蛋白质提取、纯化、鉴定的方法(一)

蛋白质提取、纯化、鉴定的方法(一)
蛋白质提取、纯化、鉴定的方法(一)

蛋白质提取、纯化、鉴定的方法(一)

一、硫酸铵沉淀

硫酸铵是用于沉淀蛋白质的最常用的盐。低浓度硫酸铵使蛋白质的溶解度增大,即所谓的盐溶(salting in),但当硫酸铵浓度增加到一定浓度后,蛋白质的溶解度开始减小,即所谓的盐析(salting out)。当硫酸铵达到一定浓度时,蛋白质析出。不同蛋白质的盐析浓度有差异,了解目的蛋白质析出所需的硫酸铵浓度,就可部分纯化这种蛋白质。注意,目的蛋白质的浓度与盐析浓度有一定的关系,如1mg/ml与0.01mg/ml的蛋白质浓度所需的盐析浓度是不一样的,低浓度的蛋白质盐析需要较高浓度的硫酸铵。硫酸铵沉淀不仅可去除一些杂蛋白,还可去除其他的杂质如脂质等各种小分子。

二、三相分配技术

举一个例子来说明该技术的原理:提取E.coli中的绿色荧光蛋白,E.coli 与适当浓度的硫酸铵混匀,加入等体积的叔丁醇,振荡混匀,低速离心,分成三相。上层为有机相,含有细菌的膜脂和脂溶性物质如色素;中层,含有绿色荧光蛋白;下层为相,含有完整细胞壁的E.coli、核酸和大量的蛋白质等。

这个技术的原理是,适当浓度的硫酸铵可沉淀大量的蛋白质但不沉淀绿色荧光蛋白;叔丁醇可溶解细菌的细胞膜,因此可释放绿色荧光蛋白;同时叔丁醇是种有机溶剂,可使蛋白质和核酸等大分子变性,使其在原位沉淀,仍留在细菌的细胞壁内。

该方法的优点是操作简便,省去了消化细胞壁和去除核酸及大多数杂蛋白等烦琐步骤。但该方法只适用于那些能够耐受有机溶剂的蛋白质。这样的技术得到的是部分纯化的蛋白质。

三、层析技术

1.离子交换层析这一技术是根据不同的蛋白质有不同的等电点,其吸附在离子交换剂上的强弱有分别,来对蛋白质进行分离。离子交换剂可分为两种,阳离子交换剂(如羧甲纤维素)和阴离子交换剂(如DEAE-纤维素)。在某一pH值条件下,当阳(阴)离子交换剂带有负(正)电荷而蛋白质带有正(负)电荷时,蛋白质就可吸附在阳(阴)离子交换剂上。各种蛋白质的等电点可能不同,因此其吸附在离子交换剂上的强度不同,用不同离子强度的洗脱液可将pI不同的蛋白质洗脱。要注意的是pI相近的蛋白质很多,因此用此方法提取的目的蛋白质不一定是纯的。在使用离子交换剂时,必须知道离子交换剂的pKa值,如羧甲基的pKa值是

4.5,这说明当流动相的pH为5. 5时,90%羧甲基与质子基本解离,带负电,然而当流动相pH为5. O时,羧甲基与质子开始结合,当pH到达4.0时,羧甲基质子化,不带电,失去离子交换功能。当然,还必须知道目的蛋白质的等电点。实验者若要做好离子交换层析,必须了解离子交换层析的详细原理和操作规范。

2.聚焦层析聚焦层析是一种离子交换层析,与普通的离子交换层析不同的是洗脱方法。普通的离子交换层析是用变换流动相的离子强度来洗脱蛋白质,而聚焦层析是用pH梯度来洗脱蛋白质。洗脱液用高分子缓冲液(polymeric buffer,如ampholytes),amloholytes可非常好地控制pH的洗脱梯度。理论上,pI相差0.05的蛋白质也可以被分开。

3.亲和层析亲和层析是一种非常有效的层析方法,基于蛋白质,配体(如抗体、抗原、受体、激素、酶、底物、酶,抑制剂等)分子之间的特异结合性。将一种配体交联到固相载体上,理论上就可以提取混合物中的目的蛋白质。在用亲和层析纯化时,必须首先考虑抗体,抗原、受体、激素、酶、底物等的解离常数(Kd),Kd一定要小于0.003mM。当Kd小于0.003mM时,95%,的酶、抗体或受体等会吸附在亲和吸附剂(affinity adsorbents)上。洗脱时,流动相中的底物(配体)对酶(受体)的亲和性往往大于固定相中的底物(配体),因此可以有效洗脱。有时,若配体不易获得或非常昂贵,也可以用其他方法洗脱,如增加离子强度,破坏目的蛋白质与其配体之间的离子相互作用,但增加离子强度可增强目的蛋白质与固相吸附剂的疏水吸附,因此可以加一些表面活性剂如TritonX-100

