线控转向汽车路径跟踪控制策略研究

线控转向汽车路径跟踪控制策略研究
线控转向汽车路径跟踪控制策略研究

汽车线控转向技术

汽车线控转向技术 前言 汽车转向性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身安全、改善驾驶员的工作条件起着重要的作用。如何合理地设计转向系统,使汽车具有良好的操纵性能,始终是设计人员的重要研究课题。在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。线控转向系统(Steering By - WireSystem,简称SBW)的发展,正是迎合这种客观需求。它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,而且它在转向盘和转向轮之间不再采用机械连接,彻底摆脱传统转向系统所固有的限制,在给驾驶员带来方便的同时也提高了汽车的安全性。 一、线控转向系统的发展概况 德国奔驰公司在1990年开始了前轮线控转向的研究,并将它开发的线控转向系统应用于概念车F400Carving上。日本Koyo也开发了线控转向系统,但为了保证系统的安全,仍然保留了转向盘与转向轮之间的机械部分,即通过离合器连接,当线控转向失效时通过离合器结合回复到机械转向。宝马汽车公司的概念车BMWZ22,应用了SteerByWire技术,转向盘的转动范围减小到160,使紧急转向时驾驶员的忙碌程度得到了很大降低。意大利Bertone设计开发的概念车FILO,雪铁龙越野车C-Crosser,Daimlerchrysler概念车R129,都采用了线控转向系统。2003年日本本田公司在纽约国际车展上推出了LexusHPX概念车,该车也采用了线控转向系统,在仪表盘上集成了各种控制功能,实现车辆的自动控制。估计几年后,机械系统将由电缆与电子信号取代。 二、线控转向系统的结构及工作原理 (一)线控转向系统的结构 汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成,其结构如图1所示。

自动驾驶汽车线控转向系统的制作技术

本技术属于汽车转向系统中的线控转向系统技术领域,具体地说是一种自动驾驶汽车线控转向系统的设计。该转向系统组成上包括主控制器、转向操纵机构、转向执行机构、横拉杆、转向轮、电磁离合器和车轮转角传感器等;本技术是一种结构简单的自动驾驶汽车线控转向系统,改进了目前已有的线控转向系统结构使其更好地应用在自动驾驶汽车上,保证自动驾驶汽车能实现前轮线控转向,并且在转向电机出现故障时,该系统可以转化为传统机械式转向系统,使汽车的转向具有良好的可控性和安全性,解决了线控转向系统目前存在的问题。 权利要求书 1.一种自动驾驶汽车线控转向系统,其特征在于,该转向系统包括主控制器、横拉杆、转向轮、转向操纵机构、转向执行机构、常开式电磁离合器(11)和车轮转角传感器;所述转向操纵机构包括力感电机(5)、三级行星齿轮减速机构(6)、锥齿轮(7)、方向盘转距传感器(8)、方向盘转角传感器(9)和方向盘(10);所述转向执行机构包括转向电机(1)、常闭式电磁离合器(2)、蜗轮蜗杆减速机构(3)、齿轮齿条转向器(4);所述主控制器的输入与车轮转角传感器、方向盘转距传感器(8)、方向盘转角传感器(9)相连;所述主控制器的输出与转向操纵机构中的力感电机(5)相连;所述力感电机(5)的输出轴与三级行星齿轮减速机构(6)中的高速级太阳轮(601)连接;所述三级行星齿轮减速机构(6)的输出轴与锥齿轮(7)的输入轴连接;所述锥齿轮(7)的输出端与方向盘(10)的转向轴连接,其上有方向盘转矩传感器(8)和转角传感器(9);

所述齿轮齿条转向器(4)与横拉杆连接;所述横拉杆与转向轴的转向臂连接;所述转向轴与转向轮连接;所述常开式电磁离合器(11)的内花键与锥齿轮(7)输出轴的外花键连接;所述常闭式电磁离合器(2)的内花键与转向电机(1)输出轴上的外花键相啮合;所述蜗轮蜗杆减速机构(3)中的蜗杆轴(303)的外花键与常闭式电磁离合器(2)的内花键相啮合。 2.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮蜗杆减速机构(3)还包括蜗杆(301)、蜗轮(302)、蜗轮轴(304);所述蜗杆轴(303)与常闭式电磁离合器(2)相连;所述常闭式电磁离合器(2)与转向电机(1)相连;所述蜗杆(301)与蜗轮(302)相啮合;所述蜗轮轴(304)设置在蜗轮(302)的中间孔内通过平键与蜗轮(302)固定,蜗轮轴上有一部分为齿轮轴(401);所述蜗轮轴(304)上齿轮轴(401)一侧的末端设置有滚针轴承。 3.根据权利要求3所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮轴(304)上蜗轮(302)处有一对深沟球轴承。 4.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述三级行星齿轮减速机构(6)还包括高速级太阳轮(601)、高速级行星轮(602)、高速级行星架(603)、中速级太阳轮(604)、中速级行星轮(605)、中速级行星架(606)、低速级太阳轮(607)、低速级行星轮(608)、低速级行星架(609)和齿圈(610);所述高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)通过行星架上的短轴与高速级行星架(603)、中速级行星架(606)和低速级行星架(609)连接;所述高速级太阳轮(601)与高速级行星轮(602)相啮合;所述中速级太阳轮(604)与中速级行星轮(605)相啮合;所述低速级太阳轮(607)和低速级行星轮(608)相啮合;所述齿圈(610)的内齿与高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)相啮合,外部固定在力感电机(5)的壳体上。 5.根据权利要求4所述一种自动驾驶汽车线控转向系统,其特征在于,所述高速级太阳轮(601)、中速级太阳轮(604)、低速级太阳轮(607)、高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)的模数均相同,均采用直齿齿轮。 6.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述齿轮齿条转向器(4)包括齿轮(401)和齿条(402);所述齿轮(401)与齿条(402)相啮合;所述齿轮(401)采用斜齿轮;所述齿条(402)的两个端头与左右横拉杆端头连接在一起。

