荧光信号采集系统设计与分析

荧光信号采集系统设计与分析
荧光信号采集系统设计与分析

数据采集与处理技术

数据采集与处理技术 参考书目: 1.数据采集与处理技术马明建周长城西安交通大学出版社 2.数据采集技术沈兰荪中国科学技术大学出版社 3.高速数据采集系统的原理与应用沈兰荪人民邮电出版社 第一章绪论 数据采集技术(Data Acquisition)是信息科学的一个重要分支,它研究信息数据的采集、存贮、处理以及控制等作业。在智能仪器、信号处理以及工业自动控制等领域,都存在着数据的测量与控制问题。将外部世界存在的温度、压力、流量、位移以及角度等模拟量(Analog Signal)转换为数字信号(Digital Signal), 在收集到计算机并进一步予以显示、处理、传输与记录这一过程,即称为“数据采集”。相应的系统即为数据采集系统(Data Acquisition System,简称DAS)数据采集技术以在雷达、通信、水声、遥感、地质勘探、震动工程、无损检测、语声处理、智能仪器、工业自动控制以及生物医学工程等领域有着广泛的应用。 1.1 数据采集的意义和任务 数据采集是指将温度、压力、流量、位移等模拟量采集、转换为数字量后,再由计算机进行存储、处理、显示或打印的过程。相应的系统称为数据采集系统。 数据采集系统的任务:采集传感器输出的模拟信号并转换成计算机能识别的数字信号,然后送入计算机,根据不同的需要由计算机进行相应的计算和处理,得出所需的数据。与此同时,将计算得到的数据进行显示或打印,以便实现对某些物理量的监视,其中一部分数据还将被生产过程中的计算机控制系统用来控制某些物理量。 数据采集系统的好坏,主要取决于精度和速度。 1.2 数据采集系统的基本功能 1.数据采集:采样周期

数据采集及分析试验指导书

《数据采集及分析》实验指导书 实验一采样定理 一、实验目的 熟悉信号采样过程,并通过本实验观察欠采样时信号频谱的混迭现象,了解采样前后信号频谱的变化,加深对采样定理的理解,掌握采样频率的确定方法。 二、实验原理 模拟信号经过(A/D) 变换转换为数字信号的过程称之为采样,信号采样后其频谱产生了周期延拓,每隔一个采样频率fs,重复出现一次。为保证采样后信号的频谱形状不失真,采样频率必须大于信号中最高频率成份的两倍,这称之为采样定理。 a) 正常采样b)欠采样 图1.1 采样信号的频混现象 需要注意的是,在对信号进行采样时,满足了采样定理,只能保证不发生频率混叠,对信号的频谱作逆傅立叶变换时,可以完全变换为原时域采样信号,而不能保证此时的采样信号能真实地反映原信号。工程实际中采样频率通常大于信号中最高频率成分的3到5倍。 三、实验仪器和设备 1. 计算机 n台 2. 实验软件 1套 四、实验步骤及内容 1. 启动计算机。 2. 启动实验软件。

图1.2 采样定理实验 3. . 点击"采样定理"实验中的"正弦波"按钮,产生正弦波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 4. 点击"采样定理"实验中的"方波"按钮,产生方波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 5. 点击"采样定理"实验中的"三角波"按钮,产生三角波信号,然后选择不同的采样抽取率,分析和观察信号的时域波形与频谱的变化。 五、实验报告要求 1. 简述实验目的和原理。 2. 按实验步骤附上相应的信号波形和频谱曲线,说明采样频率的变化对信号时域和频域特性的影响,总结实验得出的主要结论。 六、思考题 1.为什么在实际测量中采样频率通常要大于信号中最高频率成分的3到5倍?

