曲线连续梁桥在不同支撑条件下内力和支反力对比分析

曲线连续梁桥在不同支撑条件下内力和支反力对比分析
曲线连续梁桥在不同支撑条件下内力和支反力对比分析

曲线梁桥的受力施工特点及设计方法分析_百度文库

曲线梁桥的受力施工特点及设计方法分析 中华硕博网核心提示:摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。:曲线梁桥,结构,施工近年来,随着公路建设事业 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 :曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1、曲线梁桥的力学特性 1。1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1轴向变形与平面内弯曲的耦合; (2竖向挠曲与扭转的耦合; (3它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的

箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1。2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产 生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2、曲线梁桥的结构分析 2。1上部结构分析 2。1。1结构力学方法 这种方法沿用杆系系统的结构力学方法。首先将弯梁视为一根曲杆,把抗扭支座以赘余扭矩代替,然后根据变形协调条件求解未知力。这种方法较简单,比较适用于分析简支弯梁和等截面且跨内为圆弧的窄桥。 2。1。2梁格法 梁格法是目前最常用的分析弯梁桥的方法。梁格法实质是用一个等效的梁格来代替桥梁上部结构,是一种以梁为基本单元的有限元法。这种方法概念明确,容易理解和使用,也比较容易操作,计算速度也比较快。现有的计算曲线梁梁桥软件,如同济大学开发的“桥梁博士”和广州阿安毕公司开发的“3DBSA”,都采用了梁格法。

探讨曲线梁桥设计

探讨曲线梁桥设计 [摘要]:本文着重论述了连续桥设计中的几个技术问题,如:中横梁刚度对荷载分配的影响、支座偏心距对扭矩分配的影响、剪力滞后对翼缘板有效宽度影响等,并结合工程实践提出了解决问题的相应办法。 关键词:曲线梁桥;支座偏心距;有效宽度 [abstract] : this paper focuses on the continuous bridge design of several technical problems, such as: the bar to the influence of the distribution stiffness load eccentricity, problems of torque distribution, effects of shear lag of flange plate effective width influence to wait, and combined with engineering practice, this paper proposes the corresponding measures to solve the problems. keywords: curve beam bridge; bearing eccentricity; effective width 中图分类号: u448 文献标识码: a 文章编号: 1前言 曲线梁桥是现代交通工程中一种重要桥型。在公路及城市道路的立体交叉工程中,曲线梁桥是实现各方面交通联结的必要手段。早期修建的曲线梁桥,由于受设计方法和施工工艺的限制,多建成钢筋混凝土简支梁,其上部结构略显笨重,且易开裂,给后期养护带来较大困难。随着道路交通的迅猛发展,以及人们对审美观念的

钢混组合连续梁桥顶推施工受力特性分析

钢混组合连续梁桥顶推施工受力特性分析 钢混组合梁因其受力性能好,预制化程度高而得到广泛应用,国家在“十三五”期间大力提倡钢桥的应用,因此该桥在我国又迎来了新的历史机遇。在钢混组合梁的施工中,主梁与桥面板往往是分开施工的,组合梁的钢主梁因为其自重轻、几乎是等截面的优点,通常采用顶推法进行施工,而桥面板通常采用预制形式,安装方法上采用间断施工法来改善支点处桥面板受力。 鉴于组合梁的应用前景,对于分析组合梁在施工过程的受力,模拟其在施工 中的受力状态,显得十分有必要。本文选择钢板组合梁进行研究,希望能为同类桥梁的施工与设计提供帮助。 本文主要进行了以下几个方面的研究:(1)回顾了钢混组合梁与顶推施工法 的发展历程,就顶推施工法的分类与与发展特点进行了详细阐述,展望了顶推施 工法需要关注的问题,对组合梁的结构特征以及顶推法的发展历程有了全方位的了解与认识。(2)简化导主梁模型,采用位移法分析了顶推过程主梁的受力。 获得了顶推过程中主梁内力与支点反力的解析表达式,确定了顶推过程主梁的控制截面与时间节点。分析了导梁长度、自重集度以及刚度对主梁受力的影响,确定了导主梁顶推过程最佳的长度比α,自重集度比β以及刚度比γ。 (3)采用杆系有限元分析了某钢板组合梁顶推施工过程,确定了导梁的合理 设计参数与截面形式,得到了有限元仿真模拟下导梁前端的挠度变化情况以及主梁的内力与支反力,验证了导梁设置的合理性和有效性。(4)采用有限元软件中的施工阶段联合截面分析了桥面板的施工过程,比较了桥面板在间断施工法与顺序施工法下施工顺序的差异,比较了在两种施工法下支点处桥面板的受力状态,验 证了间断施工法的可靠。

