24平面波对理想介质界面的斜入射

24平面波对理想介质界面的斜入射
24平面波对理想介质界面的斜入射

§24 平面波对理想介质界面的斜入射

[作业布置] P257:6-24,6-26

(6-24)垂直极化的均匀平面波从水下以入射角i θ投射到水与空气的分界面上,已知淡水的0,1,81===σμεr r ,试求:(1)临界角;(2)反射系数及透射系数;(3)透射波在空气中传播一个波长的距离的衰减量(以dB 表示)。

解:

()()()dB

e e e e e e j e j e j j k z k x k j z x jk r e jk i t i t

c i j j c t t n t 8.158lg 20lg 2091.208.31sin 1cos 08.320sin 81sin sin ......389.132

.094.094

.0220sin 8120cos 20cos 232

.094.032

.094.020sin 8120cos 20sin 8120cos 238.681arcsin arcsin 12

2

22222200291.291.291.208.3)cos sin (2202

1

02

.190

20

00

04

.380

20

00

20

000012-====-=-=-====

>=+?=

-+

=

=+-=

-+

--

=

Γ=???

?

?

?=????

??=----+-?--⊥-⊥

λλπλθθθθθεεθθθεετεεεεεεεεθ

(6-26)频率Hz f 300=的均匀平面波从媒质1()0,4,10101===σεεμμ斜入射到媒质2()0,,20202===σεεμμ。(1)若入射波是垂直极化波,入射角

060=i θ,试问在空气中的透射波的传播方向如何?相速是多少?(2)若入射波

是圆极化波,且入射角060=i θ,试问反射波是什么极化波?

解:

()()()00021212

2//0002122//83222t 0022202

1

000128060cos 414160sin arctan cos sin arctan 74.5760cos 4160sin arctan cos sin arctan 1

..........1........2/1073.1sin 2)(2232cos sin /222

.31sin 1cos 360sin 4sin sin 304arcsin arcsin 1=?????? ??-=??????

?

?

?-==?????? ??-=???????

??-===>?==

=

==+=+====-=-=-====

>=???

?

??=????

??=⊥⊥--?-θεεεθφθεεθφρρθθθπω

π

πθθπεμπεμωθθθεεθθθε

εεεθππc i

t

t tx

P x j z j tm y r

k j tm y z x t t z t t x t i t i t c i c s

m k f

k v e e E e e E e r E j e e k e k e k m rad f k j t

故反射波为椭圆极化波。

β-FeSi2 的能带结构及光学性质的第一性原理研究

β-FeSi 2 的能带结构及光学性质的第一性原理研究? 闫万珺1,2,谢泉1 1.贵州大学电子科学与信息技术学院,贵阳,550025 2.安顺师范高等专科学校物理系,安顺,561000 摘 要:利用基于第一性原理的赝势平面波方法系统地计算了β-FeSi 2基态的几何结构、能带结构和光学性质。几何优化结果表明平衡时的晶格常数与实验值符合得较好;能带结构的计算表明β-FeSi 2属于一种准直接带隙半导体,禁带宽度为0.74eV ;计算了光学性质,给出了β-FeSi 2的介电函数实部1ε、虚部2ε以及相关光学参量。 关键词:β-FeSi 2,几何优化,能带结构,光学特性 PACC :7125, 7115H, 7820D 1. 引 言 铁硅化合物β-FeSi 2,是由资源寿命较长的Fe 、Si 元素组成,能循环利用,对地球无污染,称为环境半导体材料,对这一材料的研究,对人类的生存和发展具有重要的意义。 β-FeSi 2具有Jahn-Teller 晶格匹配的荧光构造,在Si (100)基板上外延生长的格子错配度为 5.5%,和Si 、GaAs 材料比较,β-FeSi 2具有一系列优越特性,β-FeSi 2在红外的带隙为Eg=0.83~0.87eV [1,2],光吸收系数很大(>105cm -1), 因此,是作为光传感器、太阳能电池 的理想材料,而且,能够在Si(001)和Si(111)上外延生长[3,4,5,6]。目前在环境半导体材料β -FeSi 2薄膜的研究方面,还存在很多问题没有解决,如能带构造、吸收-发光机理、载流子密度的控制等光电子物性的正确把握,因此,深入研究β-FeSi 2的能带结构与光学特性是研究β-FeSi 2光电特性所不可缺少的理论基础。 尽管大量的文献对β-FeSi 2进行了研究,对于其带隙性质的争论仍然存在。有部分文献声称β-FeSi 2是属于直接带隙半导体[7,8,9,10,11],但是也有作者认为存在只比直接带隙低几十毫电子伏左右的间接带隙[12,13],把β-FeSi 2称为准直接带隙半导体。 自从20世纪60年代密度泛函理论(DFT)建立并在局域密度近似(LDA)下导出著名的 Kohn -Sham(KS)方程以来,DFT 一直是凝聚态物理领域计算电子结构及其特性最有力的工具。在基于DFT 的第一性原理的计算方法中赝势平面波方法,是目前计算机模拟实验中最先进、最重要的赝势能带方法之一,这些方法在对一些重要的 光电子材料特性认识起着越来越明显的作用。在这篇文章中 我们对β-FeSi 2在体系平衡时的结构进行了优化,第一性原理的赝势平面波方法对能带结构和光学特性进行了 计算。 2. 计算方法 β-FeSi 2属于正交晶系,空间群为(Cmca ),晶 格常数 h D 218图1 β-FeSi 2的原胞 ? 贵州省教育厅重点基金(批准号:05JJ002),教育部博士点专项科研基金(批准号:20050657003)贵州大学人才引进基金(批准号:04RCJJ001),教育部留学回国科研基金(批准号:教外司(2005)383),贵州省留学人员科技项目(批准号:黔人项目(2004)03),科技厅国际合作项目(批准号:黔科合G(2005)400102)及省委组织部高层人才科研特助项目资助。