语音信号采集与处理系统的设计

音频信号采样及处理系统方案设计 姓名:杨宁 学号: 专业:电子信息工程 学院:电子工程学院 指导老师:那彦

目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13 3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20

摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP及A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

心音信号的去噪

心音信号去噪方法比较研究 2016 年 01 月 06 日

摘要 (1) 关键词 (1) 第一章绪论 (2) 1.1研究背景 (2) 1.1.1心音信号基础知识 (2) 1.1.1.1心音的形成机制 (2) 1.2心音信号的特性 (3) 1.2.1心音的时域特性 (3) 1.2.2心音的频率特性 (3) 第二章去噪方法分析 (4) 2.1 巴特沃斯滤波器 (4) 2.2 切比雪夫低通滤波器 (5) 2.3 小波变换 (6) 第三章心音信号的获取及预处理 (12) 3.1 心音信号的采集 (13) 3.2 心音信号的预处理 (14) 第四章心音信号去噪的实验过程 (14) 4.1 常规方法 (14) 4.2 小波去噪 (17) 第五章滤波方法比较 (21) 第六章实验总结 (21) 参考文献 (22) 附录 (24)

摘要 心音是最重要的信号之一。然而,许多外界因素会影响心音信号的采集。心音是弱电气信号以至很弱的外部噪声就能导致信号中的病理和生理信息的错误判断,从而导致疾病的错诊。因此对心音信号去噪的研究非常重要。 本文研究并比较了几种基于matlab的心音去噪的方法。首先我们采用经典的butterworth低通滤波器和切比雪夫低通滤波器对心音信号进行去噪,结果表明这两种滤波器对高频噪声的消除效果明显,但不能滤除低频噪声。其次,我们采用了小波变换对含噪心音信号进行处理。一种方法中丢弃分解信号的高频部分和 部分细节,将分解后的信号近似和第四层细节相加作为样本信号的代替。这种方法简单且能有效的消除高频噪声,但由于丢失了部分细节,易使信号失真。然后,我们采用haar小波阈值法对信号去噪,取得的较好的去噪效果,但高频噪声残留较多。最后,我们db6小波进行去噪,得到了很好的信号波形,而且高频噪声残留较少。通过实验,我们得出结论,无论哪种去噪方式都有其自身的局限性,单独的使用一种去噪方法很难将噪声完全滤除。应该采用综合滤波方法,结合各个方法的优势联合滤波。首先使用巴特沃斯低通滤波器或切比雪夫滤波器低通滤波器滤除高频噪声,再用db小波阈值或haar小波阈值法去噪法进行去噪。这样既能完全滤除高频噪声,又能较好的抑制低频噪声,使滤波效果达到最优化。 关键词:心音、去噪、巴特沃斯滤波器、切比雪夫滤波器、小波分解与重构、d b6小波、haar小波

心音信号的处理与分析软件设计

生物医学工程软件技术心音信号的处理与分析软件设计 2012年6月7日

摘要 心音是人体最重要的生理信号之一,是评估心脏功能状态的一种基本方法,蕴含着心脏各个部分本身及相互之间作用的生理和病理等重要的诊断信息。先前人们广泛采用听诊器进行心音主观的分析诊断,但存在较大的局限性和主观性。而心电图机由于其采用低频响应的热笔结构,不能完整地记录全频心音,完全没有量化分析功能,在心音的存储、处理上存在着较大的局限性,故临床应用较少。因此,开发基于虚拟仪器的心音多功能处理分析仪器是一项十分有意义的工作。 本实验旨在设计一款对已的采集心音信号进行显示,处理分析,并获取相关特征参数,对信号采集者的心音正常与否进行简单判断。首先显示原始波形找到其特征进行简单时域处理,和频域滤波,提取包络并计算相关重要心音参数并简单判断是否在正常范围内来实现对于采集到的心音信号进行分析比较。除文件的读取外整个程序设计在一个大的while循环之下,程序运行过程中可根据具体的心音情况实时修改程序中的参数,满足个体差异性。 程序运行稳定,未发生异常事件且测量的健康被试者相关参数均在正常范围附近,可以推断该软件具有较高可靠性符合设计要求。 关键词:labview, 心音,处理分析,软件,设计。 1

目录 摘要 (1) 1 前言(或“绪论”) (2) 1.1 心音信号介绍 (2) 1.2国内外研究现状 (4) 2.设计任务 (6) 需求分析: (6) 3.设计内容 (8) 3.1波形显示、截取与去直流处理 (8) 3.1.1文件的读入 (9) 3.1.2波形的截取与去直流 (9) 3.2信号滤波去噪 (10) 3.3提取包络及曲线拟合、波形保存 (11) 3.31希尔伯特提取包络 (12) 3.32高斯曲线拟合 (12) 3.33外包络线保存 (13) 3.4心率及峰值等计算 (14) 3.5其他参数计算以及心音分裂的简单判断 (15) 3.5.1 S1、S2时长确定与收缩及舒张期确定 (16) 3.5.2心音分裂判断 (16) 4、程序结构分析 (17) 4.1原始波形界面 (17) 4.2截取后波形界面 (18) 5、流程图 (21) 7、调试及运行结果 (22) 8、课程体会 (26) 9 参考文献 (26) 附录:源程序 (27)