降低目的蛋白质与固相吸附剂的疏水吸附作用。有些目的蛋白质与亲和吸附剂的相互作用非常强,很难洗脱,可以加一些离液剂(chaotropic agent)如尿素。

蛋白质的提取与检测

蛋白质的提取与检测

蛋白质的提取与检测 第一节细胞总蛋白的提取及含量测定 【基本原理】 蛋白质含量测定法是生物化学研究中最常用、最基本的分析方法之一。目前常用的有四种经典的方法,即定氮法、双缩脲法(Biuret法)、Folin-酚试剂法(Lowry法)和紫外吸收法。另外还有两种近年普遍使用起来的测定法,即考马斯亮蓝法(Bradford法)与二辛可宁酸法(BCA法)。值得注意的是,上述方法并不能在任何条件下适用于任何形式的蛋白质,因为一种蛋白质溶液用这几种方法测定有可能得出不同的结果。每种测定法都不是完美无缺的,都有其优缺点。在选择方法时应考虑:①实验对测定所要求的灵敏度和精确度;②蛋白质的性质;③溶液中存在的干扰物质;④测定所要花费的时间。 Lowry法:蛋白质与碱性铜溶液中的二价铜离子络和使得肽键伸展,从而使暴露出的酪氨酸和色氨酸在碱性铜条件下与磷钼钨酸反应并产生深蓝色,在750nm有最大光吸收值。在一定浓度范围内,反应液颜色的深浅与蛋白质中的酪氨酸和色氨酸的含量成正比,由于各种蛋白质中的酪氨酸和色氨酸的含量各不相同,因此在测定时需使用同种蛋白质作标准。 Bradford法:蛋白质与染料考马斯亮蓝G-250结合,使得染料最大吸收峰从465nm变为595nm,溶液的颜色由棕黑色变为蓝色。在一定的线性范围内,反应液595nm处吸光度的变化量与反应蛋白量成正比,测定595nm处吸光度的增加即可进行蛋白定量。

BCA (Bicinchoninic acid)法:二价 铜离子在碱性 的条件下,可以 被蛋白质还原 成一价铜离子 (Biuret reaction)并与 BCA相互作用 产生敏感的颜 色反应。两分子 的BCA螯合一 个铜离子,形成 紫色的反应复 合物。该水溶性 的复合物在 562nm处显示 强烈的吸光性, 吸光度和蛋白 浓度在广泛范 围内有良好的 线性关 0.118 0.05 0.154 0.1 0.213 0.2 0.283 0.3 0.329 0.4 0.404 0.5 第二节SDS-PAGE电泳 【基本原理】

蛋白质提取及纯化

蛋白质提取及纯化 提取蛋白质的当天早晨去后把高速离心机和超高速离心机都打开冷却 1、前一天晚上用Resuspension Buffer重悬4L菌体,然后离心于4C保存,第 二天使用。 2、用少量预冷的Resuspension Buffer重悬细菌,1 protease inhibitor tablets(EDTA Free),1mM PMSF, 然后用玻璃Homogenizer做均一化处理,将总体积调至80ml; 3、High Pressure Homogenizer破壁,特别注意样品一定要在不加压力的情况 下运行一个循环(2min);然后1200bar,6min三个循环,整个过程冰水冷却; 4、DNaseI处理:加入2.5mg DNaseI,10mM MgCl2, 室温处理30min; 5、 11.000rpm,4℃,15min; then 11.000rpm,4℃,15min; 6、 1mM PMSF, 45.000rpm,4℃,90min; 7、用Resuspension Buffer洗两次以除去可溶性的蛋白质,然后预热分光光度 计; 8、用3-4ml Binding Buffer重悬Membrane pellets,动作一定要轻缓,重悬 后的总体积不超过8ml,取出300ul测定OD800和OD850(以OD850为准),测定时候是逐步稀释,每次吸光值小于1; 9、调整OD850≤30-50,在缓慢搅拌(速度一定要慢)的情况下逐滴加入30%的 LDAO使其终浓度达到0.5%,1mM PMSF,26℃黑暗条件下重悬1h,期间注意观察颜色变化; 10、45.000rpm, 4℃, 30min,注意观察颜色的变化以及沉淀是否发生明显的变化。 Charge and Equilibrate Resin (1)用蒸馏水冲洗柱子以除去20%酒精,注意不要用buffer,1ml/min,至紫外 吸收和电导稳定; (2)用0.1M NiSO4 Charge Resin,1ml/min,10倍柱体积,尽量使得紫外吸收 和电导稳定; (3)用蒸馏水冲洗,1ml/min,至紫外吸收和电导稳定;

