phenomenon on would generate as long as one component parameter was altered in C hua’s circuit.On the platform of Matlab, mathematical model of Chua’s circuit was programmed and simulated to acquire the synchronization of dual and single cochlear volume. Meanwhile, behavioral characteristics of chaos attractor were observed. Key words:chaos phenomenon;Chua’s circuit;Simulation

混沌理论及其应用

混沌理论及其应用 摘要:随着科学的发展及人们对世界认识的深入,混沌理论越来越被人们看作是复杂系统的一个重要理论,它在各个行业的广泛应用也逐渐受到人们的青睐。本文给出了混沌的定义及其相关概念,论述了混沌应用的巨大潜力,并指明混沌在电力系统中的可能应用方向。对前人将其运用到电力系统方面所得出的研究成果进行了归纳。 关键词:混沌理论;混沌应用;电力系统 Abstract: With the development of science and the people of the world know the depth, chaos theory is increasingly being seen as an important theory of complex systems, it also gradually by people of all ages in a wide range of applications in various industries. In this paper, the definition of chaos and its related concepts, discusses the enormous application potential chaos, and chaos indicate the direction of possible applications in the power system. Predecessors applying it to respect the results of power system studies summarized. Keywords:Chaos theory;Application of ChaosElectric ;power systems 1 前言 混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。混沌理论是对确定性非线性动力系统中的不稳定非周期性行为的定性研究(Kellert,1993)。混沌是非线性系统所独有且广泛存在的一种非周期运动形式,其覆盖面涉及到自然科学和社会科学的几乎每一个分支。近二三十年来,近似方法、非线性微分方程的数值积分法,特别是计算机技术的飞速发展, 为人们对混沌的深入研究提供了可能,混沌理论研究取得的可喜成果也使人们能够更加全面透彻地认识、理解和应用混沌。 2 混沌理论概念 混沌一词原指宇宙未形成之前的混乱状态,中国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓“差之毫厘,失之千里”正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。 2.1 混沌理论的发展 混沌运动的早期研究可以追溯到1963年美国气象学家Lorenz对两无限平面间的大气湍流的模拟。在用计算机求解的过程中, Lorenz发现当方程中的参数取适当值时解是非周期的且具有随机性,即由确定性方程可得出随机性的结果,这与几百年来统治人们思想的拉普拉斯确定论相违背(确定性方程得出确定性结果)。随后, Henon和Rossler等也得到类似结论Ruelle,May, Feigenbaum 等对这类随机运动的特性进行了进一步研究,从而开创了混沌这一新的研究方向。 混沌理论解释了决定系统可能产生随机结果。理论的最大的贡献是用简单的模型获得明确的非周期结果。在气象、航空及航天等领域的研究里有重大的作用。混沌理论认为在混沌系统中,初始条件十分微小的变化,经过不断放大,对其未来状态会造成极其巨大的差别。在没

用Matlab观察分岔与混沌现象

M a t l a b 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在 [-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 结果分析:在λ取值在[0,0.3]区间内时,y 的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围

到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像: 分析:由图像可见,随着 取值范围的增大,图像呈现出周期性的特点。 总结:1、当取值范围比较小,不足以发现图像规律时,可以考虑扩大变量的取值范围。 2、由于图像是由大量点构成的,所以在编程的时候注意循环 语句的应用。

非线性电路中混沌现象的研究实验

非线性电路中混沌现象的研究实验 长期以来人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动必然有一个确定的解析解。但是在自然界中相当多的情况下,非线性现象却有着非常大的作用。1963年美国气象学家Lorenz 在分析天气预报模型时,首先发现空气动力学中的混沌现象,这一现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首先出现在科学文献中。从此,非线性动力学得到迅速发展,并成为有丰富内容的研究领域。该学科涉及到非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是非由非线性系统产生的本实验将引导学生自已建立一个非线性电路。 【实验目的】 1.测量非线性单元电路的电流--电压特性,从而对非线性电路及混沌现象有一深刻了解。 2.学会测量非线性器件伏安特性的方法。 【实验仪器】 非线性电路混沌实验仪 【实验原理】 图1 非线性电路 图2 三段伏安特性曲线 1.非线性电路与非线性动力学: 实验电路如图1所示,图1中只有一个非线性元件R ,它是一个有源非线性负阻器件。电感器L 和电容器2C 组成一个损耗可以忽略的振荡回路:可变电阻21W W +和电容器1C 串联将振荡器产生的正弦信号移相输出。较理想的非线性元件R 是一个三段分段线性元件。图2所示的是该电阻的伏安特性曲线,从特性曲线显示加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。图1 电路的非线性动力学方程为: 11211Vc g )Vc Vc (G dt dVc C ?--?=L 2122 i )Vc Vc (G dt dVc C +-?=