大数据采集与信号处理

数据信息采集与处理

基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中: n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱、频域谱、功率谱如下面图1~图3所示: 图1

图2 图3 其MATLAB代码为: FS=200; SF=10;

N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); figure; plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 figure; plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py figure; plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid; 2)对实验所采集的转子振动信号进行频谱分析

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

振动信号的采集与预处理

振动信号的采集与预处理 几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点: 1. 振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3. 所有工作状态下振动信号采集均应符合采样定理。 对信号预处理具有特定要求是振动信号本身的特性所致。信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。预处理方法的选择也要注意以下条件: 1. 在涉及相位计算或显示时尽量不采用抗混滤波; 2. 在计算频谱时采用低通抗混滤波; 3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。 上述第3条是保障瞬态过程符合采样定理的基本条件。在瞬态振动信号采集时,机组转速变化率较高,若依靠采集动态信号(一般需要若干周期)通过后处理获得1X和2X矢量数据,除了效率低下以外,计算机(服务器)资源利用率也不高,且无法做到高分辨分析数据。机组瞬态特征(以波德图、极坐标图和三维频谱图等型式表示)是固有的,当组成这些图谱的数据间隔过大(分辨率过低)时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。一般来说,三维频谱图要求数据的组数(△rpm分辨率)较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,则要求较高的分辨率。目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。 影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最佳方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,部分系统采用16位甚至24位。 振动信号的采样过程,严格来说应包含几个方面: 1. 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 2. A/D转换

数据采集与信号处理.

哈尔滨理工大学 研究生考试试卷 考试科目:数据采集与信号处理阅卷人: 专业: 姓名: 2013年06月21日

一、基本内容:基于FFT的功率谱分析程序设计与应用 1.基本要求 1)对一个人为产生的信号进行采用FFT变换方法进行功率谱分析。 已知信号x(n)=80.0*COS(2*3.14*SF*n/FS) 式中:n=0,1,2 ……N-1 SF---信号频率 FS---采样频率 其FFT变换结果X(k)可用下面提供的FFT子程序求出,计算功率谱的公式为: W(k)=2(XR(k)2 +XI(k)2)/N 式中:k=0,1,2 ……N/2-1 XR(k)--- X(k)的实部 XI(k)--- X(k)的虚部 请用VB,VC或C++Builder编译器编程,或采用MATLAB计算,或采用高级语言调用MATLAB计算。处理结果为采用窗口显示时域波形和频域波形。 此信号的时域谱,频域谱,功率谱如下图所示:

其MA TLAB代码为: FS=200; SF=10; N=1024; n=0:N-1; t=n/FS; x=80.0*cos(2*3.14*SF*t); subplot(221); plot(t,x); xlabel('t'); ylabel('y'); title('x=80.0*cos(2*3.14*SF*t)时域波形'); grid; y=fft(x,N); mag=abs(y); f=(0:length(y)-1)*FS/length(y);%进行对应的频率转换 subplot(222); plot(f(1:N/2),mag(1:N/2));%做频谱图 xlabel('频率(Hz)'); ylabel('幅值'); title('x=80.0*cos(2*3.14*SF*t)幅频谱图N=1024'); grid; Py =2*(y.*conj(y))/N; %计算功率谱密度Py subplot(223) plot(f(1:N/2),Py(1:N/2)); xlabel('频率(Hz)'); ylabel('功率谱密度'); title('x=80.0*cos(2*3.14*sf*t)功率谱密度'); grid;