超声波探伤的物理基础——(第四节超声平面在平界面上斜入射的行为)

第一章 超声波探伤的物理基础 第四节 超声平面在平界面上斜入射的行为 超声平面波以一定的倾斜角入射到异质界面上时,就会产生声波的反射和折射、并且遵循反射和折射定律。在一定条件下,界面上还会产生波型转换现象。 一、斜入射时界面上的反射、折射和波型转换 (1) 超声波在固体界面上的反射 1. 固体中纵波斜入射于固体——气体界面 图1–25中,L α为纵波入射角,1L α为纵波反射角,1S α为横波反射角,其反射定律可用下列数学式表示: 1 S 1S 1L 1 L L L sin C sin C sin C α=α=α (1–34) 因入射纵波L 与反射纵波L 1在同一介质内传播,故它们的声速相同,即1L L C C =,所以1L L α=α。又因同一介质中纵波声速大于横波声速,即1S 1L C C >,所以1S 1L αα>。 2. 横波斜入射于固体——气体界面 图1–26中,S α为横波入射角,1S α为横波反射角,1L α为纵波反射角。由反射定律可知: 1 L 1 L 1S 1S S S sin C sin C sin C α=α=α (1–35) 图1–25 纵波斜入射 图1–26 横波斜入射 因入射横波S 与反射横波S 1在同一介质内传播,故它们的声速相同,即1S S C C =,所以1S S α=α。又因同一介质中1S 1L C C >,所以,1S 1L αα>。 结论: 当超声波在固体中以某角度斜入射于异质面上,其入射角等于反射角,纵波反射角大于横波反射角,或者说横波反射声束总是位于纵波反射声束与法线之间。图(1–27)表示钢及铝材中纵波入射时的横波反射角,也可以看成横波入射时的纵波反射角。 (2) 超声波的折射 1. 纵波斜入射的折射 图1–28中L α为第一介质的纵波入射角,L β为第二介质的纵波折射角,S β为第二介质的横波折射角,其折射定律可用下列数学式表示: S 2S L 2L L L sin C sin C sin C β=β=α (1–36)

第四章电磁波的传播

第四章 电磁波的传播 §4.1 平面电磁波 1、电磁场的波动方程 (1)真空中 在0=ρ,0=J 的自由空间中,电磁强度E 和磁场强度H 满足波动方程 012222=??-?t E c E (4.1.1) 012 222=??-?t H c H (4.1.2) 式中 80 010997925.21 ?== μεc 米/秒 (4.1.3) 是光在真空中的速度。 (2)介质中 当电磁波在介质内传播时,介质的介电常数ε和磁导率μ一般地都随电磁波 的频率变化,这种现象叫色散。这时没有E 和H 的一般波动方程,仅在单色波 (频率为ω)的情况下才有 012222=??-?t E v E (4.1.4) 012 222=??-?t H v H (4.1.5) 式中

()()() ωμωεω1 = v (4.1.6) 是频率ω的函数。 2、亥姆霍兹方程 在各向同性的均匀介质内,假设0=ρ,0=J ,则对于单色波有 ()()t i e r E t r E ω-= , (4.1.7) ()()t i e r H t r H ω-= , (4.1.8) 这时麦克斯韦方程组可化为 () εμω ==+?k E k E , 02 2 (4.1.9) 0=??E (4.1.10) E i H ??-=μω (4.1.11) (4.1.9)式称为亥姆霍兹方程。由于导出该方程时用到了0=??E 的条件,因此,亥姆霍兹方程的解只有满足0=??E 时,才是麦克斯韦方程的解。 3、单色平面波 亥姆霍兹方程的最简单解是单色平面波 ()()t r k i e E t r E ω-?= 0, (4.1.12) ()()t r k i e H t r H ω-?= 0, (4.1.13) 式中k 为波矢量,其值为 λ π εμω2= =k (4.1.14) 平面波在介质中的相速度为 εμ ω 1 = = k v P (4.1.15) 式中ε和μ一般是频率ω的函数。