混沌理论

混沌理论 混沌理论是当今世界最伟大的理论之一。 它是社会科学与自然科学最完美结合的理论.它研究如何把复杂的非稳定事件控制到稳定状态的方法,它研究世界如何在不稳定的环境中稳定发展的问题。.混沌方法对于处理复杂多变、动荡不定的重大事件有特殊功效混沌世界是纷繁复杂多变的世界。 “相对论消除了关于绝对空间和时间的幻想;量子力学则消除了关于可控测量过程 的牛顿式的梦;而混沌则消除了拉普拉斯关于决定论式可预测的幻想。” 一点就是未来无法确定。如果你某一天确定了,那是你撞上了。 第二事物的发展是通过自我相似的秩序来实现的。看见云彩,知道他是云彩,看见 一座山,就知道是一座山,凭什么?就是自我相似。这是混沌理论两个基本的概念。 混沌理论还有一个是发展人格,他有三个原则,一个是事物的发展总是向他阻力最 小的方向运动。第二个原则当事物改变方向的时候,他存在一些结构。 一混沌理论(Chaos theory)是一种兼具质性思考与量化分析的方法,用以探讨 动态系统中(如:人口移动、化学反应、气象变化、社会行为等)无法用单一的数 据关系,而必须用整体、连续的数据关系才能加以解释及预测之行为。 二混沌一词原指宇宙未形成之前的混乱状态,我国及古希腊哲学家对于宇宙之源起即持混沌论,主张宇宙是由混沌之初逐渐形成现今有条不紊的世界。在井然有序的宇宙中,西方自然科学家经过长期的探讨,逐一发现众多自然界中的规律,如大家耳熟能详的地心引力、杠杆原理、相对论等。这些自然规律都能用单一的数学公式加以描述,并可以依据此公式准确预测物体的行径。 三近半世纪以来,科学家发现许多自然现象即使可化为单纯的数学公式,但是其行径却无法加以预测。如气象学家Edward Lorenz发现,简单的热对流现象居然能引起令人无法想象的气象变化,产生所谓的「蝴蝶效应」,亦即某地下大雪,经追根究底却发现是受到几个月前远在异地的蝴蝶拍打翅膀产生气流所造成的。一九六○年代,美国数学家Stephen Smale 发现,某些物体的行径经过某种规则性的变化之后,随后的发展并无一定的轨迹可寻,呈现失序的混沌状态。 四混沌现象起因于物体不断以某种规则复制前一阶段的运动状态,而产生无法预测的随机效果。所谓「差之毫厘,失之千里」正是此一现象的最佳批注。具体而言,混沌现象发生于易变动的物体或系统,该物体在行动之初极为单纯,但经过一定规则的连续变动之后,却产生始料所未及的后果,也就是混沌状态。但是此种混沌状态不同于一般杂乱无章的的混乱状况,此一混沌现象经过长期及完整分析之后,可以从中理出某种规则出来。混沌现象虽然最先用于解释自然界,但是在人文及社会领域中因为事物之间相互牵引,混沌现象尤为多见。如股票市场的起伏、人生的平坦曲折、教育的复杂过程。

三阶数字锁相环中的混沌与分岔

三阶数字锁相环中的混沌与分岔 摘要: 研究一个三阶零交叉数字锁相环(ZCDPLL)中的非线性动力性。观测到,当一阶,二阶ZCDPLL表现为双周期性走向混沌,则三阶ZCDPLL在混沌之路中体现出一个解体的周期吸引子。系统动力学的复杂性和可预见性也可通过使用非线性动力测度方法来刻画,比如说Lyapunov指数,Kaplan-York维数,关联维数和Kolmogorov熵。所有结果表明,三阶ZCDPLL的混沌是低维的。 关键词:数字锁相环;分岔;混沌;动力测度 1.简介 一直以来,锁相环(PLLs)被用于构建电子通讯系统的模块。由于系统的非线性特性,甚至到现在,其应用潜力【1,2】的调查研究和环路动力特性【3-6】,依然是众多研究者关注的议题。最近,已经有相关文献【7-9】报道了一个模拟的三阶锁相环中的非线性动力特性,但是,同样的内容在三阶数字锁相环中仍在探索。数字锁相环(DPLLs)是离散的非线性反馈控制系统并且广泛应用于同步通信系统【10】。与模拟锁相环不同的是,数字锁相环在直流漂移方面上有超过模拟三阶锁相环的明显优点,如元件值的精密度,等。广泛使用的数字锁相环是一个非一致的正向零交叉抽样数字锁相环,因为它更容易设计和实现。一阶,二阶ZCDPLLs中的非线性动力性的研究已经在相关文献【11,12】报道过了,它表明了,依赖于控制参数,系统能够通过一串周期倍分岔走向混沌状态。 众所周知,三阶数字锁相环通常应用在要求具有快速瞬态响应的接收系统中。然而,锁相环的阶数的增加使得系统动力性变得更加复杂,并且有时候还会变得难以分析。因此,人们总有采用非线性动力学方法通过时间序列数据来研究高阶系统动力性动力。而且,三阶数字锁相环的混沌动力学的特性对系统设计,混沌控制以及探索在实际通信系统中应用混沌的可行性来说非常重要。在这篇文章中,我们研究的是三阶零交叉数字锁相环的非线性动力性。系统的混沌现象借助于非线性动力测度来量化,即Lyapunov指数,Kaplan-York维数,关联维数和Kolmogorov熵。据观察,三阶数字锁相环中的动力性与一阶和二阶的数字锁相环有很大的不同。在三阶系统中,低阶