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

基于MATLAB的心音信号处理概要

目录 1.概述 (1) 1.1 心音信号及MA TLAB简介 (1) 1.2 设计目的 (4) 1.3 设计任务 (4) 2.设计流程 (4) 2.1 设计方案选择 (4) 2.1.1预处理方法的选择 (4) 2.1.2时域分析 (6) 2.1.3频域分析 (6) 2.2 MA TLAB仿真结果及分析 (7) 2.2.1预处理的结果及分析 (8) 2.2.2时域分析的结果及分析 (11) 2.2.3频域分析的结果及分析 (12) 3.总结 (15) 4.设计心得与体会 (16)

1.概述 1.1 心音信号及MATLAB简介 心音信号是指在心动周期中,心肌收缩、心脏瓣膜启闭,心室壁、大动脉瓣等被血流冲撞,引起机械振动发出的声音。产生的声音信号通过周围组织传导到胸壁,可以通过听诊器来听诊,也可以利用传感器将心音信号转换为电信号,进行心音信号的显示和存储。心音作为人体的一种重要的心脏、心血管生理信号,体现着和心脏等生理情况相关的信息,能够反映心脏等的生理和病理信息。心音对于有关心脏疾病和心血管疾病的诊断具有重要的诊断价值,是评估一个人心脏功能情况的重要依据[6]。 心音的频率一般在5-600HZ左右,杂音频率可达1500HZ左右,但是人的听觉系统能够接受的声音频率为16HZ-20KHZ,而且仅对频率在1000~5000HZ频率的声音最为敏感。心脏听诊的不足可以用心音图弥补。心音图可以直观的显示正常和异常心音的各段持续的时间,进一步提高心脏疾病诊断的准确性。

图1.正常的心音信号的时域图 正常心音按出现时间先后可以分为四个部分。第一心音(S1)、第二心音(S2)是最常见的,此外,还有第三心音(S3)、第四心音(S4)。临床上一般听到的是第一心音和第二心音,一些儿童、青少年以听到第三心音,有些老年人也可以听到第四心音。第一心音(S1)产生的原因是房室瓣关闭、血流急速冲击房室瓣,主动脉壁和肺动脉壁被心室喷射出的血液撞击,引起振动。一般在心尖搏动处最强,持续时间一般为0.1-0.12s。在音调方面,比较低沉。第二心音(S2)在T波的末端出现。主要产生原因是主动脉瓣关闭和肺动脉瓣关闭。持续时间一般为0.08s,相对较短[4]。第三心音(S3)主要是血流流向心室时,血流速度过急,在心室内又突然减速引起室壁的振动而产生。一般在第二心音后的0.1-0.2s后产生。在儿童、青少年的心脏上可以听到生理性的第三心音。第四心音是由于心房收缩后,血流流进心室的速度很快,心室壁振动而引起。心脏听诊是诊断心脏和心血管疾病不可或缺的方法,该方法简便、有效。

基于LabVIEW的心音信号分析系统设计

基于LabVIEW的心音信号分析系统设计 班级学号:0708112 27 学生姓名:沈鑫 学院:生命科学技术学院

摘要:研究了基于LabVIEW开发平台的心音信号分析系统。该系统首先使用 HKY06A型心音传感器采集和记录心音信号,然后计算归一化平均香农能(NASE) 来提取心音信号的时域特征和利用短时傅立叶变换(STFT),Wigner-Ville分布(WVD)与小波变换(WT)三种时频分析方法来提取心音信号的时频特征。这些特征为心血管疾病的诊断提供了一些重要信息, 帮助初学医师更准确可靠的诊断。通过对44 例心音信号进行测试, 证明该系统在各种心血管疾病的诊断中相当有 效和稳健。 关键词:音信号、LabVIEW、归一化平均香农能、短时傅立叶变换、Wigner-Ville 分布、小波变换。 Abstract: A system of heart sound analysis based on platform of LabVIEW is designed. The heart sounds arc first acquired and recorded using FIKY06A-type heart sound sensor in this system. Then, the signals time-domain features are extracted by calculating the normalized average Shannon energy, and time-frequency features are extracted separately utilizing three kinds of time-frequency analysis method-STFT, WVD and WT. These features can provide some important information for diagnosis of cardiovascular diseases and assist general physicians to come up with more accurate and reliable diagnosis at early stages. Tested with 44 cases of heart sounds, the system have been proved to be quite efficient and robust while diagnosing of a variety of cardiovascular diseases. Key words:heart sounds、LabVIEW normalized average Shannon energy、 short-time Fourier transform 、Wigner-Ville distribution、wavelet transform. 1 引言 心脏的听诊是心脏病诊断以及治疗中不可缺少的一部分, 而且对于初学者或经验不多的人来说, 也是较难掌握的一种技术。目前我国医院部门对心脏疾病的诊断和疗效的评价很大程度上仍依赖于听诊器, 听诊噪声干扰比较严重, 对过于微弱或过于复杂的声音响应不佳, 它一般只被用于初步的、粗略的诊断, 仅凭自己的感觉和经验来判断是远远不够的, 即使是很有经验的医生, 也受主观因素的影响, 可能会发生误诊。 心音是在体表获取声频范围内源于心脏的一种机械性振动。有规律的、时限较短的振动为心音;较长的、不规律的振动为杂音。心音能够反映心脏活动及血液流动的状况, 它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息, 是临床评估心脏功能状态的最基本参数, 是心脏及大血管机械运动的反映。 心音图具有心脏听诊所没有的特点, 从而心音图检查提高了心音和心脏杂音的识别能力, 丰富了听诊, 对心血管疾病的诊断、鉴别、治疗、功能研究、机理探讨、血液动力学改变等多方面提供了相当有价值的资料。心音图的时频分布展示了其在某一特定时间的谱成分, 它通常被看作信号能量在时域和频域中的