赝势平面波方法

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

二维TM波讨论平面波源(使用直接算方法)的加入

! TM波FDTD讨论平面波源的加入 module data_module implicit none integer,parameter::nx0=0,nx1=360,ny0=0,ny1=360,nz0=-100,nz1=1200 integer,parameter::nxl1=nx0+80,nxl2=nx1-80,nyl1=ny0+80,nyl2=ny1-80 !连接边界 real,parameter::f=2.0e8,c=3.0e8,delt=0.0177,deltt=delt/6.0e8,eps0=8.85e-12,miu0=1.2566e-6,pi= 3.14159 real,parameter::w=2*pi*f,s=-0.477369 real,parameter::p=-1.0/3.0,q=-miu0*c/6,r=-miu0*c/2,p1=1/(2*miu0*c),p2=1/(2*eps0*c) real,parameter::tal=2e-9,t0=0.8*tal,fai=pi/3.0 real cez,chx,chy integer,parameter::nt=2000,m0=200 integer n complex Ez3(nx0:nx1,ny0:ny1) real Ez4(nx0:nx1,ny0:ny1),Ez2(nx0:nx1,ny0:ny1) !记录幅值提取时的实部和虚部 real sita(nx0:nx1,ny0:ny1),Ez0(nx0:nx1,ny0:ny1) !记录幅值和相位 real Ez(nx0:nx1,ny0:ny1),Hx(nx0:nx1,ny0:ny1),Hy(nx0:nx1,ny0:ny1),Ez1(nx0:nx1,ny0:ny1) real Ei0(nz0:nz1),Hi0(nz0:nz1),Ei1(nz0:nz1) real Ezi(nx0:nx1,ny0:ny1),Hxi(nx0:nx1,ny0:ny1),Hyi(nx0:nx1,ny0:ny1) end module data_module !///////////////////////////////////////////////////////////////////////////////////////////////// subroutine inc() use data_module implicit none integer i,j,k real t,d t=n*deltt Ei1=Ei0 do k=nz0,nz1-1 Hi0(k)=Hi0(k)-p1*(Ei1(k+1)-Ei1(k)) end do !Ezi do i=nxl1,nxl2 do j=nyl1,nyl2 d=real(i-nxl1)*cos(fai)+real(j-nyl1)*sin(fai) Ezi(i,j)=(d-int(d))*Ei0(m0+int(d)+1)+(1-(d-int(d)))*Ei0(m0+int(d)) end do end do do k=nz0+1,nz1-1 Ei0(k)=Ei1(k)-p2*(Hi0(k)-Hi0(k-1)) ! 入射波的场量 end do

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 课程实验:电磁波在介质中传播规律 班级__________________ 姓名____________________ 指导老师: _____________________ 实验日期: __________________

(4) 电磁波在介质中的传播规律 一、实验目的: 1、 用MATLAB?序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、 结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、 学会使用Matlab 进行数值计算,并绘出相应的图形,运用 MATLAB 寸其进行可视化 处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同 性均匀线性的,即( 0, j 0)的情形。麦克斯韦方程组的解既是空间的函数又 是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。寸于这种解,其 形式可表示成一个与时间无关的复矢量和一个约定时因子 exp j t 相乘,这里 是 角频率。在这种约定下,麦克斯韦方程组便可表示成 j H (2) (3) 寸方程( 1 )两边同取旋度,并将式 (2) 代入便得 5) 利用如下矢量拉普拉斯算子定义以及方程( 3) (1)

类似地,可得B 所满足的方程为 k 2 B 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °exo j t k r (11) 式中E 。,B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const ( 12) 方程(12)两边对时间t 求导可得 (6) 方程(5)式变为 2 E k 2 E 0 (7) (8) (9)

第4章平面电磁波传播第1讲

第四章平面电磁波传播 第一讲 赛北412-1 郎婷婷 langtingting@https://www.360docs.net/doc/c717158189.html,

主要内容 4.1 绝缘介质中的单色平面波 *4.2 导电介质中的单色平面波 4.3 电磁波在两种绝缘介质分界面 上的反射和折射 4.4 全反射消逝波和导引波 *4.5 电磁波在导电介质表面上的反射和折射

4.1 绝缘介质中的单色平面波 2 2 2 22 200 E k E H k H ?+=?+= (,)()(,)()i t i t E r t E r e H r t H r e ωω??== 亥姆霍兹方程 () 0(,)i k r t E r t E e ω??= E H z 波传播方向 均匀平面波 波阵面 x y o 无源空间中的单色电磁波 波矢量的大小为相位常数k , 方向为即波的传播方向 k n 均匀平面单色波:

4.1.1 单色平面波的特点 ?(1)横波性 k E ?= 0 E ik E E ???=?? ???=?? 电场强度E 垂直于波矢量k 1()H r E i μω =?× 1(,)(,) H r t k E r t μω =× 磁场强度H 垂直于电场强度 E 和波矢量k E ,H ,k 三者互相垂直,构成右手螺旋关系,单色平面电磁波是横波。

4.1.1 单色平面波的特点 ?(2)本征波阻抗、E 和H 的振幅关系 00 ()E Z k H μωμωμ ε ωμε ==== Ω Z 是介质的本征波阻抗。在真空中 00 120377Z Z μπε===≈Ω 结论:在各向同性绝缘介质中Z 为实数,均匀平面波的电场强度与磁场强度相互垂直,且同相位。

20200128电磁波传播介质存在吗

电磁波传播介质存在吗? Benjamin Peng 20200128 狭义相对论抛弃了电磁波的传播介质——以太。本文在解决狭义相对论自洽性问题时得出了相反的结论:电磁波的传播是需要介质的,这种介质就是以太。如果以太存在,物理世界会怎样? 一.以太存在 以太存在吗?如何解决以太存在的困难? 1.以太的历史背景 十七世纪,法国科学家笛卡儿认为物体之间的作用力都是通过客观存在的介质来传递的,不存在超距作用、瞬时作用,这种介质就是以太,并率先把亚里士多德提出的名词“以太”引入物理学。胡克、惠更斯认为光也类似声波依赖于自身的传播介质,光的传播介质就是以太。根据光、电磁波的传播现象与性质,科学家们也赋予了以太一些物理性质:(1)以太充满整个宇宙,也充满在任何物体之中。 (2)以太没有惯性质量,且“绝对静止”。 (3)以太对任何宏观物体的运动都没有阻碍作用。 (4)由于光具有横波的特征,以太应该是弹性较高的物质,以至于应类似固态形式。 (5)当一个物体相对以太参照系运动时,其内部的以太只是超过真空的那一部分被物体带动,即以太部分拽引假说。 以太从来没有显现它的踪影,人们从未感知到以太的存在,也从未通过实验证明以太的存在。以太存在的最大困难在于以太的性质:以太如何穿过物体而不影响物体的运动。随着迈克尔逊-莫雷实验、以及电磁理论的普及,人们抛弃了以太观念,认为电磁波就是一种客观存在,它不需要传播介质而存在。 物理学中,关于以太是否存在的争论却并没有停止。 2.孤立波与孤立子 十九世纪三十年代,苏格兰科学家J.S.罗素(J. Scott Russell,或译为拉塞尔)发现了一种奇特的波,并首次对它进行了研究。这种波只有一个波峰,没有波谷,传播运动过程中,速度、能量几乎不衰减,传播距离非常远。半个世纪后,通过数学研究,才弄清楚了它的性质。这种波属于孤立波的一种,是在传播过程中不发生色散的非线性波。 (1)某些孤立波具有能量、动量、质量、电性。所以人们把这种具有粒子性质的孤

电磁波的传播

实验二电磁波的传播 实验目的: 1、掌握时变电磁场电磁波的传播特性; 2、熟悉入射波、反射波和合成波在不同时刻的波形特点; 3、理解电磁波的极化概念,熟悉三种极化形式的空间特点。 实验原理: 平面电磁波的极化是指电磁波传播时,空间某点电场强度矢量E随时间变化的规律。若E的末端总在一条直线上周期性变化,称为线极化波;若E末端的轨迹是圆(或椭圆),称为圆(或椭圆)极化波。若圆运动轨迹与波的传播方向符合右手(或左手)螺旋规则时,则称为右旋(或左旋)圆极化波。线极化波、圆极化波和椭圆极化波都可由两个同频率的正交线极化波组合而成。 实验步骤: 1、电磁波的传播 (1)建立电磁波传播的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中电磁波随时间的传播规律 2、入射波、反射波和合成波 (1)建立入射波、反射波和合成波的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种波形在不同时刻的特点和关系 3、电磁波的极化 (1)建立线极化、圆极化和椭圆极化的数学模型 (2)利用matlab软件进行仿真 (3)观察并分析仿真图中三种极化形式的空间特性 实验报告要求: (1)抓仿真程序结果图 (2)理论分析与讨论