最新先简支后结构连续梁桥的受力分析与施工技术

先简支后结构连续梁桥的受力分析与施工 技术

先简支后结构连续梁桥的受力分析与施工技术 先简支后结构连续梁桥的受力分析与施工技术 随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向 论文格式论文范文毕业论文 【摘要】随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向发展,其结构特性在有效避免了简支梁桥与连续梁桥的缺点的同时又兼顾了二者的优点,很快在桥梁中成为广泛使用的结构形式。 【关键词】 先简支后结构连续梁的受力特征;施工工艺过程;质量控制引言目前在国内高速公路桥梁中普遍使用装配式预应力钢筋混凝土“T”(箱)型板梁。简支梁桥的优点在于结构简单,属于静定结构,且造价相对较低,施工简单,工期相对较短。在正常条件使用情况下,桥梁不会有刚体位移,并且梁体一端可以自由伸缩,不产生多余的内力。但缺点是由于其自身结构,抗震能力和外力抵抗能力较弱,梁体自身变形大,存在落梁的危险,尤其是在跟高墩组合使用的情况下安全储备较低。对于大跨径的连续梁桥而言,目前主要采用支架法、挂篮悬臂对称浇筑法和拼装法施工,虽然改良了梁体自身受力,克服了简支梁桥的一些缺点,但其施工过程复杂繁琐,费时费工,成本大,一般在遇到特殊地形和跨越长距离时使用。先简支后结构连续梁因其受力和施工工艺相对简单克服了以上两者的问题而得到大范围的实际应用。 1 先简支后结构连续梁的受力特点分析 (2)在结构使用过程中,混凝土自身的收缩徐变,负弯矩预应力的布置同时也影响梁体的受力变化。

曲线梁桥平面位移机理分析

总第222期交 通 科 技Ser ial No.222 2007年第3期T r anspor tation Science&T echno log y N o.3June.2007 收稿日期:2007 01 23曲线梁桥平面位移机理分析 刘柱国 (河北省交通厅公路管理局 石家庄 050051) 摘 要 分析了曲线梁桥平面位移的机理,探讨了影响平面位移的主要因素,并结合工程实例对影响因素进行了验证。 关键词 曲线梁桥 平面位移 温度效应 收缩 徐变 连续曲线梁桥在使用过程中,由于预加力、温度效应、车辆行驶或一些其他影响因素的作用,会产生侧向的变位。由于曲线梁桥的结构特点、支承形式等原因,当外荷载等影响因素消失后,弯梁发生的侧向变位并不能够完全恢复,会产生部分不可恢复的残余位移,在长期反复作用下,侧向的残余位移就会累积,产生较大的位移,即曲线梁桥的侧向位移(或称 爬移)。曲线梁桥的侧向位移问题轻则导致梁段伸缩缝的剪切破坏,影响其使用寿命;严重的则会出现支承结构破坏,梁体滑移和翻转。桥梁在使用过程中出现该类问题,不仅影响交通,而且加固起来非常困难,造成巨大的经济损失。 1 影响曲线梁桥平面位移的因素 1.1 支承方式 支承方式是影响曲线梁桥平面位移的内在因素,支承方式直接影响全桥的内力分布,合理的支承方式可以承受自重和活载、偏载等因素所产生的组合扭矩作用,限制结构的平面位移。 曲线梁桥可以采用多种支承布置形式。理论上讲,连续曲线梁桥的所有支承均可采用点铰支承,但在荷载作用下梁端将产生扭转变形,从而在梁端与桥台背墙间产生上下相对变形,这会导致伸缩缝破坏。一般在两端的桥台设置能抵抗外扭矩的抗扭支座,中间支承可以采用抗扭支承,或点铰支承,或者交替使用两种支承形式,从而限制梁端的扭转变形,以保证伸缩缝正常工作[1 2]。 主梁在各种荷载作用下,除了梁端扭转变形外,在支座位置处还会产生纵桥向与横桥向的变位,为了保证结构的正常工作,总希望沿着 切线方向移动。为此,除了在桥台处设置抗扭支座外,还必须采取一些 限制措施,一般可以在活动端的定向切线支座上安置 限制位移方向的措施,以保证桥头的位移能符合 切线方向的运动要求,但在设计计算时,必须计及这个 强制力的影响。根据具体桥型,充分考虑各种因素,设置合理的支承方式,就可以使曲线梁桥的平面变形顺着目标方向进行,阻止非正常变位的发生。 1.2 温度和混凝土收缩的影响 温度变化和混凝土收缩引起在平面内的位移 属于弧段膨胀或收缩性质的位移[1],涉及到弧段的半径变化但圆心角不变,即r0!r,而 0= (见图1)。 图1 曲线梁桥平面内变形 在此情况下: r=r0(1- ), =?!t+ cs ?3=2(r0-r)sin 0 2 式中: cs为混凝土的收缩应变。 因此温度变化和混凝土收缩时,曲线梁桥会发生两个方向的位移分量:#沿桥轴线方向的纵向分量;?沿桥轴线垂直方向的分量(见图2)。 温度变化和收缩在各种活动支座处将引起纵桥向与横桥向的变形,横桥向的变形不仅给伸缩缝的活动带来困难,而且产生了曲线梁桥的支座受力、布置以及一些侧向问题。