语音信号采集与处理系统的设计

音频信号采样与处理系统方案设计 目录 第1章理论依据2 1.1音频信号的介绍2 1.2采样频率2 1.1 TMS320VC5402介绍2 1.2 TLC320AD50介绍 6 第2章系统方案设计8 2.1 DSP核心模块的设计8 2.2 A/D转换模块9 第3章硬件设计10 3.1 DSP芯片10 3.2 电源设计10 3.3复位电路设计11 3.4 时钟电路设计12 3.5 程序存储器扩展设计12 3.6数据存储器扩展设计13

3.7 JTAG接口设计13 3.8 A/D接口电路设计14 第4章软件设计15 第5章总结17 参考文献18 致谢19 附录20 摘要 在研究数字信号处理的基础上,提出了一个基于DSP TMS320VC5402和A/D转换芯片TLC320AD50的音频信号采集系统的设计。给出了该系统的总体设计方案,具体硬件电路,包括系统电源设计、复位电路设计、时钟电路设计、存储器设计、A/D接口电路设计、JTAG接口设计、DSP与A/D芯片的连接等,以及软件流程图。 关键词:音频信号数据采集DSP TLC320AD50 ABSTRACT On the basis of studying digital signal processing, The design of A audio signal acquisition system based on DSP TMS320VC5402 and A/D conversion chip TLC320AD50 is proposed. Overall design scheme of the system is given, and the specific hardware circuit, including the system power supply design, design of reset circuit, clock circuit design, design of memory, A/D interface circuit, JTAG interface, DSP and the connection of A/D chip, and software flow chart. Key words: audio signal data collection DSP TLC320AD50

心音采集与显示课程设计报告讲解

电子课程设计报告 题目《基于51单片机的心音采集系统》 学院生物医学工程学院 专业生物医学工程(仪器) 年级 11级 姓名班福香 学号 11161057 指导老师谢勤岚

目录 一、设计背景 (1) 二、设计目的 (2) 三、设计思路 (2) 四、系统框图 (3) 五、系统主控模块原理 (4) 六、软件设计 (7) 七、结果仿真 (12) 八、报告总结 (13) 九、参考文献 (14)

一、设计背景 随着社会的发展,生活水平提高了,同时生活压力也不断地加重。然而各种心血管疾病发病率也越来越高,收入水平的提高也使得人们对保健的需求和质量的需求和要求也越来越高。近几年来越来越多的医疗仪器被研发。 心音能反应出心脏的生理情况,因此可以通过心音来诊断一个人的心脏十分健康,心音是由心脏搏动工程中各瓣膜的开闭以及心肌和血液运动所产生的震动形成的。它含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息,是临床评估心脏功能状态的最基本方法,是心脏及大血管机械运动状况的反映。它是人体最重要的生理信号之一,是临床评估心血管系统功能状态的一种基本方法,是心脏及大血管机械运动状况的反映。在一些心血管疾病尚未发展到足以产生病理形态学改变及临床症状以前,心音中出现的杂音和畸变是重要的诊断信息,可以通过对这些病理特征进行分析而提前对疾病进行预防。 现如今,对于心音信号的采集和处理的相关研究,很多都以在理论上做的很好,甚至已经接近完美,可是由于心音信号微弱,噪声大,所以在实际中对于心音的检测带来较多困难,实际的设计与检测技术还是远不及理论上那么好。因此需要跟多的学员对其进行学习与研究,使得医疗仪器更加的完善和精确。