11.6 生化实验报告 血清γ-球蛋白的分离纯化与鉴定及电泳分析

血清γ-球蛋白的分离纯化与鉴定及电泳分析 【实验目的】 1、了解蛋白质分离提纯的总体思路。 2、掌握盐析法、凝胶层析法和离子交换层析的实验原理及操作技术 3、掌握电泳法分离纯化蛋白质的方法。 【实验原理】 1、蛋白质的粗提——盐析法 胶体的盐析是加盐,盐中的带电粒子使蛋白质周围的水化膜减弱,胶粒溶解度降低,形成沉淀析出的过程,是胶体的聚沉现象的一种。向蛋白质溶液中加入某些浓的无机盐[如(NH4)2SO4或Na2SO4]溶液后,可以使蛋白质凝聚而从溶液中析出,这种作用就叫做盐析。盐析不能使蛋白质变性,可以复原。利用这个性质,可以采用多次盐析的方法来分离、提纯蛋白质。蛋白质在水溶液中的溶解度取决于蛋白质分子表面离子周围的水分子数目,亦即主要是由蛋白质分子外周亲水基团与水形成水化膜的程度以及蛋白质分子带有电荷的情况决定的。蛋白质溶液中加入中性盐后,由于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化层减弱乃至消失。同时,离子强度发生改变,蛋白质表面的电荷大量被中和,蛋白质溶解度更加降低,之蛋白质分子之间聚集而沉淀。由于各种蛋白质在不同盐浓度中的溶解度不同,不同饱和度的盐溶液沉淀的蛋白质不同,从而使之从其他蛋白中分离出来。简单的说就是将硫酸铵、硫化钠或氯化钠等加入蛋白质溶液,使蛋白质表面电荷被中和以及水化膜被破坏,导致蛋白质在水溶液中的稳定性因素去除而沉淀。由于清蛋白的亲水性比球蛋白大,且清蛋白的分子比球蛋白小,所以清蛋白需要高浓度的盐溶液才能够发生盐析,低浓度的时候球蛋白发生盐析。盐析法分离蛋白质:各种蛋白质的颗粒大小、亲水程度、pI不同,盐析所需的盐浓度也不一样。调节盐浓度可使不同的蛋白质沉淀,从而达到分离的目的。 常用中性盐:硫酸铵、硫酸钠等。 硫酸铵:温度系数小,溶解度大,蛋白谱广,盐析效果好,不易引起变性。可用硫酸/氨水按需要调节pH值。 本实验中清蛋白分子小,亲水性强,在饱和硫酸铵溶液中可沉淀析出,而球蛋白分子大,亲水性弱,在半饱和硫酸铵溶液中即可沉淀析出。因此调节盐浓度可使球蛋白与清蛋白分离。 2、脱盐——凝胶层析法 凝胶层析又称分子筛过滤、排阻层析等。它的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。对于高分子物质有很好的分离效果。凝胶层析是按照蛋白质分子量大小进行分离的技术,又称之凝胶过滤,分子筛层析或排阻层析。 单个凝胶珠本身象个"筛子"。不同类型凝胶的筛孔的大小不同。如果将这样的凝胶装入一个足够长的柱子中,作成一个凝胶柱。当含有大小不同的蛋白质样品加到凝胶柱上时,比凝胶珠平均孔径小的蛋白质就要连续不断地穿入珠子的内部,这样的小分子不但其运动路程长,而且受到来自凝胶珠内部的阻力也很大,所以