预应力混凝土连续梁桥施工阶段受力分析研究

预应力混凝土连续梁桥施工阶段受力分析研究 发表时间:2019-08-02T10:35:22.780Z 来源:《基层建设》2019年第9期作者:黎开拓 [导读] 摘要:针对桥梁预应力混凝土连续梁桥的建设特点进行了分析,对桥梁预应力混凝土连续梁桥的荷载设计、极限应力控制进行了探讨,得出有效的梁桥预应力的设计方法。 广州诚信公路建设监理咨询有限公司广东广州 510000 摘要:针对桥梁预应力混凝土连续梁桥的建设特点进行了分析,对桥梁预应力混凝土连续梁桥的荷载设计、极限应力控制进行了探讨,得出有效的梁桥预应力的设计方法。 关键词:桥梁工程;预应力;混凝土连续 1、理论分析 要计算施工阶段因混凝土弹性压缩变形而产生的应力损失,需要按照每束预应力钢筋的预加力相同,且取它们弹性压缩损失平均值来考虑的假定。当同一截面的预应力钢筋逐束张拉时,由混凝土弹性压缩引起的预应力损失可按公式σl=(m-1)*αEP*Δσpc/2m计算,式中:Δσpc为全部钢筋重心处,由张拉一束钢筋产生的混凝土法向应力;αEP为预应力钢筋弹性模量与混凝土弹性模量的比值;m为张拉预应力钢筋的总批数。同时,该公式对按施工阶段分批张拉预应力筋束时,计算由混凝土弹性压缩引起的应力损失也适用。但该假定与实际连续梁桥施工阶段预应力筋束的张拉锚固过程有很大差别。具体表现在以下几方面:(1)混凝土连续梁桥需配置较多的纵向预应力筋束,且其中相当一部分预应力筋束设置竖向弯起,这给应力损失计算造成一定难度;(2)在同一施工截面,因受张拉设备数量限制,截面纵向预应力筋束很难做到同时同步张拉,这也会造成同一施工截面钢束张拉顺序和张拉时间的不同;(3)在悬臂施工过程中,后浇筑梁段预应力筋束的张拉锚固会使已浇筑梁段产生弹性压缩变形,其变形值因张拉顺序而不同,这也造成应力损失的不同;(4)连续梁桥顶板束、腹板束和底板束的空间位置、弯曲形状及型号也各不同,很难保证每根预应力筋束在张拉锚固时的预加力是相同的。鉴于以上原因,本文利用Midas/civil有限元计算软件,根据白腊寨一号四线桥工程实例,建立预应力混凝土连续梁桥的三维模型。分别从同一截面钢束不同张拉顺序和不同施工阶段后张拉束对已浇筑梁段弹性压缩变形量影响进行分析,以期得出混凝土连续梁桥施工阶段有效预应力损失与张拉顺序之间的关系。为减少连续梁桥施工阶段应力损失提出可靠的建议,并为混凝土连续梁桥的后期病害防治提供一定的帮助。 2、试验概况 2.1试件设计 共设计6根大直径高强钢绞线预应力混凝土梁试件,均采用C40混凝土,非预应力纵筋采用HRB400级钢筋,箍筋采用HRB300级钢筋,预应力钢筋采用1850级、1*7标准型 S17.8低松弛钢绞线,曲线布置,一端张拉后张法施工,张拉控制应力σcon均为0.7fptk(fptk为预应力钢筋极限抗拉强度标准值),预应力采用低回缩锚具施加,预应力强度比λ为0.586-0.797,λ=fpykAp/(fykAs+fpyAp),其中fyk,fpy分别为非预应力受拉钢筋和预应力钢筋屈服强度标准值,As,Ap分别为非预应力受拉钢筋和预应力钢筋截面面积。波纹管采用塑料波纹管,内径为50mm。试件截面宽度b为20mm,高度h为350mm,跨度为L,计算跨度为10,纵筋保护层厚度均为30mm。为保证试件的弯曲破坏,剪跨段进行箍筋加密。 2.2材性试验 在浇筑试验梁时制作立方体标准试块,并与试验梁同条件养护,养护龄期达到28d时测试立方体标准试块平均抗压强度fcu,并根据《规范》计算混凝土轴心抗压强度fc和抗拉强度ft以及弹性模量Ec。从制作试验梁的同批钢筋和钢绞线中截取试件,做原材料材性试验,得到钢筋和钢绞线的屈服强度fy、极限强度fu以及弹性模量Ey。 2.3试验装置与加载 预应力试验梁的受弯试验采用在三分点处两点集中加载,为防止混凝土局部压碎,在加载点处设宽150mm、厚25mm的钢垫板。在梁的侧面与顶面和钢筋以及钢绞线表面贴有应变片,以测量加载过程中应变的变化规律。将位移传感器置于梁的两端支座、跨中以及加载点相对应的位置,以测量试验梁挠度随荷载的变化规律。裂缝宽度变化借助裂缝测宽仪测量,观察试验梁的宏观破坏。采用单调静力分级加载试验方案,在正式加载前先进行预加载,使试件进入正常工作状态,同时检测各仪器、仪表工作情况,然后卸载。在试件开裂前,每级所施加荷载约为0.05Fu(Fu为跨中极限荷载),持荷10min,以使试件在荷载作用下的变形得到充分发展,同时记录试验现象,测量裂缝宽度,观察裂缝发展,试件开裂后每级所施加的荷载。 2.4试验现象 6根大直径高强钢绞线预应力混凝土梁均为适筋梁,根据各试件的荷载-挠度曲线,可将试件的受力过程大致分为3个阶段:第1阶段为弹性工作阶段,当荷载小于0.3MU(MU极限弯矩实测值)时,试件的荷载-挠度曲线为直线,表现出良好的线弹性;第2阶段为带裂缝工作阶段,当弯矩为0.3MU-0.5MU时,在试件纯弯段下边缘出现竖向弯曲微裂缝,初始宽度在0.04mm左右,随着荷载的增加,由于钢筋和混凝土的黏结与应力传递,试件下边缘不断出现新的竖向弯曲裂缝,并不断向上延伸,裂缝数量和宽度持续增加,当加载到0.7MU-0.8MU 时,试件纯弯段裂缝基本出全,随着荷载的继续增加,裂缝宽度不断扩大,高度不断延伸;第3阶段为破坏阶段,当荷载大于0.8MU时,试件纵筋屈服,挠度急剧增加,并伴随有混凝土崩裂的声音,新裂缝不再出现,纯弯段裂缝继续向上扩展,当达到极限弯矩时,纯弯段受压区混凝土在受压纵筋位置出现水平裂缝,最终受压区混凝土被压碎,试验梁破坏。 2.5试验结果 在试验梁纵向受拉钢筋屈服前,荷载-挠度曲线呈线性增长趋势,屈服后位移增加加快;试验梁的跨高比越小,其开裂荷载、屈服荷载和极限荷载呈增长趋势;当跨高比不变时,试验梁的非预应力钢筋配筋率越小,其开裂荷载、屈服荷载和极限荷载呈减小趋势。由参考文献中数据可知,大直径高强钢绞线相对于常规直径钢绞线其承载能力提高30%左右,因此在试验梁加载过程中,大直径高强钢绞线在试验梁出现裂缝后能够持续承受较大的荷载,进而能够减缓非预应力钢筋进入屈服阶段,达到改善构件延性性能的目的;大直径高强钢绞线与试验梁协同工作良好,由参考文献中数据可知,大直径高强钢绞线预应力混凝土梁承载力较配置常规直径钢绞线的试验梁承载力提高13%左右,同时构件破坏前有明显预兆,纯弯段受压区混凝土在受压钢筋位置附近出现水平细小裂纹,最终受压区混凝土被压碎。 参考文献 [1]肖杰.大跨度预应力混凝土连续梁桥悬臂施工控制及温度效应研究[D].西南交通大学,2017.