(完整版)基于MATLAB的混沌序列图像加密程序

设计题目:基于MATLAB的混沌序列图像加密程序 一.设计目的 图像信息生动形象,它已成为人类表达信息的重要手段之一,网络上的图像数据很多是要求发送方和接受都要进行加密通信,信息的安全与保密显得尤为重 要,因此我想运用异或运算将数据进行隐藏,连续使用同一数据对图像数据两次异或运算图像的数据不发生改变,利用这一特性对图像信息进行加密保护。 熟练使用matlab运用matlab进行编程,使用matlab语言进行数据的隐藏加密,确保数字图像信息的安全,混沌序列具有容易生成,对初始条件和混沌参数敏感等特点,近年来在图像加密领域得到了广泛的应用。使用必要的算法将信息进行加解密,实现信息的保护。 .设计内容和要求 使用混沌序列图像加密技术对图像进行处理使加密后的图像 使用matlab将图像信息隐藏,实现信息加密。 三.设计思路 1. 基于混沌的图像置乱加密算法 本文提出的基于混沌的图像置乱加密算法示意图如图1所示 加密算法如下:首先,数字图像B大小为MX N( M是图像B的行像素数,N是图像B的列像素数),将A的第j行连接到j-1行后面(j=2,3, A,M,形成长度为MX N的序列C。其次,用Logistic混沌映射产生一个长度为的混沌序列{k1,k2,A,kMX N},并构造等差序列D: {1,2,3, A,MX N-1,MX N}。再次,将所

产生的混沌序列{kl, k2. A, kMX N}的M N个值由小到大排序,形成有序序列{k1', k2'. A' kMX N' },确定序列{k1, k2, A, kMX N}中的每个ki在有序序列{k1', k2', A , kMX N' }中的编号,形成置换地址集合 {t1 , t2 , A, tM X N},其中ti为集合{1 , 2, A, MX N}中的一个;按置换地址集合{t1 , t2 , A, tM X N}对序列C进行置换,将其第i个像素置换至第ti列, i=1 , 2, A, MX N,得到C'。将等差序列D做相同置换,得到D'。 最后,B'是一个MX N 的矩阵,B' (i ,j)=C ' ((i-1) X M+j),其中i=1 , 2, A, M j=i=1 , 2, A, N,则B'就是加密后的图像文件。 解密算法与加密算法相似,不同之处在于第3步中,以序列C'代替随机序列{k1, k2, A, kMX N},即可实现图像的解密。 2. 用MATLAB勺实现基于混沌的图像置乱加密算法 本文借助MATLAB^件平台,使用MATLAB!供的文本编辑器进行编程实现加密功能。根据前面加密的思路,把加密算法的编程分为三个主要模块:首先,构造一个与原图a等高等宽的矩阵b加在图像矩阵a后面形成复合矩阵c: b=zeros(m1, n1); ifm1>=n1 ifm1> n1 fore=1: n1 b=(e,e); end else fore=1: n1 end fore=1:( n1-m1) b((m1+e-1),e)=m1+e-1 end end c=zeros(m1*2, n1); c=zeros(m1*2,1); c=[b,a]; 然后,用Logitic映射产生混沌序列:

用非线性电路研究混沌现象pdf

用非线性电路研究混沌现象 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。直到1963年美国气象学家LORENZ 在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。如今,非线性科学已成为21世纪科学研究的一个重要方向。非线性科学的研究对了解生物、物理、化学、气象等学科都有重要意义。混沌作为非线性科学中的主要研究对象之一,在许多领域都得到了证实和应用。混沌作为一门新学科,填补着自然界决定论和概论的鸿沟。混沌是对经典决定论的否定,但本身有它特有的规律。研究混沌的目的是要揭示貌似随机的现象背后所隐藏的规律。 本实验通过建立一个非线性电路,该电路包括有源非线性负阻、LC 振荡器和RC 移相器三部分;采用物理实验方法研究LC 振荡器产生的正弦波与经过RC 移相器移相的正弦波合成的相图(李萨如图),观测非线性电中倍周期分岔产生混沌的全过程。同时了解混沌现象的一些基本特征。 [实验目的] 1. 通过对非线性电路的分析,了解产生混沌现象的基本条件; 2. 通过调整蔡氏电路的参数,学习用示波器观察倍周期分岔走向混沌的过程; 3. 用示波器观察非线性电路的I-U 特性曲线。 [实验原理] 混沌产生的必要条件是系统具有非线性因素。图1是讨论非线性电路系统的一种简单而又经典的电路——蔡氏电路。电路中共有5个基本电路元件:4个线性元件L ,C1,C2,R0和一个非线性电阻R ,其中R 的伏安特性如图2。电路中电感L 和电容C2并联构成一个LC 振荡电路,可变电阻R 0和电容器C 1串联构成移相电路,将振荡器产生的正弦信号移相输出,非线性负阻元件R 和R0共同作用是使振荡周期产生分岔和混沌等一系列非线性现象。 由蔡氏电路图1可得到蔡氏电路的状态方程组为: ????? ???????=+??=????=2211211121)(1)()(10201C L L C C C C C C C C U dt di L i U U R dt dU C U U g U U R dt dU C (1) 式中: Uc1, Uc2 和iL 分别是电容C 1, C 2 两端的电压和流过电感L 的电流, g (Uc 1 ) 是描述非线性电阻R 的i - v 特性的折线(图2)多项式为

Genesio系统的混沌Hopf分岔和Shilnikov

学校代码:11517 学号:200810111144 HENAN INSTITUTE OF ENGINEERING 文献翻译 题目非线性动力系统的分岔与混沌研究 学生姓名尚卫娟 专业班级信息0841班 学号200810111143 系(部)数理科学系 指导教师(职称)王霞 完成时间 2012年02月18日

Genesio系统的混沌Hopf分岔和Shilnikov 南京航空航天大学数学系,南京210016,中国 南京航空航天大学力学系,南京210016,中国 摘要 Genesio系统,这是一个被认为是只有一个二次非线性项的三维系统。它对一些参数有两个平衡点。我们对Hopf分岔进行了讨论,并已用待定系数法证明此系统的同宿轨道的存在。因此,Shilnikov标准保证Genesio系统具有Smale马蹄混沌。 1 引言 混沌是最迷人的现象之一。在过去几十年,非线性动力系统的混沌现象的研究得到了人们的十分重视,详见【1】Lorenz混沌系统,【2】罗斯勒系统,【3】陈系统,【4】陆系统等。 人们对简单的一个或两个非线性项的混沌系统是特别感兴趣的。Genesio和Tesi提出的Genesio系统混沌系统的典型之一,因为它抓住了混沌系统的许多功能。其中包括一个二次项,包含三个简单的常微分方程三负的实际参数。人们对很多关于本系统的同步工作都进行了研究。Ju通过反演方法和自适应控制器的设计研究Genesio混沌系统的同步。Chen和Han通过非线性反馈控制研究Genesio系统控制与同步。吴等人研究陈系统和Genesio系统之间的同步。 就我们所知,这一类系统的Hopf分岔和Si'lnikov混沌的研究还没有完成。在本文中,讨论了Hopf分岔,和详细的研究,利用待定系数法,这是由周和陈系统,Lorenz,广义Lorenz规范家庭制度的成功使用的Si'lnikov同宿轨道的存在动力系统和一些新的混沌系统的形式。 2 Genesio系统的分岔分析 2.1 一般的动态分析 给出Genesio系统的动力学方程:

谈谈日常生活中的混沌现象

谈谈日常生活中的混沌现象 XX学院专业姓名 摘要:本文通过具体科学,解释日常生活中的混沌现象,以及以及如何通过物理问题解决日常生活中的问题。 关键字:物理,混沌现象,蝴蝶效应 一、混沌现象的定义 混沌现象是指发生在确定性系统中的貌似随机的不规则运动,一个确定性理论描述的系统,其行为却表现为不确定性一不可重复、不可预测,这就是混沌现象。进一步研究表明,混沌是非线性动力系统的固有特性,是非线性系统普遍存在的现象。牛顿确定性理论能够充分处理的多为线性系统,而线性系统大多是由非线性系统简化来的。因此,在现实生活和实际工程技术问题中,混沌是无处不在的。 “ 混沌”是近代非常引人注目的热点研究,它掀起了继相对论和量子力学以来基础科学的第三次革命。科学中的混沌概念不同于古典哲学和日常语言中的理解,简单地说,混沌是一种确定系统中出现的无规则的运动。混沌理论所研究的是非线性动力学混沌,目的是要揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。 二、混沌现象的相关例子 混沌理论证明,在世界上发生的具有如下特征的事件均属混沌事件,即混沌现象。 1.蝴蝶效应现象 蝴蝶效应现象,是指事物发展的结果对初始条件具有极为敏感的依赖性.初始条件极小的偏差将会引起结果的巨大差异。在政治、经济、军事、自然、社会等诸多领域均有蝴蝶效应发生,而且这种现象对世界具有极大的影响效果。金融炒家索洛斯引发的东亚金融危机,和白宫实习生莱温斯基引发的克林顿绯闻案,就是两个最典型的例证。 (1)产生蝴蝶效应的内在机制 所谓复杂系统,是指非线性系统且在临界性条件下呈现混沌现象或混沌性行为的系统.非线性系统的动力学方程中含有非线性项,它是非线性系统内部多因素交叉耦合作用机制的数学描述.正是由于这种“诸多因素的交叉耦合作用机制”,才导致复杂系统的初值敏感性即蝴蝶效应,才导致复杂系统呈现混沌性行为. 目前,非线性学及混沌学的研究方兴未艾,这标志人类对自然与社会现象的认识正在向更为深入复杂的阶段过渡与进化.