完整版新能源汽车电制动简述

新能源汽车电制动简述 概述:全文共5部分。第一部分,纯电动汽车制动系统概述,主要介绍电动真空助力系统的主要组成元件和工作原理;第二部分,混合动力汽车制动系统,主要介绍混合动力汽车电子制动控制系统的主要组成元件和工作原理;第三部分,制动能量回收系统,主要介绍制动能量回收系统的原理和能量回收模式;第四部分,拓展知识,主要介绍EMB电子机械制动系统、brake-by-wire的发展简介;第五部分,案例,主要介绍本田第四代IMA混合动力系统的制动能量回收系统控制;第六部,传统汽车刹车系统,主要介绍鼓式和盘式刹车。 一、纯电动汽车制动系统 纯电动汽车采用的液压制动系统与传统汽车基本结构区别不大,但是在液压制动系统的真空辅助助力系统和制动主缸两个部件上存在较大的差异。 绝大多数的汽车采用真空助力伺服制动系统,人力和助力并用。真空助力器利用前后腔的压差提供助力。传统汽车真空助力装置的真空源来自于发动机进气歧管,真空度负压一般可达到0.05~0.07MPa。对于纯电动汽车由于没有发动机

总成即没有了传统的真空源,仅由人力所产生的制动力无法满足行车制动的需要,通常需要单独设计一个电动真空泵来为真空助力器提供真空源。这个助力系统就是电动真空助力系统,即EVP系统(Electric Vacuum Pump,电动真空助力)。1 所示,电动真空助力系统由真空泵、真空罐、真空如图1整车控制器里)以及与传统汽车相泵控制器(后期集成到VCU 电源组成。12V同的真空助力器、电动真空助力系统的工作过程为:当驾驶员起动汽车时,车辆电源接通,控制器开始进行系统自检,如果真空罐内的真空度小于设定值,真空罐内的真空压力传感器输出相应电压信号至控制器,此时控制器控制电动真空泵开始工作,当真空度达到设定值后,真空压力传感器输出相应电压信号至控制器,此时控制器控制真空泵停止工作。当真空罐内的真空度因制动消耗,真空度小于设定值时,电动真空泵再次开始工作,如此循环。(一)电动真空助力系统的主要组成元件以下介绍电动真空助力系统的主要组成元件。 1)真空泵(真空泵是指利用机械、物理、化学或物理化学的方法对被抽容器进行抽气而获得真

汽车线控技术应用实例

汽车线控技术应用实例 1、线控制动系统 线控制动系统(BBW,Brake-By-Wire),目前分为两类,一种为电液制动系统(EHB,Electro-Hydraulic Brake),另一种为电子机械制动系统(EMB,Electro-Mechanical Brake)。EHB是电子与液压系统相结合所形成的多用途、多形式的制动系统,它由电子系统提供柔性控制,液压系统提供动力;而EMB 则将传统制动系统中的液压油或空气等传力介质完全由电制动取代,是未来制动控制系统的发展方向。 (1)电液制动系统 在中小型车辆的传统制动系统中,驾驶员通过制动主缸在轮缸建立制动压力,而EHB则是通过蓄能器提供制动压力。蓄能器压力由柱塞泵产生,可提供多次连续的制动压力。EHB由传感器、ECU及执行器(液压控制单元)等构成,其结构如图1所示。

制动踏板与制动器间无直接动力传递。制动时,制动力由ECU和执行器控制,踏板行程传感器将信号传给ECU,ECU汇集轮速传感器、转向传感器等各路信号,根据车辆行驶状态计算出每个车轮的最大制动力,并发出指令给执行器的蓄能器来执行各车轮的制动。高压蓄能器能快速而精确地提供轮缸所需的制动压力。同时,控制系统也可接受其他电子辅助系统(例如ABS、BAS、EBD、ESP 等)的传感器信号,从而保证最佳的减速度和行驶稳定性。 (2)电子机械制动系统 EMB主要用于小型车辆中,主要包含电制动器、ECU、轮速传感器、动力电源等。它与EHB最大区别是制动力为电机提供的转矩,而不是由柱塞泵产生的高压油,且有独立的电源来供电,其各部分的功能如表1。 2、线控转向系统 线控转向系统(SBW,Steering-By-Wire)去掉了转向盘和转向轮之间的机械连接,减轻了大约5kg重量,消除了路面的冲击,具有降低噪声和隔振等优点。目前国外著名汽车公司和汽车零部件厂家竞相研究具有智能化的新一代转向系统,如美国Delphi公司、TRW公司、日木三菱公司、Koyo公司、德国

线控技术

SBW的英文全称是Steering By Wire。中文意思是“线控转向系统”。该系统去掉了转向盘和转向轮之间的机械连接,减轻了大约5kg重量,消除了路面的冲击,具有降低噪声和隔振等优点。目前国外著名汽车公司和汽车零部件厂家竞相研究具有智能化的新一代转向系统,如美国Delphi公司、TRW公司、日木三菱公司、Koyo公司、德国Bosch 公司、ZF公司、BMW公司等都相继在研制各自的SBW系统,国内也开始涉足这一相关研究领域。 SBW系统由方向盘模块、转向执行模块和ECU3个主要部分以及自动防故障系统、电源等辅助模块组成。 方向盘模块包括方向盘、方向盘转角、力矩传感器、方向盘回正力矩电机。方向盘模块的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号并传递给主控制器;同时接受ECU送来的力矩信号,产生方向盘回正力矩以提供给驾驶员相应的路感信号。转向执行模块包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等。转向执行模块的功能是接受ECU的命令,控制转向电机实现要求的前轮转角,完成驾驶员的转向意图。ECU对采集的信号进行分析处理,判别汽车的运动状态,向方向盘回正力电机和转向电机发送命令,控制两个电机的工作。自动防故障系统是线控转向系的重要模块,它包括一系列监控和实施算法,针对不同的故障形式和等级作出相应处理,以求最大限度地保持汽车的正常行驶。汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。 SBW的工作原理是当转向盘转动时,转向传感器和转向角传感器将测量到的驾驶员转矩和转向盘的转角转变成电信号输入到ECU,ECU依据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位置,使汽车沿着驾驶员期望的轨迹行驶。 二、DBW线控油门系统