连续曲线梁桥设计探析

连续曲线梁桥设计探析 文章论述了曲线桥梁的受力性,并且阐述了设计时要注意的要素。 标签:曲线梁桥;受力特点;结构设计 1 概述 曲线桥是当前的道桥项目中非常关键的一个组成部分,尤其是在最近几年它得到了非常广泛的应用。对于那些互通型的立交匝道来讲,它的使用更是非常的明显。在设计匝道的时候会受到很多要素的干扰,比如地形以及所在区域的规模等,这些要素的存在使得该项设计有如下的一些特征。第一,此类桥的宽度不是很宽,通常匝道的尺寸在六米到十米之间。第二,匝道本身是为了辅助道路转向的,在立交工程中会受到土地规模的影响,因此这类桥大多数是小尺寸的曲线桥。第三,匝道桥的纵向坡度非常大,有时会横跨下方的车道,此时就使得桥的长度变长。因为这种桥本身弯斜,形状特别,所以它的设计工作无法正常的开展。 2 曲线梁桥的平面及纵、横断面布置 最近几年高速路在设计的时候更加的关注线形方面的内容,规定设计要合乎线形要求。因此在布局桥梁平面的时候,要遵照总的线形布局规定,其纵坡也要和路线的纵坡保持一致。通常为了应对截面的扭矩以及弯矩,在设计的时候常使用箱形的截面。由于桥面超高的需要及梁体受扭时外边梁受力较大的需要,所以可以在其水平方向上把主梁设置成不一样的高度。为了便于构造,方便建设,也可以将其设置成一样高度的,其超高横坡由墩台顶面形成。 3 曲线梁桥结构受力特点 3.1 梁体的弯扭耦合作用 一般来说,当受到外在力影响的时候,曲梁会出现一定的弯矩以及扭矩,两者会彼此影响,进而导致截面处在一种耦合的状态中,截面的拉力要较之于直梁大,这个特征是这种梁所特有的。因为这种桥会承受较高的扭矩力,所以会发生变形现象,它的外侧的挠度要比相同尺寸的直桥大一些。因为存在耦合作用,所以在桥上方会存在翘曲现象。 3.2 内外梁无法均匀受力 对于曲梁桥来讲,因为其扭矩较大,所以会导致外梁发生超载而内梁出现卸载的情况,特别是当桥梁较宽的时候这种现象更加的明显。因为两个梁的支点反力差别非常大,如果活载发生了偏移的话,内梁就会生成一种反向力,此时假如内梁无法承受这种力的话,就会使得梁体和支座分离。

连续梁桥计算

第一章混凝土悬臂体系和连续体系梁桥的计算 第一节结构恒载内力计算 一、恒载内力计算特点 对于连续梁桥等超静定结构,结构自重所产生的内力应根据它所采用的施工方法来确定其计算图式。 以连续梁为例,综合国内外关于连续梁桥的施工方法,大体有以下几种: (一)有支架施工法; (二)逐孔施工法; (三)悬臂施工法; (四)顶推施工法等。 上述几种方法中,除有支架施工一次落梁法的连续梁桥可按成桥结构进行分析之外,其余几种方法施工的连续梁桥,都存在一个所谓的结构体系转换和内力(或应力)叠加的问题,这就是连续梁桥恒载内力计算的一个重要特点。 本节着重介绍如何结合施工程序来确定计算图式和进行内力分析以及内力叠加等问题,并且仅就大跨径连续梁桥中的后两种的施工方法——悬臂浇筑法和顶推施工法作为典型例子进行介绍。理解了对特例的分析思路以后,就可以容易地掌握当采用其它几种施工方法时的桥梁结构分析方法了。 二、悬臂浇筑施工时连续梁的恒载内力计算 为了便于理解,现取一座三孔连续梁例子进行阐明,如图1-1所示。该桥上部结构采用挂篮对称平衡悬臂浇筑法施工,从大的方面可归纳为五个主要阶段,现按图分述如下。 (一)阶段1 在主墩上悬臂浇筑混凝土 首先在主墩上浇筑墩顶上面的梁体节段(称零号块件),并用粗钢筋及临时垫块将梁体与墩身作临时锚固,然后采用施工挂篮向桥墩两侧分节段地进行对称平衡悬臂施工。此时桥墩上支座暂不受力,结构的工作性能犹如T型刚构。对于边跨不对称的部分梁段则采用有支架施工。 此时结构体系是静定的,外荷载为梁体自重q自(x)和挂篮重量P挂,其弯矩图与一般悬臂梁无异。 (二)阶段2 边跨合龙 当边跨梁体合龙以后,先拆除中墩临时锚固,然后便可拆除支架和边跨的挂篮。 此时由于结构体系发生了变化,边跨接近于一单悬臂梁,原来由支架承担的边段梁体重量转移到边跨梁体上。由于边跨挂篮的拆除,相当于结构承受一个向上的集中力P挂。 (三)阶段3 中跨合龙 当中跨合龙段上的混凝土尚未达到设计强度时,该段混凝土的自重q及挂篮重量2P 将以2个集中力 挂 R0的形式分别作用于两侧悬臂梁端部。