混沌现象研究

实验二十九混沌现象研究 长期以来,人们在认识和描述运动时,大多只局限于线性动力学描述方法,即确定的运动有一个完美确定的解析解。但是自然界在相当多情况下,非线性现象却起着很大的作用。1963年美国气象学家Lorenz在分析天气预报模型时,首先发现空气动力学中的混沌现象,该现象只能用非线性动力学来解释。于是,1975年混沌作为一个新的科学名词首次出现在科学文献中。从此,非线性动力学迅速发展,并成为有丰富内容的研究领域。该学科涉及非常广泛的科学范围,从电子学到物理学,从气象学到生态学,从数学到经济学等。混沌通常相应于不规则或非周期性,这是由非线性系统本质产生的。本实验将引导学生自己建立一个非线性电路,该电路包括有源非线性负阻、LC振荡器和RC移相器三部分;采用物理实验方法研究LC振荡器产生的正弦波与经过RC移相器移相的正弦波合成的相图(李萨如图),观测振动周期发生的分岔及混沌现象;测量非线性单元电路的电流—电压特性,从而对非线性电路及混沌现象有一深刻了解;学会自己制作和测量一个实用带铁磁材料介质的电感器以及测量非线性器件伏安特性的方法。【实验原理】 1、非线性电路与非线性动力学 实验电路如图30-1所示,图30-1中只有一个非线性元件R,它是一个有源非线性负阻器件。电感器L和电容器C2组成一个损耗可以忽略的谐振回路;可变电阻R0和电容器C1串联将振荡器产生的正弦信号移相输出。本实验所用的非线性元件R是一个五段分段线性元件。图30-2所示的是该电阻的伏安特性曲线,可以看出加在此非线性元件上电压与通过它的电流极性是相反的。由于加在此元件上的电压增加时,通过它的电流却减小,因而将此元件称为非线性负阻元件。 C2 R0 R C1 L 图29-2 非线性元件伏安特性 图29-1 非线性电路原理图 V(R)

浅谈混沌理论的意义

浅谈混沌理论的哲学意义 姓名:文小刀

浅谈混沌理论的哲学意义 文小刀 摘要:本文首先介绍了混沌理论的内含和产生,在此基础上介绍了它对自然科学和哲学思维的影响,最后提出了混沌理论的几种应用,以期探寻混沌理论的哲学意义。 关键字:混沌理论影响应用哲学意义 混沌理论被认为是与相对论和量子力学齐名的震惊世界的第三大理论,是系统科学的重要组成部分。混沌理论这个迷人的“奇异吸引子”,吸引着人们去探索混沌奥秘的科学前沿,而且像极具生命力的种子,撒遍自然科学和社会科学各个领域的沃土。它将简单与复杂、有序与无序、确定与随机、必然与偶然的矛盾统一在一幅美丽的自然图景之中,推动了人类自然观与科学观的发展;也通过一系列崭新的范畴、语言和思维方式,充实了科学方法内容并促进了方法论的进步,对科学的发展和人类社会的发展必将产生深远的影响。 一、混沌理论的含义及其产生 混沌学是当代系统科学的重要组成部分,与相对论和量子力学的产生一样,混沌理论的出现对现代科学产生了深远的影响。混沌运动的本质特征是系统长期行为对初值的敏感依赖性,所谓混沌的内在随机性就是系统行为敏感地依赖于初始条件所必然导致的结果。我们可把混沌理解为:在一个非线性动力学系统中,随着非线性的增强,系统所出现的不规则的有序现象。这些现象可以通过对初值的敏感依赖性、奇异吸引子、费根鲍姆常数、分数维、遍历性等来表征。 混沌有如下的本质特征: 1.混沌产生于非线性系统的时间演化,作为系统基础的动力学是决定论的,无须引进任何外加噪声。因而混沌是非线性确定系统的内禀行为。 2.混沌行为对初始条件极具敏感,导致长期行为具有不可预测性,也即我们所说的确定系统产生的不确定性或随机性。这一特征不同于概率论中的随机过程,随机过程中的随机性是指演化的下一次结果无法准确预知,短期内无法预测,但长期演化的总体行为却呈确定的统计规律,混沌行为刚好相反,短期行为可确知,长期行为不确定。