汽车线控转向标准系统原理与未来消费前景

汽车线控转向系统原理与未来消费前景 观研天下 出版时间:2014年

导读:汽车线控转向系统原理与未来消费前景。线控转向系统是指通过通讯网络连接各部件的控制系统,它替代了传统的机械或液压连接,取消了转向盘和转向轮的机械连接,占据空间小,并可减少汽车发生碰撞时对驾驶员的伤害,线控转向系统提高了汽车的转动效率,缩短了系统响应的时间,从而进一步改善了驾驶特性,控制单元接收各种数据,可以在瞬时转向条件下,立刻提供转向动力,转动车轮。取消转向柱、转向器后,有利于提高汽车碰撞安全性和整车主动安全性。 参考《中国汽车零部件市场需求调研与投资战略分析报告(2013-2017)》 线控转向系统是指通过通讯网络连接各部件的控制系统,它替代了传统的机械或液压连接,取消了转向盘和转向轮的机械连接,占据空间小,并可减少汽车发生碰撞时对驾驶员的伤害,线控转向系统提高了汽车的转动效率,缩短了系统响应的时间,从而进一步改善了驾驶特性,控制单元接收各种数据,可以在瞬时转向条件下,立刻提供转向动力,转动车轮。取消转向柱、转向器后,有利于提高汽车碰撞安全性和整车主动安全性。交通工具如汽车、轮船、飞机都可以采用线控转向系统,从而增强了车辆的安全性和操纵稳定性。 1 线控转向系统的基本结构与工作原理 1.1 线控转向系统的基本结构 汽车线控转向系统是一种全新概念的转向系统,如图1 所示,它由方向盘模块、主控制器、车轮转向模块三个主要模块以及自动防故障系统、电源等辅助系统组成。 1) 方向盘总成由方向盘、方向盘转角传感器、方向盘回正力矩电机和力矩传感器等部件构成。方向盘总成首先是将驾驶人员的转向意图经过转换,变成数字信号,然后把数字信号传送给主控制器ECU,用于控制汽车前轮完成转向

汽车制动技术

混合制动:未来汽车技术 摘要: 汽车线控制动系统已成为有前途的车辆制动控制方案并且在提高制动性能方面优于常规 的液压系统。但这些制动器需要高功率产生的驱动力同时也面临堵塞的问题。本文提出了一种新颖 的方法来提高制动性能,并处理线控系统引入混合制动系统的制动问题。本系统采用固定的通过单 信道的无线电频率,并基于超高频波段。该系统联接用高效压力传感器和热传感器来检查各种参数。 齿条和小齿轮是作为驱动系统来强制朝向转子的垫。就高效率而言,齿条和小齿轮更优于其他的, 同时是廉价的并且容易安装。实验进行,混合制动系统的刺激是通过软件做到的,该软件显示的结 果支持了新推荐的系统。 关键词: 防抱死制动系统;滚珠丝杠;电机械制动;液压制动;齿轮齿条;射频无线通信系统,无线系统。 I引言 成千上万的司机在路上恐慌的想刹车时我们看到的只有刹车灯[1]。每个人都想要 一个更高性能的并且更安全的制动系统,所以制动系统需要我们投入更多的关注。任 何具有强大的协调的制动系统的车都会增强驾驶员的信心,同时增加驾驶乐趣。设计 制动系统所做的并只需要做的一件事就是停止车辆。好的系统与坏的系统之间的差异 就是在最不利的条件下它如何工作。一个好的制动系统提供的最好回报,不是来自于 本身制动功率的增长[2],而是在与它提供给司机的信心,一致性和可控性。制动操作 是进行反向的加速。后者是把燃料的热能转换成汽车的动能,而前者是将车的动能转 化为热能。他们反复刹车是为了使车减速或停车。紧张的城市交通状况,走走停停, 需要大量手制动杆和制动踏板。制动是一个复杂的能量转换过程[3-5]在刹车时通过将 车辆的动能转化为热能同时轮胎在道路接口。摩托车司机进行制动是通过用一个力踏 在称为制动踏板的脚动杠杆上。在任何情况下,驱动力的大小被称为踏板力。在制动 过程中,踏板力的应用导致致动杆移位引起的制动液冲压。流体被看作是不可压缩的, 因此利用帕斯卡定律踏板力被传递到给制动转子。制动系统将车辆的动能转化为热能, 通常称为热。今天的汽车车轮制动器通常由脚踏板操作,简称行车制动器。后轮上的 刹车一般可以通过手柄操作,并且被用来停车称为停车制动[6],但他们可以在紧急情 况下使用,因此称为紧急刹车。制动系统设计应体现可靠性能,控制的严谨性,同时 在紧急情况下加快减速的过程[7]。 制动器可分为以下三组: ?摩擦制动器 ?液压制动器 ?电子制动器

汽车线控转向技术的发展与应用

汽车线控转向技术的发展与应用 汽车转向系统的基本性能是保证车辆在任何工况下转动转向盘时有较理想的操纵稳定性。随着汽车电子技术的不断发展和汽车系统的集成化,汽车转向系统从传统的液压助力转向系统 (Hydraulic Power Steering System,HPS)、电控液压动力转向系统(Electronic Control Hydraulic Power Steering Sys-tern,ECHPS),发展到现在逐渐推广应用的电动液压动力转向系统(Electro-Hydraulic Power Steering System,EHPS)。近年来,汽车线控转向技术(Steer-ing-Bv-Wire,SBW)也成为国外的研究热点。SBW是X-By-Wire的一种。X-By-Wire的全称是“没有机械和液力后备系统的安全相关的容错系统”。“X”表示任何与安全相关的操作,包括转向、制动,等等。 1 汽车线控转向系统的结构和基本原理 1.1 汽车线控转向系统的结构 汽车线控转向系统由方向盘总成、转向执行总成和主控制器(ECU)三个主要部分以及自动防故障系统、电源等辅助系统组成,如图1所示。 方向盘总成包括方向盘、方向盘转角传感器、力矩传感器、方向盘回正力矩电机。方向盘总成的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号.并传递给主控制器:同时接受主控制