曲线梁桥的受力施工特点及设计方法分析

曲线梁桥的受力施工特点及设计方法分析 摘要:介绍了曲线梁桥的力学特性,结构分析及应注意的几点问题,施工特性及设计方法。 关键词:曲线梁桥,结构,施工 近年来,随着公路建设事业的快速发展,涉及到曲线梁的桥梁设计已经越来越多了,以往设计者希望通过调整路线方案,尽量避开这种结构形式,或由于曲线半径较大,采用以“直”代“曲”的形式,在桥梁上部(如翼缘、护栏等)进行曲线调整,以期达到与路线线形一致。这些严格意义上说都不是曲线桥。由于受原有地物或地形的限制,一些城市的立交桥梁和交叉工程的桥梁曲线半径比较小,桥墩基本上要设在指定位置,这种情况下只能考虑设计曲线梁桥。 1曲线梁桥的力学特性 1.1曲线梁的受力情况 曲线梁桥能很好地克服地形、地物的限制,可以让设计者较自由地发挥自己的想象,通过平顺、流畅的线条给人以美的享受。但是曲线梁桥的受力比较复杂。与直线梁相比,曲线梁的受力性能有如下特点: (1)轴向变形与平面内弯曲的耦合; (2)竖向挠曲与扭转的耦合; (3)它们与截面畸变的耦合。其中最主要的是挠曲变形和扭转变形的耦合。曲梁在竖向荷载和扭距作用下,都会同时产生弯距和扭距,并相互影响。同时弯道内外侧支座反力不等,内外侧反力差引起较大的扭距,使梁截面处于“弯-扭”耦合作用状态,其截面主拉应力比相应的直梁桥大得多。故在曲线梁桥中,应选用抗扭刚度较大的箱型截面形式。在曲梁中,由于存在较大的扭矩,通常会出现“外梁超载,内梁卸载”的现象,这种现象在小半径的宽桥中特别明显。另外,由于曲梁内外侧支座反力有时相差很大,当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,通常称为“支座脱空”。 1.2下部桥梁墩台的受力情况 由于内外侧支座反力不相等,使各墩柱所受垂直力出现较大差距。当扭矩很大时,如果设置了拉压支座,有些墩柱甚至会出现拉力。曲线梁桥下部结构墩顶水平力,除了与直桥一样,有制动力、温度力、地震力等以外,还因为弯梁曲率的存在,多了离心力和预应力张拉时产生的径向力。墩顶水平力的分配非常复杂。在求温度零点时,曲线梁桥不能象直桥一样,只考虑一个方向力的平衡,而必须考虑两个方向的平衡;各墩顶处支座的类型和位置不一致,部分支座可能已处于临界滑移状态,其余支座还未达到临界状态;各支座的约束方向以及各墩柱不在同一平面内,使得水平力求解非常困难。 2曲线梁桥的结构分析 2.1上部结构分析 2.1.1结构力学方法

桥梁结构形式和受力特点

桥梁结构形式和受力特点 摘要:桥梁跨过河流,跨过峡谷,让交通变得便利,让城市与城市之间的距离变短,从古代的石拱桥到今天的悬索桥,斜拉桥等,桥梁的结构发生了怎样的变化,有些怎样的特点。 关键词:桥梁结构受力特点 1. 梁式桥包括简支板梁桥、悬臂梁桥、连续梁桥其中简支板梁桥跨越能力最小,一般一跨在8-20m.连续梁桥国内最大跨径在200m以下,国外已达240m。 2.拱桥在竖向荷载作用下,两端支承处产生竖向反力和水平推力,正是水平推力大大减小了跨中弯矩,使跨越能力增大.理论推算,混凝土拱极限跨度在500m左右,钢拱可达1200m.亦正是这个推力,修建拱桥时需要良好的地质条件。 3.刚架桥有T形刚架桥和连续刚构桥,T形刚架桥主要缺点是桥面伸缩缝较多,不利于高速行车.连续刚构主梁连续无缝,行车平顺.施工时无体系转换.跨径我国最大已达270m(虎门大桥辅航道桥)。 4.缆索承重桥(斜拉桥和悬索桥)是建造跨度非常大的桥梁最好的设计.道路或铁路桥面靠钢缆吊在半空,缆索悬挂在桥塔之间。斜拉桥已建成的主跨可达890m,悬索桥可达1991m。 5.组合体系桥有梁拱组合体系,如系杆拱、桁架拱、多跨拱梁结构等.梁刚架组合体系,如T形刚构桥等。 6.桁梁式桥:有坚固的横梁,横梁的每一端都有支撑。最早的桥梁就是根据这种构想建成的。他们不过是横跨在河流两岸之间的树干或石块。现代的桁梁式桥,通常是以钢铁或混凝土制成的长型中空桁架为横梁。这使桥梁轻而坚固。利用这种方法建造的桥梁叫做箱式梁桥。 7.悬臂桥:桥身分成长而坚固的数段,类似桁梁式桥,不过每段都在中间而非两端支承。 拱桥:借拱形的桥身向桥两端的地面推压而承受主跨度的应力。现代的拱桥通常采用轻巧、开敞式的结构。 8.吊桥:是建造跨度非常大的桥梁最好的设计。道路或铁路桥面靠钢缆吊在半空,钢缆牢牢地悬挂在桥塔之间。较古老的吊桥有的使用铁链,有的甚至使用绳索而不是用钢缆。 9.拉索桥:有系到桥柱的钢缆。钢缆支撑桥面的重量,并将重量转移到桥柱上,使桥柱承受巨大的压力。 班级:2011级2班姓名:夏一