1、电磁波的传播 clear all w=6*pi*10^9; z=0::; c=3*10^8; k=w/c; n=5; rand('state',3) for t=0:pi/(w*4):(n*pi/(w*4)) d=t/(pi/(w*4)); x=cos(w*t-k*z); plot(z,x,'color',[rand,rand,rand]) hold on end title(‘电磁波在不同时刻的波形’) 由图形可得出该图形为无耗煤质中传播的均匀电磁波,它具有以下特点:(1)在无耗煤质中电磁波传播的速度仅取决于煤质参数本身,而与其他因素无关。 (2)均匀平面电磁波在无耗煤质中以恒定的速度无衰减的传播,在自由空间中其行进速度等于光速。 2、入射波、反射波、合成波 (1)axis equal; n=0;%改变n值得到不同时刻的电磁波状态z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); axis([0 10 ]); (2)axis equal; n=1/4;;%改变n值得到不同时刻的电磁波状态 z=0:*pi:10*pi; t=n*pi; B=cos(z-t/4); FB=cos(z+t/4); h=B+FB; plot(z,B,'r',z,FB,'b',z,h,'d'); legend('入射波','反射波','合成波'); 电磁波在不同时刻的波形

电磁波在介质中的传播规律

电磁波在介质中的传播规律 电磁波的传播是电磁场理论的重要组成部分。我们只考虑电磁波在各向同性均匀线性介质中传播,分别对电磁波在线性介质和非线性介质中的传播规律进行讨论。 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,j 0)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子ex) j t相乘,这里是角频率。在这种约定下,麦克斯韦方程组便可表示成1 (1) H j E (2) E 0 ⑶ H 0 ⑷ 对方程(1)两边同取旋度,并将式(2)代入便得 E 2E (5) 利用如下矢量拉普拉斯算子定义以及方程(3) (6) 方程(5)式变为 类似地,可得B所满足的方程为 k2B(9) 2E k2E 0

方程(7)和(9)式称为亥姆霍兹(Helmholtz)方程,是电磁场的波动方程。

2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对 单色平面波的研究具有重要的理论和实际意义。假定波动方程( 7)和(8)式的单色平 面波的复式量解为3 E E 0 exp j t k r (10) B B °ex3 j t k r (11) 式中E 0, B 0分别为E , B 振幅, 为圆频率, k 为波矢量(即电磁波的传播方向)。 exp j kx t 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等 相位的传播速度。很显然等相位面由下面方程决定 1 t kr const 方程(12)两边对时间t 求导可得 dr v dt k 由式(8)可知 1 v ----- 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得 3 由(17)和(18 )可以看出,介质中传播的电磁波是横波,电场与磁场都与传播方向垂直;(12) (13) (14) E 。 k B o B 0 k k E o E o k B o 0 (15) (16) (17) (18)

第3章 赝势平面波方法(I)

第3章 赝势平面波方法(I) 基于密度泛函理论的赝势平面波方法可以计算很大范围不同体系的基态属性,它采用了平面波来展开晶体波函数,用赝势方法作有效的近似处理。由于平面波具有标准正交化和能量单一性的特点,对任何原子都适用且等同对待空间中的任何区域,不需要修正重叠误差。因此平面波函数基组适合许多体系,其简单性使之成为求解Kohn-Sham 方程的高效方案之一。另外,赝势的引入可以保证计算中用较少的平面波数就可以获得较为可靠的结果。该方法具有较高的计算效率,使之日益发展成为有效的计算方法。本章首先对赝势平面波方法进行重点讨论,其次介绍了基于第一性原理计算软件一般步骤,最后结合Materials Studio 软件包应用,对锐钛矿型TiO 2(101)表面及其点缺陷结构进行建模和计算。 3.1 基本原理 基于密度泛函理论的第一性原理计算实质是求解Kohn-Sham 方程。实际求解Kohn-Sham 方程时,由于原子核产生的势场项在原子中心是发散的,波函数变化剧烈,需要采用大量的平面波展开,因而计算成本变得非常大,所以在计算中选取尽可能少的基函数。计算中选择的基函数与最终波函数较接近则收敛较快,当然包含的维度也应该尽量少。众所周知,根据研究对象不同,选择基函数的方法也不同的,如原子轨道线性组合法(LCAO-TB)、正交平面波法(OPW)、平面波赝势法(PW-PP)、缀加平面波法(APW)、格林函数法(KKR)、线性缀加平面波法(LAPW)、Muffin-tin 轨道线性组合法(LMTO)等,选取典型代表方法在随后的章节中重点展开讨论。与LAPW ,LMTO 等精度较高的第一性原理计算方法比较,平面波赝势法是计算量较少的方法,适用于计算精度要求不严格,因原胞较复杂而导致计算量陡增加的体系。为此,本章将重点学习赝势平面波方法,先学习电子能带的平面波基底展开以及赝势等相关基本概念,然后再讨论赝势引入原理。 3.1.1 平面波展开与截断能 1. 平面波展开 平面波是自由电子气的本征函数,由于金属中离子芯与类似的电子气有很小的作用,因此很自然的选择是用它描述简单金属的电子波函数。众所周知,最简单的正交、完备的函数集是平面波exp[())i k G r +?,这里G 是原胞的倒格矢。根据晶体的空间平移对称性,布洛赫(Bloch)定理(将在第4.1.1节中说明)证明,能带电子的波函数(,)r k ψ总是能够写成 (,)()exp()r k r ik r ψμ=? (3.1) 式中k 是电子波矢,()r μ是具有晶体平移周期性的周期函数。对于理想晶体的计算,这是很自然的,因为其哈密顿量本身具有平移对称性,只要取它的一个原胞就行了。对于无序系统(如无定型结构的固体或液体)或表面、界面问题,只要把原胞取得足够大,以至于不影响系统的动力学性质,还是可以采用周期性边界条件的。因此,这种利用平移对称性来计算电子结构的方法,对有序和无序系统都是适用的。采用周期性边界条件后,单粒子轨道波函数可