器送来的力矩信号,产生方向盘回正力矩.以提供给驾驶员相应的路感信息。转向执行总成包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等组成。转向执行总成的功能是接受主控制器的命令,通过转向电机控制器控制转向车轮转动,实现驾驶员的转向意图。 主控制器对采集的信号进行分析处理.判别汽车的运动状态,向方向盘回正力电机和转向电机发送指令,控制两个电机的工作,保证各种工况下都具有理想的车辆响应,以减少驾驶员对汽车转向特性随车速变化的补偿任务,减轻驾驶员负担。同时控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。当汽车处于非稳定状态或驾驶员发出错误指令时线控转向系统会将驾驶员错误的转向操作屏蔽,而自动进行稳定控制,使汽车尽快地恢复到稳定状态。 自动防故障系统是线控转向系的重要模块.它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度地保持汽车的正常行驶。作为应用最广泛的交通工具之一,汽车的安全性是必须首先考虑的因素,是一切研究的基础,因而故障的自动检测和自动处理是线控转向系统最重要的组成系统之一。它采用严密的故障检测和处理逻辑,以更大地提高汽车安全性能。 电源系统承担着控制器、两个执行马达以及其它车用电器的供电任务,其中仅前轮转角执行马达的最大功率就有500-800 W,加上汽车上的其它电子设备,电源的负担已经相当沉重。所以要保证电网在大负荷下稳定工作,电源的性能就显得十分重要。 1.2汽车线控转向系统的原理简介 汽车转向系统是决定汽车主动安全性的关键总成,传统汽车转向系统是机械系统,汽车的转向运动是由驾驶员操纵转向盘,通过转向器和一系列的杆件传递到转向车轮而实现的。汽车线控转向系统取消了转向盘与转向轮之间的机械连接.完全由电能实现转向,摆脱了传统转向系统的各种限制.不但可以自由设计汽车转向的力传递特性,而且可以设计汽车转向的角传递特性,给汽车转向特性的设计带来无限的空间。是汽车转向系统的重大革新。

汽车线控转向系统分析

龙源期刊网 https://www.360docs.net/doc/c717806765.html, 汽车线控转向系统分析 作者:于秀涛李博 来源:《中小企业管理与科技·上旬刊》2010年第10期 摘要:本文通过阐述汽车转向系统在汽车运行时的功能和作用,并介绍了线性转向系统的结构和性能,最后分析了线性转向系统中虚拟现实技术、人工神经网络、模糊控制等关键技术,并对2个自由度的整车动力学模型进行论述。 关键词:转向系统线控转向系统 0引言 转向系统是与汽车主动安全性能相关的重要系统,其操纵稳定性好坏对汽车性能影响很 大。操纵性是汽车准确的按照驾驶员意图行驶:稳定性是汽车在危险工况(侧滑或横摆)下汽车仍稳定行驶。 为提高操纵稳定性,出现了ESP(电子稳定程序)、主动转向、4WS(4轮转向)等。ESP判断 产生不足转向或过度转向时相应在后轮、前轮产生制动力,产生横摆力矩即纠偏力矩。主动前 轮转向(AFS-Active front steering)通过电机根据车速和行驶工况改变转向传动比。低、中速时,转向传动比较小,转向直接,以减少转向盘的转动圈数,提高转向的灵敏性和操纵性;高速时,转向 传动比较大,提高车辆的稳定性和安全性。同时,系统中的机械连接使得驾驶员直接感受到真实的路面反馈信息。四轮转向的后轮也参与转向。低速时,后轮与前轮反向转向,减小转弯半径,提高机动灵活性。高速时,后轮与前轮同向转向,提高汽车的稳定性。其控制目标是质心侧偏角为零。 然而这些汽车转向系统却处于机械传动阶段,由于其转向传动比固定,汽车的转向响应特性随车速而变化。因此驾驶员就必须提前针对汽车转向特性的幅值和相位变化进行一定的操作补偿,从而控制汽车按其意愿行驶。如果能够将驾驶员的转向操作与转向车轮之间通过信号及控 制器连接起来,驾驶员的转向操作仅仅是向车辆输入自己的驾驶指令,由控制器根据驾驶员指令、当前车辆状态和路面状况确定合理的前轮转角,从而实现转向系统的智能控制,必将对车辆操纵稳定性带来很大的提高,降低驾驶员的操纵负担,改善人一车闭环系统性能。因而线控转向系统(Steering-By-Wire System,简称SBW)应运而生。SBW是X-By-Wire的一种。X--By--W的全称是“没有机械和液力后备系统的安全相关的容错系统”。“x”表示任何与安全相关的操作,包括转向、制动等等。“By--Wire”表示X--By--wire是一个电子系统。