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

蛋白质的分离纯化--有机溶剂分离纯化法

蛋白质的分离纯化--有机溶剂分离纯化法 文章出处:朱敏 蛋白质的分离纯化--有机溶剂分离纯化法 有机溶剂能降低溶液的介电常数,从而增加蛋白质分子上不同电荷的引力,导致溶解度降低。有机溶剂与水作用能破坏蛋白质的水化膜,使蛋白质在一定浓度的有机溶剂中沉淀析出。常用的有机溶剂是乙醇和丙酮,由于有机溶剂的加入易引起变性失活,尤其乙醇和水混合释放热量,操作一般宜在低温下进行,且在加入有机溶剂时注意搅拌均匀以免局部浓度过大。用此法所析出的沉淀一般比盐析法易过滤或离心沉降。分离后的蛋白质沉淀应立即用水或缓冲液溶解,以降低有机溶剂的浓度。操作时的pH值大多数控制在待沉淀蛋白质等电点附近。有机溶剂在中性盐存在时能增加蛋白质的溶解度,减少变性和提高分离的效果。一般在有机溶剂沉淀时添加中性盐的浓度在0.05mol左右,过多不仅耗费有机溶剂,而且可能导致沉淀不好.沉淀的条件一经确定,就必须严格控制,才能得到重复性结果.有机溶剂浓度通常以有机溶剂和水容积比或用百分浓度素示.故操作条件比盐析法严格。 许多有机溶剂,如碳链较长的醇,它溶于水,但有限度。其量大到一定程度后则分成两相,一相以水为主,一相以有机溶剂为主。某些第3组分的存在可以改变两相的比例和组成。有许多蛋白质在两相中均能溶解,形成分配。在同一个两相的溶剂系统中,不同的蛋白质有不同的分配系数。根据这一原理,操作全部机械化的有逆流分溶。因要求实验室温度恒定且操作也繁杂,虽一直有人在用但很不普遍。分配层析也是应用这一原理,但在分离纯化蛋白质工作中用得不多,主要是因为多数蛋白质在有机溶剂中,特别是在易与水分相的溶剂中溶解度小且易变性。 疏水层析是近年发展的新方法。它利用蛋白质表面有一部分疏水性,与带有疏水性的载体在高盐浓度时结合。洗脱时将盐浓度逐渐降低,蛋白质因疏水性不同而逐个地先后被洗脱而纯化。此法能分离其它一些方法不易纯化的蛋白质。 利用分子形状和大小不同的分离方法 蛋白质形状有细长的如纤维,有密实的如圆球,形状很不相同。蛋白质的分子量从6000左右开始,有各种大小,大的可以大到几百万。利用这些差别,有几种方法可用来分离蛋白质。 凝胶层析 属最常用的蛋白质分离方法。系混合物随流动相流经装有凝胶作为固定相的层析柱时,混合物中各物质因分子大小不同而被分离的技术。所指凝胶从广义上说是一类具有三维空间多孔网状结构的物质,如天然物质中的马铃薯淀粉及琼脂糖凝胶,人工合成品的葡聚糖凝胶及带离子交换基团的葡聚糖凝胶等。把适当的凝胶颗粒装填到玻璃管中制成层析柱,于柱内加入欲分离的混合物,然后用大量蒸镏水或其它稀溶液洗柱,由于混合物中各物质的分子大小和形状不同,在洗柱过程中,分子量最大的物质不能进入凝胶网孔而沿凝胶颗粒间的空隙最先流出柱外。分子量最小的物质因能进入凝胶网孔而受阻滞,流速缓慢,致使最后流出柱外。整个过程和过滤相似,故又名凝胶过滤、凝胶渗透过滤、分子筛过滤等。由于物质在分离过程中的阻滞减速现象,有人也称之为阻滞扩散层析、排阻层析等。

蛋白质提取与制备的原理和方法

蛋白质提取与制备的原理和方法 蛋白质提取与制备蛋白质种类很多,性质上的差异很大,既或是同类蛋白质,因选用材料不同,使用方法差别也很大,且又处于不同的体系中,因此不可能有一个固定的程序适用各类蛋白质的分离。但多数分离工作中的关键部分基本手段还是共同的,大部分蛋白质均可溶于水、稀盐、稀酸或稀碱溶液中,少数与脂类结合的蛋白质溶于乙醇、丙酮及丁醇等有机溶剂中。因此可采用不同溶剂提取、分离及纯化蛋白质和酶。 蛋白质与酶在不同溶剂中溶解度的差异,主要取决于蛋白分子中非极性疏水基团与极性亲水基团的比例,其次取决于这些基团的排列和偶极矩。故分子结构性质是不同蛋白质溶解差异的内因。温度、pH、离子强度等是影响蛋白质溶解度的外界条件。提取蛋白质时常根据这些内外因素综合加以利用。将细胞内蛋白质提取出来。并与其它不需要的物质分开。但动物材料中的蛋白质有些可溶性的形式存在于体液(如血浆、消化硫等)中,可以不必经过提取直接进行分离。蛋白质中的角蛋白、胶原及丝蛋白等不溶性蛋白质,只需要适当的溶剂洗去可溶性的伴随物,如脂类、糖类以及其他可溶性蛋白质,最后剩下的就是不溶性蛋白质。这些蛋白质经细胞破碎后,用水、稀盐酸及缓冲液等适当溶剂,将蛋白质溶解出来,再用离心法除去不溶物,即得粗提取液。水适用于白蛋白类蛋白质的抽提。如果抽提物的pH用适当缓冲液控制时,共稳定性及溶解度均能增加。如球蛋白 类能溶于稀盐溶液中,脂蛋白可用 稀的去垢剂溶液如十二烷基硫酸钠、洋地黄皂苷(Digitonin)溶液或有机溶剂来抽提。其它不溶于水的蛋白质通常用稀碱溶液抽提。 蛋白质类别和溶解性质 白蛋白和球蛋白: 溶于水及稀盐、稀酸、稀碱溶液,可被50%饱和度硫酸铵析出。 真球蛋白: 一般在等电点时不溶于水,但加入少量的盐、酸、碱则可溶解。 拟球蛋白: 溶于水,可为50%饱和度硫酸铵析出 醇溶蛋白: 溶于70~80%乙醇中,不溶于水及无水乙醇 壳蛋白: 在等电点不溶于水,也不溶于稀盐酸,易溶于稀酸、稀碱溶液 精蛋白: 溶于水和稀酸,易在稀氨水中沉淀 组蛋白: 溶于水和稀酸,易在稀氨水中沉淀 硬蛋白质: 不溶于水、盐、稀酸及稀碱 缀合蛋白(包括磷蛋白、粘蛋白、糖蛋白、核蛋白、脂蛋白、血红蛋白、金属蛋白、黄素蛋白和氮苯蛋白等) : 此类蛋白质溶解性质随蛋白质与非蛋白质结合部分的不同而异,除脂蛋白外,一般可溶于稀酸、稀碱及盐溶液中,脂蛋白如