实验二电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期:

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω == (13) 由式(8)可知 εμ 1 = v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

实验二-电磁波在介质中的传播规律

实验二-电磁波在介质中的传播规律

电磁场与微波技术实验报告 (二) 课程实验:电磁波在介质中传播规律 班级: 姓名: 指导老师: 实验日期: 2015.11.21

电磁波在介质中的传播规律 一、实验目的: 1、用MATLAB 程序演示了电磁波在无损耗、较小损耗和较大损耗情况下的传播博规律; 2、结合图像探讨了电磁波在有耗介质中电场强度和磁场强度的能量变化情况; 3、学会使用Matlab 进行数值计算,并绘出相应的图形,运用MATLAB 对其进行可视化处理。 二、实验原理 1、电磁场的波动方程 一般情况下,电磁场的基本方程是麦克斯韦方程,而我们讨论的介质是各向 同性均匀线性的,即(0,0==j ρ)的情形。麦克斯韦方程组的解既是空间的函数又是时间的函数,而我们只考虑随时间按正弦函数变化的解的形式。对于这种解,其形式可表示成一个与时间无关的复矢量和一个约定时因子()t j ωex p 相乘,这里ω是角频率。在这种约定下,麦克斯韦方程组便可表示成[]1 ΗE ωμj -=?? (1) ΕΗωεj =?? (2) 0=??Ε (3) 0=??Η (4) 对方程(1)两边同取旋度,并将式(2)代入便得 ΕΕεμω2=???? (5) 利用如下矢量拉普拉斯算子定义以及方程(3) ()ΕΕΕ????-???=?2 (6) 方程(5)式变为[]2

022=+?ΕΕk (7) μεω=k (8) 类似地,可得Β所满足的方程为 022=+?ΒΒk (9) 方程(7)和(9)式称为亥姆霍兹(Helmholtz )方程,是电磁场的波动方程。 2、平面波解 一般的电磁波总可用傅里叶分析方法展开成一系列。单色平面波的叠加。所以,对单色平面波的研究具有重要的理论和实际意义。假定波动方程(7)和(8)式的单色平面波的复式量解为[]3 ()[]r k ΕΕ?-=t j ωex p 0 (10) ()[]r k ΒΒ?-=t j ωex p 0 (11) 式中0Ε,0Β分别为Ε,Β振幅,ω为圆频率,k 为波矢量(即电磁波的传播方向)。 ()[]t kx j ω-ex p 代表波动的相位因子。 为了描述均匀平面波的相位在空间的变化快慢,在此引入相速的概念,即平面波等相位的传播速度。很显然等相位面由下面方程决定[]1 const kr t =-ω (12) 方程(12)两边对时间t 求导可得 k dt dr v ω== (13) 由式(8)可知 εμ1 =v (14) 将(10)和(11)式代入我们上面给出的麦克斯韦方程组可得[]3

Bi2Se3拓扑绝缘体材料的电子结构研究

毕业论文 题目:Bi2Se3拓扑绝缘体材料的电子结构研究院(系): 年级: 专业:物理学 班级: 学号: 姓名: 指导教师: 完成日期:

摘要采用基于第一性原理的赝势平面波方法系统地计算了Bi2Se3基态的电子结构、态密度和能带结构以及理论模型,为Bi2Se3的设计与应用提供了理论依据.计算结果表明Bi2Se3属于间接带隙半导体, 禁带宽度为0.3 eV,其能带图中有18条价带,6条导带; 其价带主要由Se的6p以及Bi的6p态电子构成,导带主要由Mg的6p以及Si的6p态电子构成;其能带图中有18条价带,6条导带. 关键词Bi2Se3 第一性原理电子结构理论模型态密度能带结构 一、引言 按照导电性质的不同,材料可分为“金属”和“绝缘体”两大类;而更进一步,根据电子态的拓扑性质的不同“绝缘体”和“金属”还可以进行更细致的划分。拓扑绝缘体就是根据这样的新标准而划分的区别于普通绝缘体的一类新型绝缘体材料。它的体内与普通绝缘体一样,是绝缘的,但是在它的边界或表面总是存在导电的边缘态,这也是它有别于普通绝缘体的最独特的性质.这样的导电边缘态是稳定存在的,且不同自旋的导电电子的运动方向是相反的,传统上固体材料可以按照其导电性质分为绝缘体和导体,其中绝缘体材料在它的费米能处存在着有限大小的能隙,因而没有自由载流子;金属材料在费米能级处存在着有限的电子态密度,进而拥有自由载流子,信息的传递可以通过电子的自旋,而不像传统导电材料通过电荷,这样不涉及能量耗散过程,从而克服了传统材料的发热问题。拓扑绝缘体作为一种新的量子物质态,完全不同于传统意义上的金属和绝缘体,其体电子结构为有带隙的绝缘体,但表面或边界却为无带隙的金属态.近年来,拓扑绝缘体因其独特的物理性质及良好的应用前景在凝聚态物理和材料科学领域引起了广泛的研究. 到目前为止,用于制作纳米材料的方法有很多种,如快速凝固技术[1]、分离法[2]、球磨法[3]、表面活性合成法[4]和热还原法[5],等等. 与这些方法相比,水热合成法有很多优势,它具有较低的成本和较高的效率,而且不需要高纯度的原材料[6],热压的样品在623K和80MPa具有高密度,高导电率和模式。目前,为实现量子计算机和自旋电子器件的应用人们正努力研发基于各种单晶衬底与

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论 电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μHt’ ▽×H=εEt’+ζ E ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,ζ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=Eoe-αx+i(βx-ωt) H(x,t)=Hoe-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直

指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性 描述电磁波传播特性的波矢量k为复数:k=β+iα, β描述波传播的相位,称为相位常数;α描述波幅的衰减,称为衰减常数,它们是介质的性质。相位常数与衰减常数与介质电磁参数及频率的关系如下: β=ω(με)1/2[((1+ζ2/ω2ε2)1/2+1)/2]1/2 α=ω(με)1/2[((1+ζ2/ω2ε2)1/2-1)/2]1/2 根据介质的电磁性质,分三种情况对上式进行讨论。 对于低电导介质,满足ζ<10-7S/m,ζ/εω《1,此时相位常数、衰减常数和电磁波速V为: 1/2 β=ω(με) α=ζ(μ/ε)1/2 1/2 V=ω/β=(1/με)

电磁波的在规则波导中的传播

讨论电磁波的在规则波导中的传播特性,就是确定在给定的边界条件下,满足麦克斯韦方程组的解,这个解的不同形式就表示不同的波型,这个解随时空的变化规律,便是电磁波在波导中传播规律。本节讨论在任意截面波导中的波动方程的求解方法以及电磁波在波导中传播的一般特性。 一、麦克斯韦方程组及边界条件 1.一般边界条件 2.理想导体表面的边界条件 二、规则波导中电磁场的求解方法 1.直接求解法 在给定边界条件下求解上述波动方程,便可得波导中电磁场的解。

2.赫兹矢量位法 (1)赫兹电矢量位引入赫兹电矢量位 (2)赫兹磁矢量位引入赫兹磁矢量位 3.纵向分量法 先求解满足标量波动方程的z方向分量(纵向分量);然后,由各分量间的关系求出其他分量(横向分量) 三、导行波波型的分类 波型也称模式,它指的是能够单独在波导传输线中存在的电磁场结构的型式。 1.横电磁波:即没有纵向电场又没有纵向磁场分量,即和的波,并以TEM 表示。TEM波只能存在于多导体传输线中,而不能存在于空心波导中。 2.横电波:凡是磁场矢量既有横向分量又有纵向分量,而电场矢量只有横向分量,即 的波称为磁波或横电波,通常表示为H波或TE波。 3.横磁波:凡其电场矢量除有横向分量外还有纵向分量,而磁场矢量只有横向分量,即 的波称为电波或横磁波,通常表示为E波或TM波。

§2.2 导行波的传输特性 各种不同横截面的波导系统传输导行波时,尽管横向场分布彼此各异,但它们有着共同的纵向传输特性。导行波的传输特性包括六个方面: 截止波长、波导波长、相速群速和色散、波阻抗、传输功率以及导行波的衰减 一、截止波长 在即的情况下,称为传输状态。 在即的情况下,这是传输系统的截止状态。 就是介于传输状态和截止状态之间的临界状态。 临界频率或截止频率: 临界波长或截止波长: 截止波数: 二、波导波长 波导中的波长称为波导波长,并记为 为真空中的波长。 对于TEM波, 三、相速、群速和色散 1、相速度——波导中传输的波的等相位面沿轴向移动的速度。 TE、TM波的相速度公式为 对于TEM波, 则