汽车线控技术的应用及发展趋势

汽车线控技术的应用及发展趋势 随着汽车电子技术、自动控制技术的逐步成熟和汽车网络通信技术的广泛应用,汽车线控技术也逐步得到青睐和深入研究,它和42V电压系统和网络技术左右着汽车未来的发展趋势。 汽车线控技术就是将驾驶员的操纵动作经过传感器变成电信号,通过电缆直接传输到执行机构的一种系统。目前的线控技术包括线控换档系统、线控制动系统、线控悬架系统、线控增压系统、线控油门系统及线控转向系统。其中线控转向系统在高级轿车、跑车及概念车上有广泛的应用,它为自动驾驶提供了良好的平台;线控制动系统在工业车辆上应用较多,将来随着线控技术的成熟和成本的降低及追求自动驾驶的影响,线控技术将会越来越多地应用于普通车辆。本文主要介绍汽车线控制动系统和线控转向系统。 线控制动系统 线控制动系统(BBW,Brake2By2Wire),目前分为两类,一种为电液制动系统(EHB,Electro2Hy2draulicBrake),另一种为电子机械制动系统(EMB,Electro2MechanicalBrake)。EHB是电子与液压系统相结合所形成的多用途、多形式的制动系统,它由电子系统提供柔性控制,液压系统提供动力;而EMB则将传统制动系统中的液压油或空气等传力介质完全由电制动取代,是未来制动控制系统的发展方向。 1电液制动系统 在中小型车辆的传统制动系统中,驾驶员通过制动主缸在轮缸建立制动压力,而EHB则是通过蓄能器提供制动压力。蓄能器压力由柱塞泵产生,可提供多次连续的制动压力。EHB由传感器、ECU及执行器(液压控制单元)等构成. 制动踏板与制动器间无直接动力传递。制动时,制动力由ECU和执行器控制,

汽车线控转向系统的台架试验

https://www.360docs.net/doc/c717806765.html, 汽车线控转向系统的台架试验1 于蕾艳1,林逸2,施国标2 (1 中国石油大学(华东)机电工程学院,山东东营; 2北京理工大学机械与车辆工程学 院,北京 100081) 摘要:线控转向系统取消了转向盘和转向轮之间的机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性。进行了线控转向系统的试验台架的软硬件设计,该台架可以验证线控转向系统的控制策略,进行路感电机、转向电机、传感器等关键部件的试验。试验结果表明,采用的路感电机控制算法能较好地实现对电流的伺服控制,可用于路感控制;转向电机控制算法能较好地实现对传动比的控制。 关键词:线控转向台架试验路感电机 中图分类号:U270.11 文献标识码:A 引言 线控转向(Steer-by-Wire ,SBW)系统对传统转向系统的根本变革是取消了转向盘和转向轮的之间机械连接,因而可以根据车况主动提供路感和进行主动转向,提高车辆的操纵稳定性 [1][2][3][4]。国内对线控转向试验台研究尚不多。本文探讨了线控转向试验台的软硬件设计和控制策略验证等。 1线控转向系统的试验台架 线控转向系统的试验台架结构如图1所示,主要由转向阻力模拟装置、系统安装台架、测控系统及部分附件组成。线控转向系统包括转向管柱、齿轮齿条式转向器、横拉杆等,与试验台有3处连接位置,即转向管柱与转向管柱连接支架、转向器壳体与转向器连接架、转 1基金项目:奥运用纯电动客车整车优化及制造编号:D0305002040111

向横拉杆与转向阻力模拟装置(左、右各一)。此3处连接位置可调,以适应安装不同规格的线控转向系统。 1-铁地板;28-座椅;9-转向盘;10-转向盘扭矩传感器;11-转向盘转角传感器;12-线控转向管柱;13-支架; 14-导轨 图1 线控转向试验台结构 图2所示为测控系统硬件构成,测控系统由工控机、数据采集卡、测控软件、各种传感器、开关、继电器、按钮等组成。采用研华PC 作为测控计算机,其CPU 为PIV1.4G ,内存128M 。采用PC 作为测控计算机,是因为PC 具有很多优点:性能稳定,计算速度快,能实现复杂的控制算法;PC 的开发工具齐全,应用程序接口和图形界面非常友好;PC 储存器容量大,可以实时存储大量的试验数据用于分析计算;能使用通用操作系统和大多数编程语言;支持DOS 、Windows98、Windows NT/2000、UNIX 等多种通用操作系统,为控制系统的软硬件开发提供很大方便;围绕PC 的各种板卡标准化、系列化,系统集成灵活机动。试验台装有的传感器包括:转向盘转矩与转速传感器、转向盘转角传感器、齿条位移传感器、齿条拉压传感器、电机电流传感器及电压传感器。 转向阻力(左、右)模拟车速 图2 测控系统硬件构成 2线控转向系统匹配设计 路感电机采用直流有刷力矩伺服电机,转向电机采用三相交流步进电机。路感电机的最大力矩根据驾驶员作用在转向盘边缘的最大力确定: 1max T d max F

汽车行驶转向制动系统诊断与检修

个人收集整理-ZQ 一、填空题 、传动系、行驶系、转向系、制动系 、有反作用杆地单膜片、带有反作用盘地单膜片、带有反作用盘地串联膜片 、车架;车桥;车轮;悬架 、装配基体;车架. 、边梁式车架;中梁式车架;综合式车架;无梁式;车身 、转向桥;驱动桥;转向驱动桥;支持桥. 、前轴;转向节;主销;轮毂. 、前轴;转向节;转向节. 、主销后倾;主销内倾;前轮外倾;前轮前束. 、支承汽车总重量;吸收和缓和;振动和冲击;附着性能;动力性;制动性;通过性. 、胎面;胎侧;胎体;胎圈. 、深槽式;平底式;对开式. 、辐板式;辐条式 、高压胎、低压胎、超低压胎;普通花纹轮胎、越野花纹轮胎、混合花纹轮胎;普通斜交轮胎;子午线轮胎 、弹性元件;导向装置;减震器. 、独立悬架;非独立悬架 、钢板弹簧;螺旋弹簧;扭杆弹簧;气体弹簧;橡胶弹簧. 、空气弹簧;油气弹簧. 、改变;直线. 、转向操纵机构;转向器;转向传动机构. 、相交于一点. 、转弯半径. 、操纵轻便;灵敏. 、机械转向器;转向动力缸;转向控制阀. 、右;左边. 、整体式;分段式. 、常压式;常流式. 、转向横拉杆;左右梯形节臂;前轴;转向梯形. 、转向助力装置. 、液压式;气压式. 、整体式、半整体式、转向加力器 、转向螺母、齿扇 、轴承、转向螺母与齿扇 、磨损、间隙 、游标卡尺检测、磁力探伤检测 、转向螺杆、指销;一个、两个 、蜗杆曲柄指销式、齿轮齿条式、循环球式 、等宽、不等长、等强度 、弹簧试验器、样板、新旧对比、直观监视;裂纹、折断;长度、宽度、厚度 、离车式、就车式 、两套,汽车行驶时;行车制动;汽车停车;驻车制动. 、人力式;动力式;伺服式. 、制动蹄摩擦片与制动鼓之间;轮胎与路面间地附着力;制动蹄地张开力;摩擦片与鼓地接触面积;摩擦系数.文档收集自网络,仅用于个人学习