语音信号采集与回放系统设计

语音采集与回放系统设计
l 竞赛真题 l 总体方案选择 l 具体方案设计 l 设计阶段划分
一、竞赛真题
1999 年第四届 E 题 数字化语音存储与回放系统 一、题目:数字化语音存储与回放系统 二、任务 设计并制作一个数字化语音存储与回放系统,其示意图如下:
三、要求 1.基本要求 (1)放大器 1 的增益为 46dB,放大器 2 的增益为 40dB,增益均可调; (2)带通滤波器:通带为 300Hz~3.4kHz ; (3)ADC:采样频率 fs= 8kHz,字长= 8 位; (4)语音存储时间≥10 秒; (5)DAC:变换频率 fc= 8kHz,字长= 8 位; (6)回放语音质量良好。 2.发挥部分 在保证语音质量的前提下: (1)减少系统噪声电平,增加自动音量控制功能; (2)语音存储时间增加至 20 秒以上; (3)提高存储器的利用率(在原有存储容量不变的前提下,提高语音存储时间) ;

(4)其它(例如: 四、评分意见
校正等) 。


满 分 50 50 15 5 15 15
基 设计与总结报告: 方案设计与论证, 理论分析与计算, 电路图, 本 测试方法与数据,对测试结果的分析 要 实际制作完成情况 求 完成第一项 发 挥 完成第二项 部 完成第三项 分 完成第四项 五、说明 不能使用单片语音专用芯片实现本系统。
训练侧重点 l 题目中给出一些提示性设计参数,设计中应予以重点理解
1. 放大器 1 的增益,放大器 1 的增益为 46dB 2. 带通滤波器的频率范围通带为 300Hz~3.4kHz(方便测试) 3. AD 采样的字长和采样频率(保证公平竞争)
l
题目中部分非技术性指标在培训中可以适当简化
1. 语音存储与回放时间≥10 秒 2. 语音存储时间增加至 20 秒以上;
二、总体方案选择
1. 控制平台选择 2. 前级放大模块 3. 带通滤波器 4. 模数、数模转换部分 5. 存储器 6. 编码方案
1. 控制平台选择
供选平台: A. B. 单片机平台 FPGA 开发平台

004-振动信号的采集与预处理

004-振动信号的采集与预处理

振动信号的采集与预处理 1振动信号的采集 振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多。在采集振动信号时应注意以下几点: 1.振动信号采集模式取决于机组当时的工作状态,如稳态、瞬态等; 2.变转速运行设备的振动信号采集在有条件时应采取同步整周期采集; 3.所有工作状态下振动信号采集均应符合采样定理。 1.1 信号适调 由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进行信号适调。适调包括大信号的衰减处理和弱信号的放大处理,或者对一些直流信号进行偏置处理,使其满足A/D输入量程要求。 1.2 A/D转换 A/D转换包括采样、量化和编码三个组成部分。 1.2.1采样 采样(抽样),是利用采样脉冲序列p(t)从模拟信号x(t)中抽取一系列离散样值,使之成为采样信号x(n△t)(n=0,1,2,…)的过程。△t称为采样间隔,其倒数称1/△t=f s之为采样频率。采样频率的选择必须符合采样定理要求。 1.2.2量化 由于计算机对数据位数进行了规定,采样信号x(n△t)经舍入的方法变为只有有限个有效数