DNA与蛋白质分离与鉴定 巩固习题.docx

DNA 与蛋白质分离鉴定巩固练习 姓名: ______________ 学号: __________ 成绩: __________________ 一、选择题。 1. 下列有关“DNA 的粗提取与鉴定”实验的叙述,正确的是 ( ) A. DNA 在NaCl 溶液屮的溶解度随NaCl 浓度的升高而增大 B. DNA 对洗涤剂的耐受性差,对高温的耐受性强 C. 在沸水浴的条件下,DNA 遇二苯胺试剂会被染成蓝色 D. 可以选择新鲜的猪血、花椰菜等作为实验材料 2. DM 在不同浓度的NH1溶液屮溶解度不同;DNA 不溶于酒精溶液,而细胞屮的某些物质溶于酒精溶 液。下图为“DNA 的粗提取”实验的相关操作步骤,其操作目的错谋的是 ( ) 含DNA 的 浓NaCl 溶液 ④ A. ①是洗涤红细胞、去除红细胞表面的杂质 B. ②是稀释NaCl 溶液至0. 14mol/L,析出DNA C. ③是选用2mol/LNaCl 溶液,溶解粘稠物中的DNA D. ④是纯化DNA,去除溶于95%酒精的杂质 3. 在利用洋葱进行DNA 粗提取的实验屮,加入洗涤剂和食盐的作用分别是 ( ) A.破坏细胞壁;溶解DNA B.破坏细胞膜;溶解DNA C.破坏细胞壁;溶解蛋白质 D.破坏细胞膜;溶解蛋片质 4. 下列关于DNA 粗提取与鉴定的说法正确的是 ( ) A. 析出DNA 时要缓慢地加蒸憎水,当析出黏稠物时即不再加水 B. 在探究洗涤剂对植物细胞DNA 提取的影响实验中,H 变量是洗涤剂和食盐 C. 提取的DNA 溶解后加入二苯胺试剂即可染成蓝色 D. 将含有DXA 的滤液放在60?75°C 的恒温水浴箱中保温麻过滤,能去除蛋H 质杂质 5. 去除DNA 杂质时,可直接在滤液屮加入( ),反应lO-lbmin A.嫩肉粉 B.蒸馆水 C.加ol/lNaCl D.酒精 6. 在向溶解DNA 的NaCl 溶液屮,不断加入蒸馄水的目的是 ( ) A. 加快溶解DNA 的速度 B.加快溶解杂质的速度 C.减少DNA 的溶解度,加快DNA 析出 D.减小杂质的溶解度,加快杂质的析岀 7. 下列操作屮,对DNA 的提取量影响较小的是 ( ) A. 使鸡血细胞在蒸催水屮充分破裂,发岀DNA 等核物质 B. 搅拌时,要用玻璃棒沿一个方向轻缓搅动 C. 在析出D\A 粘稠物时,要缓缓加熬憎水,直至溶液屮粘稠物不再增多 D. 在用酒精沉淀DNA 时,要使用冷酒精,甚至再将混合液放入冰箱屮冷却 8. 在研究叽A 的基因样木前,采集来的血样需要蛋H 水解酶处理,然示用有机溶剂除去蛋片 质。用蛋白水解酶处理血样的目的是 ( ) A. 除去血浆屮的蛋白质 B.除去染色体上的蛋白质 C.除去血细胞表瓯的蛋白质 D. 除去血细胞屮的所有的蛋白质,使DNA 释放,便于述一步提纯 9. 下列关于“DNA 的粗提取与鉴定”实验原理与方法的叙述,错误的是 ( ) A. DNA 在NaCl 溶液屮的溶解度随着溶液浓度的减小而减小 B. 向鸡血细胞中加入蒸催水的目的是使其吸水涨破,释放岀其屮的DNA C. 向滤液中加入冷却的酒精的目的是除去DNA 中的杂质,纯化DNA D. 向初步纯化的DNA 屮加入二苯胺溶液,沸水浴后可观察到溶液显蓝色 10. 与析出DNA 粘稠物有关的叙述,不正确的是 ( ) 黏稠物 2DDO 】/U NaCl 溶液 ③ 95%酒特