线控转向研究现状综述

汽车线控四轮转向系统研究现状 班级:研1202 学号:2012020061 姓名:李竹芳 2012/12/24

目录 摘要 (3) 前言 (4) 第1章线控转向的基本结构与工作原理 (4) 1.1基本结构 (4) 1.2 工作原理 (5) 第2章国内外研究现状 (5) 2.1 国外研究现状 (5) 2.2 国内研究现状 (7) 总结 (11) 参考文献 (12)

摘要 线控转向系统是一种全新的转向方式,它克服了传统转向系统由于机械连接带来的各种限制。本文简要介绍了线控转向的基本结构与工作原理,详细介绍了基于线控的转向汽车的发展史,并分析了国内外线控转向的研究现状。最后对线控转向的发展进行了展望与总结。

前言 更加安全,更加舒适,更加便于驾驶的智能车辆已经成为当代汽车发展的一个主要目标。传统的转向系统,无论是机械式、液力助力式、还是电子助力式,都没有改变驾驶员通过机械机构操纵转向器的方式。由于其转向传动比往往固定或变化范围有限,汽车的转向响应特性随车速而变化,因此驾驶员必须针对汽车转向特性的幅值和相位变化进行一定的操作补偿,才能够操纵汽车按其意愿实现转向,这在很大程度上影响了汽车的操纵稳定性和驾驶舒适性。而线控转向系统取消了转向盘和转向轮之间的机械连接,完全摆脱了传统转向系统的各种限制,驾驶员的转向操作仅仅是向车辆输入转向盘的转角指令,在一定的操纵稳定条件下,由控制器根据转向盘的转角、当前车辆状态等信息,依据有关控制算法确定合理的前轮转角,实现准确的转向,因而对线控转向系统(steer-by-wire 简称SBW)进行的研究逐渐兴起。 同时,四轮转向使后轮能在汽车转弯时直接参与对汽车侧偏角和侧向运动的控制,不仅可比前轮转向明显具有转弯半径小,减少转向力产生的滞后的优势,而且还能独立地控制汽车的运动轨迹与姿态。所以,不久的将来将线控转向控制技术与四轮转向技术在车上结合势在必行。 第1章线控转向的基本结构与工作原理 1.1基本结构 汽车线控四轮转向系统由方向盘总成、4 个独立的转向电机、ECU、故障处理控制器及各种传感器组成。方向盘总成包括方向盘、方向盘转角传感器、力矩传感器、方向盘回正力矩电机。方向盘总成的主要功能是将驾驶员的转向意图(通过测量方向盘转角)转换成数字信号,并传递给主控制器;同时接受主控制器送来的力矩信号,产生方向盘回正力矩,以提供给驶员相应的路感信息。转向执行总成包括前轮转角传感器、转向执行电机、转向电机控制器和前轮转向组件等组成。转向执行总成的功能是接受主控制器的命令,通过转向电机控制器控制转向车轮转动,实现驾驶员的转向意图。CPU 对采集的信号进行分析处理,判别汽车的运动状态,对方向盘回正力电机和转向电机发送指令,控制五个电机的工作,保证各种工况下都具有理想的车辆响应,以减少驾驶员对汽车转向特性随车速变化的补偿任务,减轻驾驶员负担。同时控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。当汽车处于非稳定状态或驾驶员发出错误指令时,线控转向系统会将驾驶员错的转向操作屏蔽,而自动进行稳定控制,使汽车尽快地恢复到稳定状态。其结构图如图1 所示。

线控转向系统(SBW)

线控转向系统(SBW) 在车辆高速化、驾驶人员大众化、车流密集化的今天,针对更多不同水平的驾驶人群,汽车的易操纵性设计显得尤为重要。线控转向系统(Steering-By-Wire Systerm,简称SBW)的发展,正是满足这种客观需求。它是继EPS后发展起来的新一代转向系统,具有比EPS操纵稳定性更好的特点,它取消转向盘与转向轮之间的机械连接,完全由电能实现转向,彻底摆脱传统转向系统所固有的限制,提高了汽车的安全性和驾驶的方便性。 5.1线控转向系统的构成 SBW系统一般由转向盘模块、转向执行模块和主控制器ECU、自动防故障系统以及电源等模块组成。转向盘模块包括路感电机和转向盘转角传感器等,转向盘模块向驾驶员提供合适的转向感觉(也称为路感)并为前轮转角提供参考信号。转向执行模块包括转向电机、齿条位移传感器等,实现2个功能:跟踪参考前轮转角、向转向盘模块反馈轮胎所受外力的信息以反馈车辆行驶状态。主控制器控制转向盘模块和转向执行模块的协调工作。 5.2线控转向系统的工作原理 当转向盘转动时,转向传感器和转向角传感器检测到驾驶员转矩和转向盘的转角并转变成电信号输入到ECU,ECU根据车速传感器和安装在转向传动机构上的位移传感器的信号来控制转矩反馈电动机的旋转方向,并根据转向力模拟,生成反馈转矩,控制转向电动机的旋转方向、转矩大小和旋转角度,通过机械转向装置控制转向轮的转向位 置,使汽车沿着驾驶员期望的轨迹行驶。 5.3线控转向系统特点 (1)取消了方向盘和转向车轮之间的机械连接,通过软件协调它们之间的运动关系,因而消除了机械约束和转向干涉问题,可以根据车速和驾驶员喜好由程序根据汽车的行驶工况实时设置传动比。 (2)去掉了原来转向系统各个模块之间的刚性机械连接,采用柔性连接,使转向系统在汽车上的布置更加灵活,转向盘的位置可以方便地布置在需要的位置。 (3)提高了汽车的操纵性。由于可以实现传动比的任意设置,并针对不同的车速,转向状况进行参数补偿,从而提高了汽车的操纵性。 (4)改善驾驶员的“路感”。由于转向盘和转向轮之间无机械连接,驾驶员“路感”通过模拟生成。使得在回正力矩控制方面可以从信号中提出最能够反映汽车实际行驶状态和路面状况的信息,作为转向盘回正力矩的控制变量,使转向盘仅仅向驾驶员提供有用信息,从而为驾驶员提供更为真实的“路感”。