用Matlab观察分岔与混沌现象

Matlab 实验报告 实验目的:用Matlab 观察分岔与混沌现象。 题目:Feigenbaum 曾对超越函数sin()y x λπ=(λ为非负实数)进行了分岔与混沌的研究,试利用迭代格式1sin()k k x x λπ+=,做出相应的Feigenbaum 图 算法设计: 1、因为λ为非负实数,所以试将λ的范围限制在[0,3],制图时x 的坐标限制在[0,3],考虑到y 的值有正有负,所以把y 的坐标限制在[-3,3]。 2、根据课本上给的例题,编写程序代码来绘图。 程序代码: clear;clf; hold on axis([0,3,-3,3]); grid for a=0:0.005:3 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end pause(0.1) for i=101:150 plot(a,x(i),'k.'); end end 图像:

结果分析:在λ取值在[0,0.3]区间内时,y的值保持在0,然后开始上升,在λ取值在0.75附近时,开始分岔为两支。从整体上看,随着λ的值越来越大,所产生的迭代序列越来越复杂,可能会随机地落在区间(-3,3)的任一子区间内。并可能重复,这就是混沌的遍历性。 进一步分析:由于λ的取值空间偏小,考虑扩大其取值范围到[0,6],再进一步观察图像。程序代码如下: clear;clf; hold on axis([0,6,-6,6]); grid for a=0:0.05:6 x=[0.1]; for i=2:150 x(i)=a*sin(pi*x(i-1)); end

连续时间混沌系统MATLAB程序和SIMULINK模型

第6章连续时间混沌系统 本章讨论连续时间混沌系统的基本特点与分析方法,主要包括混沌数值仿真和硬件实验方法简介、混沌系数平衡点的计算、平衡点的分类与性质、相空间中的轨道、几类典型连续混沌系统的介绍、混沌机理的分析方法、用特征向量空间法寻找异宿轨道、Lorenz系统及混沌机理定性分析、Lorenz映射、Poincare截面、Chua系统及其混沌机理定性分析、时间序列与相空间重构等内容。 6.1 混沌数值仿真和硬件实验方法简介 混沌的数值仿真主要包括MA TLAB编程、SIMULINK模块构建、EWB仿真以及其他一些相关的软件仿真或数值计算等方法,从而获取混沌吸引子的相图、时域波形图、李氏指数、分叉图和功率谱等。混沌的硬件实验主要包括模拟/数字电路设计与硬件实验、现场可编程门阵列器件(FPGA)、数字信号处理器(DSP)等硬件实现方法来产生混沌信号。本节仅对各种数值仿真方法作简单介绍。 1)混沌系统的MA TLAB数值仿真 该方法主要根据混沌系统的状态方程来编写MA TLAB程序。现举二例来说明这种编程方法。(1)已知Lorenz系统的状态方程为 dx/dt=-a(x-y) dy/dt=bx-xz-y dz/dt=-cz+xy 式中a=10,b=30,c=8/3。 MA TLAB仿真程序如下: >> %************************************************** Function dxdt=lorenz(t,x) %除符号dxdt外,还可用其他编程者习惯的有意义的符号 A=10; B=30; C=8/3; dxdt=zeros(3,1); dxdt(1)=-A*(x(1)-x(2)); dxdt(2)=B*x(1)-x(1).*x(3)-x(2); dxdt(3)=x(1)*x(2)-C*x(3); %************************************************* options=odeset('RelTol',1e-6,'AbsTol',[ 1e-6 1e-6 1e-6]); t0=[0 200]; x0=[0.02,0.01,0.03]; [t,x]=ode45('lorenz',t0,x0,options); %************************************************** n=length(t) n1=round(n/2) %n1=1; %************************************************** figure(1); plot(t(n1:n,1),x(n1:n,1));