蛋白质提取、纯化、鉴定的方法(二)

蛋白质提取、纯化、鉴定的方法(二) 一、层析技术 1.离子交换层析的亲和洗脱这种技术结合了离子交换与亲和层析。如在某一pH时,目的蛋白质带正(负)电荷,用阳(阴)离子交换剂吸附,这一过程去除了很大一部分不吸附的杂蛋自。然后用该目的蛋白质的配体来洗脱,该配体特异性地结合目的蛋白质并使之洗脱,但不洗脱其他吸附的蛋白质,达到纯化的目的。注意,该配体需带有一定量的阴(阳)电荷,有效降低目的蛋白质与阳(阴)离子交换剂之间的电荷相互作用。 2.固相金属亲和层析重组蛋白质可在C-或N-端引入组氨酸标签,一般为6个组氨酸残基(His-tag)。这些组氨酸残基与过渡金属(transitionalmetals)Ni2+或Co2+形成配位键。用固相化的Ni2+或Co2+(如商品化的树脂,Ni-NTA)可吸附带有His-tag的重组蛋白质,用含有咪唑(imidazole)的缓冲液可洗脱重组蛋白质。注意,有些含有较多组氨酸的蛋白质也可与吸附剂结台,但较弱,因此可用低浓度的咪唑洗脱;在层析过程中不能引入金属螯合剂如EDTA;避免使用还原剂如DTT或DTE,但可用低浓度的巯基乙醇。 该技术也用于提取磷酸化的蛋白质。将螫合剂交联到树脂,螯合三价铁或三价镓,该亲和吸附剂可吸附混合物中的磷酸化的蛋白质。洗去不吸附的非磷酸化蛋白质后,用磷酸缓冲液即可将磷酸化蛋白质从该亲和吸附剂上洗脱。要注意的是酸性蛋白质也可被不同程度地吸附。 3.凝胶过滤该技术过去也被称为分子筛。构成凝胶的小珠(bead)中有大小不一的孔,分子量大的分子能进入较大的孔而不能进入小的孔,分子量小的则不仅能进入较大的孔也能进入小的孔,因此在层析过程中,小分子经过的路程较长而大分子经过的路程较短,如此就可分离分子量不同的蛋白质。然而,分子量相近的蛋白质非常多,因此,用这种技术得到的蛋白质是分子量相近的混合蛋白质。然而这种技术在某些研究中很有用,如丙酮酸激酶M2(PKM2)由四个相同的亚基组成,PKM2在细胞中以三种形式存在——单体、二聚体、四聚体,这三种形式的功能不同,若要鉴定细胞中PKM2的各种形式的量,先用凝胶过滤技术分离细胞裂解液中的PKM2的三种形式,之后用Western blot对每一种形式的PKM2做相对定量。 4.反相层析该技术是指用疏水固相的一种层析技术。“反相”是相对“正相”而言,正相是指亲水的固相如硅胶表面带有硅羟基(silanol group),硅羟基可与被分离的化台物相互作用,被分离的化合物的亲水性越强,则滞留在正相

蛋白质的提取与纯化

蛋白质的提取与纯化 一,蛋白质的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。提取的温度要视有效成份性质而定。一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。 下面着重讨论提取液的pH值和盐浓度的选择。 1、pH值 蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。 2、盐浓度 稀浓度可促进蛋白质的溶,称为盐溶作用。同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等

中性盐,一般以0.15摩尔。升浓度为宜。缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。 (二)有机溶剂提取法 一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。但必须在低温下操作。丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。另外,丁醇提取法的pH及温度选择范围较广,也适用于动植物及微生物材料。 二、蛋白质的分离纯化 蛋白质的分离纯化方法很多,主要有: (一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