浅谈汽车线控转向系统的结构及工作原理

浅谈汽车线控转向系统的结构及工作原理 前言 汽车转向性能是汽车的主要性能之一,转向系统的性能直接影响到汽车的操 纵稳定性,它对于确保车辆的安全行驶、减少交通事故以及保护驾驶员的人身 安全、改善驾驶员的工作条件起着重要的作用。如何合理地设计转向系统,使 汽车具有良好的操纵性能,始终是设计人员的重要研究课题。 在车辆高速化、驾驶人员非职业化、车流密集化的今天,针对更多不同水平 的驾驶人群,汽车的易操纵性设计显得尤为重要。线控转向系统(Steering – By - WireSystem,简称SBW)的发展,正是迎合这种客观需求。它是继EPS 后发展起来的新一代转向系统,具有比EPS 操纵稳定性更好的特点,而且它在转向盘和转向轮之间不再采用机械连接,彻底摆脱传统转向系统所固有的 限制,在给驾驶员带来方便的同时也提高了汽车的安全性。 一、线控转向系统的发展概况 德国奔驰公司在1990 年开始了前轮线控转向的研究,并将它开发的线控转 向系统应用于概念车F400Carving 上。日本Koyo 也开发了线控转向系统,但 为了保证系统的安全,仍然保留了转向盘与转向轮之间的机械部分,即通过离 合器连接,当线控转向失效时通过离合器结合回复到机械转向。宝马汽车公司 的概念车BMWZ22,应用了SteerByWire 技术,转向盘的转动范围减小到 160°,使紧急转向时驾驶员的忙碌程度得到了很大降低。 意大利Bertone 设计开发的概念车FILO,雪铁龙越野车C- Crosser,Daimlerchrysler 概念车R129,都采用了线控转向系统。2003 年日本本田公司在纽约国际车展上推出了LexusHPX 概念车,该车也采用了线控转向系统,在仪表盘上集成了各种控制功能,实现车辆的自动控制。估计几年后,

汽车线控转向技术探讨【论文】

汽车线控转向技术探讨 当前,我国的私家车数量迅速增加,而为了实现对汽车更加良好的控制,线控转向技术被逐渐应用其中。基于此,本文首先介绍了汽车线控转向系统的基本组成及其工作原理,研究了汽车线控转向系统中的关键技术,希望通过文章内容,大家能够对汽车线控转向技术有更进一步的认识。目前,汽车转向系统中普遍采用线控转向技术,这是一种较为先进的转向技术。利用该种转向技术的汽车车轮与转向盘之间无需进行机械连接,能够对汽车传动比进行任意设计,主动控制转向轮,同时可以根据车辆行驶速度相关参数的改变实施补偿,确保理想的转向特性得以良好实现,而且给底盘的布置提供了便利,符合当前汽车发展的特点,是一种值得大力推广的技术。 1汽车线控转向系统的基本组成及其工作原理 1.1汽车线控转向系统的基本组成 汽车线控转向有多种实现方式,例如:前后轮的线控转向以及四轮的线控转向。其中前轮的线控转向又被分成多种,比如,汽车运用轮毂对电机形成的牵引力会使绕主销的转向

力矩得以产生,实现汽车的转向;或是利用两个相对独立的电机对汽车左右两个轮胎进行驱动,完成阿克曼转角。当前比较常用的线控转向系统,采用的是转向电机对齿轮齿条转向器驱动的方式,具体结构如图1所示。图1汽车线控转向系统基本结构关于汽车线控转向系统,主要由控制器、前轮子系统以及转向盘子系统等几个部分组成。针对控制器,其包含如下算法:转向盘前车轮的转角算法以及正力矩的算法,分别对前轮子系统的协调处理及转向盘子系统加以控制;针对前轮子系统,其包含转向电机等系统,具有如下作用:追踪参考前轮的转角,给转向盘子系统反馈相关信息内容,如汽车行驶状况以及车胎受到外界作用力的实际情况;针对转向盘子系统,其中包含转向盘转角传感器和路感电机等部件,具有的作用如下:给汽车驾驶人员提供适宜的转向感觉,同时给前轮转角提供相关参考信号。 1.2汽车线控转向系统的工作原理 驾驶人员转动方向盘的过程中,控制器会依据方向盘转角传感器以及车辆行驶速度传感器发出的信号,通过前车轮转角的相应算法计算出参考前轮转角,并给转向电机传送相关控制信号,令转向电机实施PI与PD控制,确保这一参考前轮转角得以实现。与此同时,控制器会结合转向盘正力矩