第六章 平面电磁波的传播

第六章 平面电磁波的传播 习题6.1 已知自由空间中均匀平面电磁波的电场: y e x t E )210cos(37.738 ππ-?=V/m ,求 (1)电磁波的频率,速度,波长,相位常数,以及传播方向。 (2)该电磁波的磁场表达式。 (3)该电磁波的坡印廷矢量和坡印廷矢量的平均值。 题意分析: 已知均匀平面电磁波的一个场量求解另一个场量,以及相关的参数,这是均匀平面波问题中经常遇到的问题。求解问题的关键在于牢记均匀平面电磁波场量表达形式的基本特点,场矢量方向和波的传播方向之间的关系以及相关公式。 解: (1)求电磁波的频率,速度,波长,相位常数,以及传播方向 沿x 轴正方向传播的电磁波的电场强度瞬时表达式为: y y y e x t E E )c o s (2φβω+-= 电场表达式的特点有: 电磁波角频率 8103?=πω (rad/s ) 由f πω2=,可以得到 电磁波的频率为: 8 10 5.12?==π ω f (Hz ) 电磁波在自由空间的传播速度 8103?==c v (m/s ) 电磁波的波长λ满足式 f v vT = =λ 210 5.110 38 8=??= = ∴f v λ(m ) 相位常数: πβ2= (rad/m ) 分析电磁波的传播方向: 方法一:直接判断法 比较均匀平面电磁波的电场表达式可以看出,均匀平面电磁波的电场表达式中x π2项前面的符号为“-”,该电磁波是沿x 轴正方向传播的电磁波。

方法二:分析法 电场表达式是时间t 和坐标x 的函数,若要使E 为不变的常矢量,就应使组合变量(x t ππ21038-?)在t 和x 变化时为一定值。即,当时间变量t 变为t t ?+,位置变量x 变为x x ?+时,有下式成立: )(2)(10321038 8x x t t x t ?+-?+?=-?ππππ 由上式可得: t x ??= ?π π21038 这说明在电磁波的传播过程中,随着时间的增加(0>?t ),使电场保持定值的点的坐标也在增加(0>?x ),所以电磁波的传播方向是由近及远,沿x 轴正方向逐步远离原点。 (2)求该电磁波的磁场表达式 电磁波的传播方向为x 轴正方向,电场分量为y 轴方向,根据坡印廷矢量的 定义:H E S ?=,电场,磁场以及电磁波的传播方向应遵循右手螺旋定律,所 以本题中磁场的方向应为z 轴方向,三者的方向关系下如图所示。 z 在自由空间中,正弦均匀平面电磁波的电场和磁场分量的比值为固定值,是 空间的波阻抗:Ω=3770Z ,所以磁场分量H 的表达式为: z z z e x t e x t e Z E H )210cos(31.0)210cos(3377 7.738 80ππππ-?=-?== (A/m ) (3)求该电磁波的坡印廷矢量表达式和坡印廷矢量的平均值 根据坡印廷矢量的定义:H E S ?=,得 ])210cos(31.0[])210cos(37.73[8 8z y e x t e x t H E S ππππ-??-?=?= x e x t )210(3cos 773.8 2ππ-?= (W/m 2) 坡印廷矢量的平均值:

第六讲 工程介质中电磁波的传播理论

第六讲工程介质中电磁波的传播理论电磁波是交变电场与磁场相互激发在空间传播的波动。工程介质中电磁波的传播依然满足麦克斯韦方程。为清除地理解雷达检测理论基础,需要对介质中的电磁场、电磁波的传播、波速、衰减、反射与折射的理论有一个基本的了解。 6.1电磁场与电磁波传播方程 岩土、混凝土、钢筋、铁板等为常见的工程介质,前两者电导较小,后两者为良导体。在这些介质中电磁波传播的麦克斯韦方程为:▽×E=-μH t’ ▽×H=εE t’+σE ▽·E=0 ▽·H=0 通常介质的介电常数ε、磁导率μ都是电磁波频率的函数。式中E为电场强度矢量,H为磁场强度矢量,σ为介质的电导率。不失一般性,满足上述麦克斯韦方程的、沿X方向传播的频率为ω的平面电磁波,其电场强度与磁场强度的表达式为: E(x,t)=E o e-αx+i(βx-ωt) H(x,t)=H o e-αx+i(βx-ωt) 6.2电场、磁场与波矢量关系 电磁波是横波,电场强度E、磁场强度H和波矢量K三者互相垂直,组成右手螺旋关系。右手螺旋关系含义如下,四个手指并拢伸直指向电场方向,然后四指回握90° 指向磁场方向,大拇平伸则指向波的传播方向K。电磁波的电厂、磁场、与波矢量的关系如下土所示。在波的传播过程中其空间方向是固定不变的,即使是发生了反射与折射,也只是传播方向K发生变化,电场与磁场的方向依然不变。在空气中电场与磁场是同向位的,两者同时达到极大和极小值,电场强度与磁场强度的比值刚好等于电磁波速。在工程介质中因为有传导电流能量损失,电场与磁场的相位再不同步,磁场落后与电场一个相位,电导率越高,落后的相位越大。 6.3 介质中的电磁波速与能量衰减特性

相关文档
最新文档