实验十蛋白质的表达、分离纯化和鉴定

实验十蛋白质的表达、分离纯化和鉴定 第一部分蛋白质的表达、分离纯化 目的要求 (1)了解重组蛋白表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 目的基因在宿主细胞中的高效表达及表达的重组蛋白的分离纯化对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时目的基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21(DE3)中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白N端带有6个连续的组氨酸残基,可通过固相化的镍离子(Ni2+)亲和层析介质加以分离纯化,称为金属熬合亲和层析(MCAC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材 一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL。 [2] 氨苄青霉素:100mg/mL。 [3] 上样缓冲液(GLB):100 mM NaH2PO4, 10 mM Tris, 8M Urea, 1 mM β-巯基乙醇, pH8.0。 [4] 清洗缓冲液(UWB):100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3。 [5] 洗脱液缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 500 mM 咪唑, pH8.0。 [6] IPTG 二、器材 摇床,离心机,层析柱(1 10 cm),蠕动泵 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白表达载体的大肠杆菌BL21(DE3)菌株于5mL

蛋白表达、分离和纯化

蛋白质的表达、分离、纯化和鉴定 来源:易生物实验浏览次数:2704网友评论0 条第一部分蛋白质的表达、分离、纯化克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作 结构与功能的研究。 第二部分蛋白质的鉴定电泳可用于分离复杂的蛋白质混合物,研究蛋白质的亚基组成等。在聚丙烯酰胺凝胶电泳中,凝胶的孔径,蛋白质的电荷,大小,性质等因素共同决定了蛋白质的电泳迁移率。 关键词:蛋白质蛋白质表达克隆基因聚丙烯酰胺凝胶电泳氯霉素酰基转移酶十二烷基硫酸钠SDS聚丙烯酰 胺凝胶 第一部分蛋白质的表达、分离、纯化 目的要求 (1)了解克隆基因表达的方法和意义。 (2)了解重组蛋白亲和层析分离纯化的方法。 实验原理 克隆基因在细胞中表达对理论研究和实验应用都具有重要的意义。通过表达能探索和研究基因的功能以及基因表达调控的机理,同时克隆基因表达出所编码的蛋白质可供作结构与功能的研究。大肠杆菌是目前应用最广泛的蛋白质表达系统,其表达外源基因产物的水平远高于其它基因表达系统,表达的目的蛋白量甚至能超过细菌总蛋白量的80%。本实验中,携带有目标蛋白基因的质粒在大肠杆菌BL21中,在37℃,IPTG诱导下,超量表达携带有6个连续组氨酸残基的重组氯霉素酰基转移酶蛋白,该蛋白可用一种通过共价偶连的次氨基三乙酸(NTA)使镍离子(Ni2+)固相化的层析介质加以提纯,实为金属熬合亲和层析(MC AC)。蛋白质的纯化程度可通过聚丙烯酰胺凝胶电泳进行分析。 试剂和器材

一、试剂 [1] LB液体培养基:Trytone 10g, yeast extract 5g, NaCl 10g, 用蒸馏水配至1000mL. [2] 氨苄青霉素:100mg/mL [3] 上样 缓冲液:100 mM NaH2PO4, 10 mM Tris, 8M Urea, 10 mM2-ME, pH8.0 [4] Washing Buffer:100 mM NaH2PO4, 10 mM Tris, 8 M Urea, pH6.3 [5] Elution Buffer:100 mM NaH2PO4, 10 mMTris, 8M Urea, 500 mM Imidazole, pH 8.0 [6] IPTG 易生物仪器库:.ebioe./yp/product-list-42.html 易生物试剂库:.ebioe./yp/product-list-43.html 二、器材 摇床,离心机,层析柱(1′10 cm) 操作方法 一、氯霉素酰基转移酶重组蛋白的诱导 1. 接种含有重组氯霉素酰基转移酶蛋白的大肠杆菌BL21菌株于5mL LB液体培养基中(含100ug/mL 氨苄青霉素),37℃震荡培养过夜。 2. 转接1mL过夜培养物于100mL(含100ug/mL 氨苄青霉素)LB液体培养基中,37℃震荡培养至OD600 = 0.6 - 0.8。取10ul 样品用于SDS-PAGE 分析。 3. 加入IPTG至终浓度0.5 mmol/l, 37℃继续培养1-3h.