最新多跨静定连续梁受力分析

多跨静定连续梁受力 分析

多跨铰接连续静定梁内力分析 第1跨内力分析: R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=1 M i=qL i2*[1-(A i/L i)2]2/8,i=1 第2跨内力分析: P i=R Bi-1,i=2 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=2 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=2 M A2=-(P i*A i+qA i2/2),(i=2) 第3跨内力分析: P i=R Bi-1,i=3 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=3 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=3 M A3=-(P i*A i+qA i2/2),(i=3) 第4跨内力分析: P i=R Bi-1,i=4 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=4 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=4 M A4=-(P i*A i+qA i2/2),(i=4) 第5跨内力分析: P i=R Bi-1,i=5 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=5

M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=5 M A5=-(P i*A i+qA i2/2),(i=5) 第6跨内力分析: P i=R Bi-1,i=6 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=6 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=6 M A6=-(P i*A i+qA i2/2),(i=6) 第7跨内力分析: P i=R Bi-1,i=7 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=7 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=7 M A7=-(P i*A i+qA i2/2),(i=7) 第8跨内力分析: P i=R Bi-1,i=8 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=8 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=8 M A8=-(P i*A i+qA i2/2),(i=8) 第9跨内力分析: P i=R Bi-1,i=9 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=9 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=9 M A9=-(P i*A i+qA i2/2),(i=9) 第10跨内力分析: P i=R Bi-1,i=10 R Bi=qL i*[1-(A i/L i)2]/2-P i*(A i/L i),i=10 M i=qL i2*[1-(A i/L i)2]2/8-P i*A i*[1-(1+(A i/L i))2/2+A i/L i],i=10 M A10=-(P i*A i+qA i2/2),(i=10)

先简支结构连续梁桥的受力分析与施工技术

先简支后结构连续梁桥的受力分析与施工技术 先简支后结构连续梁桥的受力分析与施工技术 随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向 论文格式论文范文毕业论文 【摘要】随着国家队高速公路的投入加大,高速公路的发展取得了很大的成绩。公路桥梁的构造也得到了长足的发展,同时对高速公路的行车舒适性也提出了更高的要求。高速公路桥梁逐渐由广泛使用的简支梁桥更多的向先简支后结构连续的方向发展,其结构特性在有效避免了简支梁桥与连续梁桥的缺点的同时又兼顾了二者的优点,很快在桥梁中成为广泛使用的结构形式。 【关键词】 先简支后结构连续梁的受力特征;施工工艺过程;质量控制引言目前在国内高速公路桥梁中普遍使用装配式预应力钢筋混凝土“T”(箱)型板梁。简支梁桥的优点在于结构简单,属于静定结构,且造价相对较低,施工简单,工期相对较短。在正常条件使用情况下,桥梁不会有刚体位移,并且梁体一端可以自由伸缩,不产生多余的内力。但缺点是由于其自身结构,抗震能力和外力抵抗能力较弱,梁体自身变形大,存在落梁的危险,尤其是在跟高墩组合使用的情况下安全储备较低。对于大跨径的连续梁桥而言,目前主要采用支架法、挂篮悬臂对称浇筑法和拼装法施工,虽然改良了梁体自身受力,克服了简支梁桥的一些缺点,但其施工过程复杂繁琐,费时费工,成本大,一般在遇到特殊地形和跨越长距离时使用。先简支后结构连续梁因其受力和施工工艺相对简单克服了以上两者的问题而得到大范围的实 际应用。 1 先简支后结构连续梁的受力特点分析 (2)在结构使用过程中,混凝土自身的收缩徐变,负弯矩预应力的布置同时也影响梁体的受力变化。 1)混凝土收缩徐变在混凝土强度达到设计要求后长时间存在并