生活中的混沌现象

生活中的混沌现象 环境设计 郭书楠 20130313101022最近全国许多地方不是闹旱灾就是发大水,貌似老天爷有点变化无常了。不过话说回来,这位老天爷好像爱你个从来都是变化无常的。记得小学时候学过一篇课文叫《看云识天气》,学完后将信将疑的,回去试了一下,发现根据那些云来预测天气好多都不准。从此心中就有一个结——我们到底能不能知道明天到底是什么天气呢? 在气象学出现之前人们只能根据经验来预测天气,但这种经验性的方法误差很大,往往不能精确预报。我想那时候的人们一定会像,要是能精确预报天气该多好啊!那时的人们大多靠天吃饭,而且天气与人们的声场生活密切相关。 幸运的是现在我们有了计算机,有了卫星云图,精确预报明天甚至后天的天气情况是没多大问题的。更进一步,气象学家已经建立了大气环流模型。模型的思想是用网格划分全球,确定每个格点上某些气象数据(气压、温度、密度等)的值,然后在计算机上模拟这些数据的时间演化。初始数据(即某个时刻气象参数的值)由卫星、探空和地面观测搜集获得。然后计算机用这些数据、已知的山脉位置及其他许多资料,算出之后某个时刻的气象数值,当然这些预测面临着现实的检验。这么说只要知道初始值,我们就应该能够预测将来任意时刻的天气了,这是多么激动人心啊!但是结果让所有人失望了,大约

一周后计算机模拟的与实际的天气情况的误差已经大得不可接受了。问题到底出在哪呢?难道是计算机出错了?当然计算机是很忠诚的,它并没有出错。究其原因,是因为任何测量都会有误差,无论过去、现在、还是未来,误差都将于我们同在,只要有测量,就一定有误差,无论将来的测量技术有多发达,这都是一个真理,因为任何测量都是有一定精度的。明白了这个事实,那么我们对于初始值的测量就变得不是那么准确了,虽然可能只有十分微小的误差。或许有人会不服:“不就是一点微小的误差嘛!至于造成这么大的影响吗?”为了证明初始值的微笑误差会造成气象上的巨大变化,我们只需将初始值做十分微小的变动然后再输入计算机进行模拟就可以了。模拟结果不出所料,这么点小小的误差(就像一股小小的风)却造成了巨大的气象灾难。发现这种现象的美国科学家爱德华·洛伦茨形象地称之为“蝴蝶效应”。 洛伦茨发现了“蝴蝶效应”之后并没有停留在这表面的现象上,若停留在可预料性被单纯的随机性战胜这一图像上,那他不过是带来了一条非常坏的消息而已。洛伦茨看到的不仅仅是随机性潜伏在他的气象模型中,他还看到一种精致的几何结构,这是一种伪装成随机性的规律性,这就是混沌! “天气是不可长期准确预料”这一事实对于经典的决定论是绝对不能容忍的。按照牛顿力学,如果知道了一个系统初始时刻的状态我们就能知道它在其他任何时刻的状态。天体运动是牛顿力学的第一块试金石,根据牛顿力学预言的众多天文现象如海王星的位置一再证明

非线性电路中的混沌现象11011079

非线性电路中的混沌现象实验指导及操作说明书 北航实验物理中心 2013-03-09 教师提示:混沌实验简单,模块化操作,但内容较多,需要课前认真预习。

5.2 非线性电路中的混沌现象 二十多年来混沌一直是举世瞩目的前沿课题和研究热点,它揭示了自然界及人类社会中普遍存在的复杂性,有序与无序的统一,确定性与随机性的统一,大大拓宽了人们的视野,加深了对客观世界的认识。许多人认为混沌的发现是继上世纪相对论与量子力学以来的第三次物理学革命。目前混沌控制与同步的研究成果已被用来解决秘密通讯、改善和提高激光器性能以及控制人类心律不齐等问题。 混沌(chaos)作为一个科学概念,是指一个确定性系统中出现的类似随机的过程。理论和实验都证实,即使是最简单的非线性系统也能产生十分复杂的行为特性,可以概括一大类非线性系统的演化特性。混沌现象出现在非线性电路中是极为普遍的现象,本实验设计一种简单的非线性电路,通过改变电路中的参数可以观察到倍周期分岔、阵发混沌和奇导吸引子等现象。实验要求对非线性电路的电阻进行伏安特性的测量,以此研究混沌现象产生的原因,并通过对出现倍周期分岔时实验电路中参数的测定,实现对费根鲍姆常数的测量,认识倍周期分岔及该现象的普适常数 费根鲍姆(Feigenbaum)常数、奇异吸引子、阵发混沌等非线性系统的共同形态和特征。此外,通过电感的测量和混沌现象的观察,还可以巩固对串联谐振电路的认识和示波器的使用。 5.2.1 实验要求 1.实验重点 ①了解和认识混沌现象及其产生的机理;初步了解倍周期分岔、阵发混沌和奇异吸引子等现象。 ②掌握用串联谐振电路测量电感的方法。 ③了解非线性电阻的特性,并掌握一种测量非线性电阻伏安特性的方法。熟悉基本热学仪器的使用,认识热波、加强对波动理论的理解。 ④通过粗测费根鲍姆常数,加深对非线性系统步入混沌的通有特性的认识。了解用计算机实现实验系统控制和数据记录处理的特点。 2.预习要点 (1)用振幅法和相位法测电感 ①按已知的数据信息(L~20mh,r~10Ω,C0见现场测试盒提供的数据)估算电路的共振频率f。 ②串联电路的电感测量盒如图5.2-7所示。J1和J2是两个Q9插座,请考虑测共振频率时应如何连线?你期望会看到什么现象? ③考虑如何用振幅法和相位法测量共振频率并由此算得电感量?当激励频率小于、等于和大于电路的共振频率时,电流和激励源信号之间的相位有什么关系?