字的数,这个过程称为量化。由于抽样间隔长度是固定的(对当前数据来说),当采样信号落入某一小间隔内,经舍入方法而变为有限值时,则 产生量化误差。如8位二进制为28 =256,即量化增量为所测信号最大电压幅值的1/256。 1.2.3 编码 振动信号经过采样和量化后,量化后的数据按照一定的协议进行编码,成为处理器可以处理的数据。 采样定理解决的问题是确定合理的采样间隔△t 以及合理的采样长度T ,保障采样所得的数字信号能真实地代表原来的连续信号x(t)。 衡量采样速度高低的指标称为采样频率f s 。一般来说,采样频率f s 越高,采样点越密,所获得的数字信号越逼近原信号。为了兼顾计算机存储量和计算工作量,一般保证信号不丢失或歪曲原信号信息就可以满足实际需要了。这个基本要求就是所谓的采样定理,是由Shannon 提出的,也称为Shannon 采样定理。 Shannon 采样定理规定了带限信号不丢失信息的最低采样频率为: 2s m f f ≥或2s m ωω≥ 式中f m 为原信号中最高频率成分的频率。 采集的数据量大小N 为: T N t =? 因此,当采样长度一定时,采样频率越高,采集的数据量就越大。 使用采样频率时有几个问题需要注意。 一, 正确估计原信号中最高频率成分的频率,对于采用电涡流传感器测振的系统来说,一

(完整版)语音信号分析与处理系统设计

语音信号分析与处理系统设计

语音信号分析与处理系统设计 摘要 语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 关键字:Matlab;语音信号;傅里叶变换;信号处理;

目录 1 绪论 (1) 1.1课题背景及意义 (1) 1.2国内外研究现状 (1) 1. 3本课题的研究内容和方法 (2) 1.3.1 研究内容 (2) 1.3.2 运行环境 (2) 1.3.3 开发环境 (2) 2 语音信号处理的总体方案 (3) 2.1 系统基本概述 (3) 2.2 系统基本要求 (3) 2.3 系统框架及实现 (3) 2.4系统初步流程图 (4) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6) 3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (6) 3.4数字滤波器设计原理 (7) 3.5倒谱的概念 (7) 4 语音信号处理实例分析 (8) 4.1图形用户界面设计 (8) 4.2信号的采集 (8) 4.3语音信号的处理设计 (8) 4.3.1 语音信号的提取 (8) 4.3.2 语音信号的调整 (10)

基于LabVIEW的心音信号检测系统设计

基于LabVIEW的心音信号检测系统设计 心音信号是人体最重要的生理信号之一,含有关于心脏各个部分如心房、心室、大血管、心血管及各个瓣膜功能状态的大量病理信息,是心脏及大血管机械运动状况的反映,具有非线性、非平稳的特点[1-2]。心音来自于人体内部,不容易被复制或模仿,同时还具有独特性,个体的不同,心音信号的表现形式也不相同。对其进行检测分析,可以达到对身份进行识别和验证的目的[3]。此外,通过听取心音,也可以获得用以判断心脏疾病的相关信息[4]。 本文设计、实现一套心音信号采集与分析系统,并研究利用心音进行被测试者的身份识别。因为传统的密码、口令等验证方法存在容易被忘记或破解的缺陷,而利用人体生物特征进行身份识别具有独特的优势,如指纹、虹膜、手形和面部特征等识别技术已经较为成熟,相关产品已经进入市场。但是利用人体生理信号,如心音、脉搏等,进行身份识别的研究才刚刚兴起,有着很大的研究价值和发展空间。随着计算机技术的迅速发展,基于单片机、DSP 等核心控制器采集心音信号,利用PC 机进行定量分析,已成为心音检测系统的研究趋势[5-6]。因此,本系统利用STC12C5A 单片机采集HKY-06B 型PVDF 薄膜式心音传感器输出的心音信号,并通过RS232 总线发送到上位机,实现了检测终端与上位机之间的数据通信,同时在上位机采用虚拟仪器软件LabVIEW 设计 开发了一套集数据管理、采集和分析于一体的虚拟心音检测系统。 1 系统设计 系统的硬件结构框图如图1 所示,包括以下几个部分:(1)心音传感器模块。能将心脏搏动信号转化为低阻抗音频信号;(2)信号预处理模块。负责对微弱的 心音信号进行前置放大、低通滤波、高通滤波和功率放大;(3)单片机模块。负 责将预处理后的心音信号进行A/D 采样以及通过键盘执行数据存储、液晶显示

相关文档
最新文档