桥墩对曲线连续梁桥自振特性的影响

桥墩对曲线连续梁桥自振特性的影响 摘要多次桥梁脉动试验结果揭示连续箱型梁桥的竖向自振频率与理论分析结果吻合较好而纵向和横向自振频率吻合不好。理论分析时桥墩的简化是关键影响因素。本文以某六跨连续弯梁桥为基础分析了桥墩对于桥梁自振特性的影响,结果表明桥墩对于桥梁的纵向及横向自振频率具有较大的影响,而对桥梁竖向的自振特性影响不明显。 关键词连续箱梁桥自振特性桥墩 1 前言 所谓固有振动是指弹性系统在没有外部动力的作用下形成的振动。固有振动反映系统的固有特性,是研究一切振动问题的基础[1]。因此准确求解桥梁结构的自振特性是桥梁振动问题的首要环节。在成桥后的荷载试验也往往通过脉动法测试桥梁的自振特性,通过与理论结果对比揭示桥梁的刚度情况。然而多次实践表明连续箱型梁桥的竖向自振频率实测与理论分析结果吻合较好而纵向和横向自振频率吻合不好。分析认为,桥墩是关键影响因素。本文通过对某桥的实体建模分析支持了该观点。 该桥总长170m,整座桥梁位于半径220m的平曲线。孔垮布置为25m+4×30m+25m,如图1所示。上部构造为等截面预应力混凝土箱型连续梁,单箱单室直腹板箱梁,梁高1.6m,顶板宽8.1m,底板宽4m,两侧翼缘悬臂长度2.05m,该桥跨中箱梁截面如图2所示。下部构造3号桥墩为独柱墩,其余桥墩为门式刚架墩、钻孔灌注桩基础。 图1连续梁桥总体布置图 图2跨中箱梁截面 2 有限元模型建立 为了研究桥墩对该桥自振特性的影响,分别按两种情况建立了有限元模型,第一个模型不考虑桥墩的影响,第二个模型考虑桥墩和梁的共同作用。Ansys为构建有限元模型提供了丰富的单元选择,具体到该问题可以选用梁单元也可以选用实体单元。使用梁单元分析时模型构建简单,求解速度较快,但是不能直观的反应梁的振型特性。使用实体单元构建模型虽较复杂,求解速度较慢,但是可以获得较高的精度,振型直观。经综合考虑最后决定采用Ansys实体单元Solid45。在墩台附近箱梁截面形式有所改变,采用实体单元可以精确的反映这种截面的变化。考虑桥墩的有限元模型图3所示。

箱型曲线梁桥结构理论发展现状论文

浅析箱型曲线梁桥结构理论研究发展现状摘要:国内外许多学者致力于曲线桥结构受力的相关研究,提出了各种精确的或者是近似的分析方法。本文主要对曲线梁桥结构研究与分析的现状进行阐述和分析,希望能够在之后的分析之中提供相关的研究依据。 关键字:箱型曲线梁桥;理论;研究进展;发展方向 abstract: many scholars at home and abroad to curve bridge structure stress related research, puts forward all kinds of precise or is an approximate analysis method. this paper focuses on the research and analysis of the structure of the curved girder bridges on the current situation of explained and analyzed, and hope to be able to provide relevant analysis of after the research basis. key word: box girder bridge type curve; theory; research progress; development direction 中图分类号:u443文献标识码:a 文章编号: 一、绪论 随着我国高等公路建设的修建进程的加快,各种曲线桥结构在我国已经被广泛使用。曲线梁桥具有独特的流线型结构,其线条十分明快并且流畅,能够给人们以美的感受。并且曲线梁桥的设置可以让交通路线的规划很好地适应当地的地形特点,从而使得交通线

曲线连续梁桥的结构设计

曲线连续梁桥的结构设计 曲线梁桥是高速公路和城市立交中普遍应用的一种桥型。文章根据曲线梁桥的结构受力特点,论述了曲线梁桥在施工及成桥运营阶段出现病害的原因,论述了曲线梁桥在设计中应注意的问题,并提出了该类型桥梁设计中的一些经验做法和解决方案。 标签:曲线梁桥;结构设计;受力特点 1 概述 目前在高等级公路及城市立交中曲线梁桥的应用得到了普遍的认可,尤其在城市立交匝道设计中最为广泛。曲线梁桥的设计中常采用箱型截面,因其具有材料用量少、结构自重小、抗扭刚度大、整体稳定性好、截面应力分配合理等优点,而在曲线梁桥中应用非常普遍。 现阶段曲线梁桥的设计和理论研究已经取得了很多成果,但由于曲线梁桥结构受力复杂、施工过程中标高不能准确的控制,由于设计的原因导致在项目的施工或使用过程中已多次发生过事故。常见问题主要为:曲梁内侧支座脱空;主梁横向侧移量过大;横向刚度不足引起扭曲变形;固结墩墩身开裂;梁体的外移和翻转进一步导致支座、伸缩缝的剪切破坏和平曲线超高的丧失等。故在曲线梁桥的设计与施工过程中应充分考虑结构的弯、剪、扭受力特性,对结构内力进行准确分析及合理优化,消除设计带来的不安全隐患。 2 曲线梁桥受力特点 2.1 “弯-扭”耦合作用 曲梁由于自身及外荷载的作用下会同时产生弯矩和扭矩,并且相互作用。表现为曲梁内外侧尺寸不同、支座反力不等、外荷载偏心及预应力径向作用共同引起较大的扭矩,使梁截面处于“弯-扭”耦合作用的状态,其截面主拉应力比相应的直梁桥大得多,这是曲梁所独有的受力特点。 在变形方面,强大的扭矩作用致使曲线梁桥产生扭转变形;曲线外侧的竖向挠度要大于同等跨径的直桥;由于“弯-扭”耦合作用,在梁端可能出现“翘曲”;当梁端处横桥向约束较弱时,梁体有向曲线外侧“爬移”的趋势。 在受力方面,由于存在较大的扭矩,通常会使外梁超载、内梁卸载,尤其当活载偏置时,内侧支座甚至会出现负反力,如果支座不能承受拉力,就会出现梁体与支座发生脱离的现象,即“支座脱空”现象,这种现象在小半径的宽桥中特别明显。 2.2 下部墩台受力复杂