非线性动力学与混沌理论

非线性动力学 随着科学技术的发展,非线性问题出现在许多学科之中,传统的线性化方法已不能满足解决非线性问题的要求,非线性动力学也就由此产生。 非线性动力学联系到许多学科,如力学、数学、物理学、化学,甚至某些社会科学等。非线性动力学的三个主要方面:分叉、混沌和孤立子。事实上,这不是三个孤立的方面。混沌是一种分叉过程,孤立子有时也可以和同宿轨或异宿轨相联系,同宿轨和异宿轨是分叉研究中的两种主要对象。 经过多年的发展,非线性动力学已发展出了许多分支。如分叉、混沌、孤立子和符号动力学等。然而,不同的分支之间又不是完全孤立的。非线性动力学问题的解析解是很难求出的。因此,直接分析非线性动力学问题解的行为(尤其是长时期行为)成为研究非线性动力学问题的一种必然手段。 *混沌理论是谁提出的? 混沌理论,是系统从有序突然变为无序状态的一种演化理论,是对确定性系统中出现的内在“随机过程”形成的途径、机制的研讨。 美国数学家约克与他的研究生李天岩在1975年的论文“周期3则乱七八糟(Chaos)”中首先引入了“混沌”这个名称。 美国气象学家洛伦茨在2O世纪6O年代初研究天气预报中大气流动问题时,揭示出混沌现象具有不可预言性和对初始条件的极端敏感依赖性这两个基本特点,同时他还发现表面上看起来杂乱无章的混沌,仍然有某种条理性。 1971年法国科学家罗尔和托根斯从数学观点提出纳维-斯托克司方程出现湍流解的机制,揭示了准周期进入湍流的道路,首次揭示了相空间中存在奇异吸引子,这是现代科学最有力的发现之一。 1976年美国生物学家梅在对季节性繁殖的昆虫的年虫口的模拟研究中首次揭示了通过倍周期分岔达到混沌这一途径。 1978年,美国物理学家费根鲍姆重新对梅的虫口模型进行计算机数值实验时,发现了称之为费根鲍姆常数的两个常数。这就引起了数学物理界的广泛关注。 与此同时,曼德尔布罗特用分形几何来描述一大类复杂无规则的几何对象,使奇异吸引子具有分数维,推进了混沌理论的研究。20世纪70年代后期科学家们在许多确定性系统中发现混沌现象。作为一门学科的混沌学目前正处在研讨之中,未形成一个完整的成熟理论。 *混沌的理论 要弄明白不可预言性如何可以与确定论相调和,可以来看看一个比整个宇宙次要得多的系统——水龙头滴下的水滴。这是一个确定性系统,原则上流入水龙头中的水的流量是平稳、均匀的,水流出时发生的情况完全由流体运动定律规定。但一个简单而有效的实验证明,这一显然确定性的系统可以产生不可预言的行为。这使我们产生某种数学的“横向思维”,它向我们解释了为什么此种怪事是可能的。 假如你很小心地打开水龙头,等上几秒钟,待流速稳定下来,通常会产生一系列规则的水滴,这些水滴以规则的节律、相同的时间间隔落下。很难找到比这更可预言的东西了。但假如你缓缓打开水龙头,使水流量增大,并调节水龙头,使一连串水滴以很不规则的方式滴落,这种滴落方式似乎是随机的。只要做几次实验就会成功。实验时均匀地转动水龙头,别把龙头开大到让水成了不间断的水流,你需要的是中速滴流。如果你调节得合适,就可以在好多分钟内听不出任何明显的模式出现。 1978年,加利福尼亚大学圣克鲁斯分校的一群年青的研究生组成了一个研究动力学系统的小组。他们开始考虑水滴系统的时候,就认识到它并不像表现出来的那样毫无规则。他们用话筒记录水滴的声音,分析每一滴水与下一滴水之间的间隔序列。他们所发现的是短期的可预言性。要是我告诉你3个相继水滴的滴落时刻,你会预言下一滴水何时落下。例如,假如水滴之间最近3个间隔是0.63秒、1.17秒和0.44秒,则你可以肯定下一滴水将在0.82秒后落下这些数只是为了便于说明问题。事实上,如果你精确地知道头3滴水的滴落时刻,你就可以预言系统的全部未来。 # 那么,拉普拉斯为什么错了? 问题在于,我们永远不能精确地测量系统的初始状态。我们在任何

相关文档
最新文档