制动时汽车的方向稳定性

制动时汽车的方向稳定性 在对汽车实施制动过程中,有时会出现制动跑偏、后轴侧滑或前轮失去转向能力等现象,从而造成汽车失去控制而离开原来的行驶方向,甚至发生撞入对方车辆行驶轨道、下沟、滑下山坡的危险情况。一般称汽车在制动过程中维持直线行驶或按预定弯道行驶的能力为制动时汽车的方向稳定性。 制动跑偏是指制动时汽车自动向左或向右偏驶的现象。制动侧滑是指制动时汽车的某一轴或两轴发生横向移动的现象。最危险的情况是在高速制动时发生后轴侧滑,此时汽车常发生不规则的急剧回转运动而失去控制。跑偏与侧滑是有联系的,严重的跑偏有时会引起后轴侧滑,易于发生侧滑的汽车也有时加剧跑偏的趋势。图[1] 画出了单纯制动跑偏和由跑偏引起后轴侧滑时轮胎留在地面上的印迹的示意图。 前轮失去转向能力,是指弯道制动时汽车不再按原来的弯道行驶而沿弯道切线方向驶出;直线行驶制动时,虽然转向盘但汽车仍按直线方向行驶的现象。失去转向能力和后轴侧滑也是有联系的,一般如果汽车后轴不会侧滑,前轮就可能失去转向能力;后轴侧滑,前轮常仍有转向能力(后面将做具体分析)。 一、汽车的制动跑偏 制动时汽车跑偏的原因有两个: 1) 汽车左、右轮,特别是前轴左、右车轮(转向轮)制动器的制动力不相等。 2) 制动时悬架导向杆系与转向杆系拉杆在运动学上的不协调(相互干涉)。 其中,第一原因是制造、调整误差造成的,汽车究竟向左或向右跑偏,要根据具体情况而定;而第二个原因是设计造成的,制动时汽车总是向左(或向右)一方跑偏。 图[2] 给出了由于转向轴左、右车轮制动力不相等而引起跑偏的受力分析。为了简化,假定车速较低,跑偏不严重,且跑偏过程中转向盘是不动的,在制动过程中也没有发生侧滑,并忽略汽车做圆周运动产生的离心力及车身绕质心的惯性力偶矩。 设前左轮的制动器制动力大于右轮,故地面制动力F X1l >F X1r 时,前、后轴分别受到的地面侧向反作用力为F Y1和F Y2。显然,F X1l 绕主销的力矩大于F X1l 绕主销的力矩。虽然转向盘不动,由于转向系各处的间隙及零部件的弹性变形,转向轮仍产生一向左转动的角度而使汽车有轻微的转弯行驶,即跑偏。同时,由于主销有后倾,也使F Y1对转向轮产生一同方向的偏转力矩,这样也增大了向左转动的角度。 在轿车上做了专门的试验来观察左、右车轮制动力不相等的程度对制动跑偏的影响:试验车的前轴左、右车轮制动泵装有可以调节液压的限压阀,以产生不同的制动器制动力。后轴上也装有一个可调节的限压阀,以改变前、后轴制动力之比,使汽车在制动时产生后轴车轮抱死与不抱死两种工况:转向盘可以锁住。左、右车轮制动力之差用不相等度表示,即 00100b l r b F F F F μμμμ-?=? 式中,F μb 为大的制动器制动力;F μl 为小的制动器制动力。 试验的结果用车身横向位移和汽车的航向角来表示。航向角为制动时汽车纵轴线与原定行驶方向的夹角。试验结果示于图[3]和图[4]。。由图可见,制动跑偏随着b F μ?的增加而增大;当后轮抱死时,跑偏的程度加大。 造成左右转向轮制动力不等的原因主要有: 1) 同轴两侧车轮的制动蹄片接触情况不同。

自动驾驶汽车线控转向系统

自动驾驶汽车线控转向系统 线控转向是自动驾驶汽车实现路径跟踪与避障避险必要的关键技术,其性能直接影响主动安全与驾乘体验。在国际汽车工程师协会(Societ y of Automotive Engi?neers,SAE)发布的5级自动驾驶体系中: ?第1级为驾驶辅助,要求对转向或加、减速中单独一项进行自动控制;?第2级为部分自动驾驶,要求对转向和加、减速中的2项进行自动控制;?第3级及以上分别为有条件自动驾驶、高度无人驾驶和完全自动驾驶,要求转向逐步与其他子系统实现高度自主协同。 线控转向系统为自动驾驶汽车实现自主转向提供了良好的硬件基础,且线控转向系统被认为是实现高级自动驾驶的关键部件之一,具有以下优点:

?线控转向技术由于可实现驾驶员操作和车辆运动的解耦 ?可提高紧急情况下转向操作正确性和驾驶员安全性 ?采用电机控制直接驱动实现车辆转向,因此更容易与车辆其他主动安全控制子系统进行通讯和集成控制。 与传统的转向系统不同,线控转向系统取消了从转向盘到转向执行器之间的机械连接,完全由电控系统实现转向,可以摆脱传统转向系统的各种限制,汽车转向的力传递特性和角度传递特性的设计空间更大,更方便与自动驾驶其他子系统(如感知、动力、底盘等)实现集成,在改善汽车主动安全性能、驾驶特性、操纵性以及驾驶员路感方面具有优势。

1.线控转向系统发展概况 线控转向的概念起源于20世纪50年代,美国天合(TRW)公司最早提出用控制信号代替转向盘和转向轮之间的机械连接,之后德国Kasse lmann 和Keranen设计了早期的线控转向模型。受制于电子控制技术,直到20世纪90年代,线控转向技术才有较大进展,美国、欧洲、日本在线控转向的研发与推广方面比较活跃,一些采用线控转向系统的概念车陆续展出。 2013年,英菲尼迪的“Q50”成为第1款应用线控转向技术的量产车型。该线控转向系统由路感反馈总成、转向执行机构和3个电控单元组成,其中双转向电机的电控单元互相实现备份,可保证系统的冗余性能,转向柱与转向机间的离合器能够在线控转向系统出现故障时自动接合,保证紧急工况下依然可实现对车辆转向的机械操纵。

相关文档
最新文档