如何用梁格法计算曲线梁桥桥梁分析

如何用梁格法计算曲线梁桥桥梁分析 一、梁格法既有相当精度又较易实行 对曲线梁桥, 可以把它简化为单根曲梁、 平面梁格计算, 也可以几乎不加简化地用块体 单元、板壳单元计算。 单根曲梁模型的优点是简单, 缺点是: 几乎所有类型的梁单元都有刚性截面假定, 因而 不能考虑桥梁横截面的畸变,总体精度较低。 块体单元、板壳单元模型,优点是:与实际模型最接近,不需要计算横截面的形心、剪 力中心、翼板 有效宽度,截面的畸变、翘曲自动考虑;缺点:输出的是梁横截面上若干点的 应力, 不能直接用于强度计算。 对于位置固定的静力荷载, 当然可以把若干点的应力换算成 横截面上的内力。 对于位置不固定的车辆荷载, 理论上必须采用影响面方法求最大、 最小内 力。板壳单元输出的只能是各点的应力影响面。 把各点的应力影响面重新合成为横截面的内 力影响面,要另外附加大量工作。这个缺点使得它几乎不可能在设计中应用。 梁格法的优点是: 可以直接输出各主梁的内力, 便于利用规范进行强度验算, 整体精度 能满足设计要求。 由于这个优点, 使得该法成为计算曲线梁桥和其它平面形状特殊的梁式桥 的唯一实用方法。 它的缺点在于, 它对原结构进行了面目全非的简化, 大量几何参数要预先 计算准备,如果由计算者手工准备,不仅工作量大,而且人为偏差较难避免。 二、如何建立梁格力学模型 1. 纵梁个数、横梁道数、支点与梁单元 对于有腹板的箱型、 于 实心板梁,纵向主梁的个数可按计算者意愿决定。全桥顺桥向划分 M 个梁段, 个横截面, 每个横截面位置,就是横向梁单元的位置。支点应当位于某个横截面下面, 是在某个横向梁单元下面。 每一道横梁都被纵向主梁和支 点分割成数目不等的单元。 梁单元用同一种最普通的 12 自由度空间梁单元,能考虑剪切变形影响 即可。 2. 纵向主梁的划分、几何常数计算 对于箱型梁桥,从什么地方划开,使其成为若干个纵向主梁?汉勃利提出了一个原则: 应当使划分以 后的各工型的形心大致在同一高度上。 笔者曾经用有限条法进行过考核, 依据这一原则, 依各主梁弯矩、 剪力计算出的正应力、 剪应力, 与有限条的吻合性确实较好。 试算的具体划分步骤如下: T 型梁桥,其梁格模型中纵向主梁的个数,应当是腹板的个数。对 共有 M+1 也就 纵、横 发现

第六章 曲线梁桥

6 曲线梁桥 6.1一般规定 6.1.1本章适用于平面曲线钢筋混凝土、预应力混凝土、钢-混凝土联合梁式桥。 6.1.2本章仅就曲线梁桥特有的问题做出规定,其它有关问题参照相关规定执行。 6.1.3在选择曲线梁桥的结构形式及截面形状时,必须考虑有足够的抗扭刚度以适应扭转效应的影响。 6.1.4在保证结构体系受力合理的前提下兼顾桥梁美观的要求,分联处公用墩和桥梁宽度大于10m的曲线梁桥中墩宜设置为双柱;不应设置隐盖梁结构形式;箱梁的悬臂不宜过大,特别是多跨连续曲线匝道桥梁。 6.2结构体系 6.2.1曲线梁桥更需选择合理跨径,以有利于控制扭矩峰值,控制负反力的发生。 1

6.2.2曲线梁桥支座设置原则 (1)梁端支座宜设置橡胶支座,以保证适当的垂直方向的弹性约束; 沿弯梁径向应设置水平方向约束,以防止过大的径向水平位移; (2)结构中墩在满足结构受力的情况下,尽可能与主梁固结或设置固定支座、抗震型盆式支座。当采用沿曲线切线的滑动支座时, 必须保证支座具有可靠的滑动能力。中墩不应设置球形支座、球 冠支座或双向滑动支座。 6.2.3曲线梁桥中墩应设置适当的偏心值,以调整全梁的扭矩分布。其偏心值应与中墩支座选用形式相适应。 2

6.2.4曲线梁桥中墩不采用墩、梁固结时,应设置适当的径向水平限位措施,其强度应满足水平力强度要求。 6.3结构分析 6.3.1曲线梁桥结构静力分析模型的建立应满足以下要求: (1)当扭跨所对应的圆心角φ<5o时,可作为以曲线长为跨径的直线桥进行分析。 (2)当5o<φ≤30o时,弯矩及剪力可按直线桥进行分析,反力及扭矩需按空间程序进行分析,并且应考虑由于预应力、混凝土收 缩、徐变及温度作用所产生的效应。 (3)当30o<φ≤45o时,所有截面内力均应按空间程序进行分析。 (4)当φ>45o时,除按空间程序分析外,还应考虑翘曲约束扭转的影响。 (5)当采用具有相当抗扭刚度的闭口截面曲线梁桥,其扭转跨径所对应的(曲跨梁段)圆心角小于12o时,可以按直线桥进行分 3

相关文档
最新文档