蛋白质纯化

蛋白质纯化 蛋白质的分离纯化在生物化学研究应用中使用广泛,是一项重要的操作技术。一个典型的真核细胞可以包含数以千计的不同蛋白质,一些含量十分丰富,一些仅含有几个拷贝。为了研究某一个蛋白质,必须首先将该蛋白质从其他蛋白质和非蛋白质分子中纯化出来。蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。 蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。一般蛋白纯化采用的方法为树脂法。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速、颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,必要时可加入相应的保护剂(例如蛋白酶抑制剂),防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些分子量大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性指树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 蛋白质纯化的一般注意事项 在进行任何一种蛋白质纯化得时候,都要时刻注意维护它的稳定,保护它的活性,有一些通用的注意事项需要牢记,它们包括: 1.操作尽可能置于冰上或者在冷库内进行。 2.不要太稀,蛋白浓度维持在μg/mL~mg/mL。 3.合适的pH,除非是进行聚焦层析,所使用的缓冲溶液pH避免与pI相同,防止蛋白质的沉淀。 4.使用蛋白酶抑制剂,防止蛋白酶对目标蛋白的降解;在纯化细胞中的蛋白质时,加入DNA 酶,降解DNA,防止DNA对蛋白的污染。 5.避免样品反复冻融和剧烈搅动,以防蛋白质的变性。 6.缓冲溶液成分尽量模拟细胞内环境。 7.在缓冲溶液中加入0.1~1mmol/L DTT(或β-巯基乙醇),防止蛋白质的氧化。 8.加1~10mmol/L EDTA金属螯合剂,防止重金属对目标蛋白的破坏。 9.使用灭菌溶液,防止微生物生长。 蛋白质纯化的一般程序 分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。 1.前处理: 分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态,不丢失生物活性。为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点的有机溶剂如乙醚等脱脂。然后根据不同的情况,选择适当的方法,将组织和细胞破碎。动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。组织和细胞破碎后,选择适当的

分离纯化蛋白质的方法及原理

分离纯化蛋白质的方法及原理 (一)利用分子大小 1、透析:原理:利用蛋白质分子不能透过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖、水等分开。 方法:将待提纯蛋白质放在透析袋中放在蒸馏水中进行 涉及的问题: 如何加快透析过程 (1)加大浓度差,及时更换透析液 (2)利用磁力搅拌器 常用的半透膜:玻璃纸、火棉和其他材料合成 2、超过滤:原理:利用压力和离心力,强行使其他小分子和水通过半透膜,而蛋白质留在膜上 3、凝胶过滤层析:原理:当不同分子大小的蛋白质混合物流进凝胶层析柱时,比凝胶网孔大的分子不能进入珠内网状结构,排阻在凝胶珠以外,在凝胶珠缝隙间隙中向下移动。而比孔小的分子不同程度地进入凝胶珠内,这样由于不同大小分子所经历的路径不同而到分离。 结果:大分子先被洗脱下来,小分子后被洗脱下来 (二)利用溶解度差别 4、等电点沉淀:原理:不同蛋白质具有不同的等电点,当蛋白质混合物调到其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来.。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.当离子强度增加,足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析

(三)根据电荷不同 6、SDS-PAGE 全称十二烷基硫酸钠—聚丙烯酰胺凝胶电泳 原理:通过加热和SDS可以使蛋白质变性,多亚基的蛋白质也解离为单亚基,处理后的样品中肽链是处于无二硫键连接的,分离的状态。电泳时SDS-蛋白质复合物在凝胶中的迁移率不再受蛋白质原有电荷和形状的影响,而主要取决于蛋白质分子量。所以SDS-PAGE常用来分析蛋白质的纯度和大致测定蛋白质的分子量。 7、离子交换层析:原理:氨基酸分离常用阳离子交换树脂,树脂被处理成钠型,将混合氨基酸上柱,氨基酸主要以阳离子形式存在,在树脂上与钠离子发生交换,而被挂在树脂上。 氨基酸在树脂上结合的牢固程度取决于氨基酸与树脂之间的亲和力,决定亲和力的因素有:(1)主要是静电吸引力(2)氨基酸侧链同树脂之间的疏水作用氨基酸与阳离子交换树脂间的静电引力大小次序依次是: 碱性氨基酸R2+>中性氨基酸R+>酸性氨基酸R0。 因此洗脱顺序应该是: 酸性氨基酸中性氨基酸碱性氨基酸 为使氨基酸从树脂上洗脱下来采用逐步提高pH和盐浓度的方法

蛋白质纯化原理

蛋白质的纯化原理 一)根据蛋白质溶解度不同的分离方法 1、蛋白质的盐析 中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。盐析时若溶液pH在蛋白质等电点则效果更好。由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。 影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。一般温度低蛋白质溶介度降低。但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。 蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。 蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。 2、等电点沉淀法 蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。 3、低温有机溶剂沉淀法 用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。 (二)根据蛋白质分子大小的差别的分离方法 1、透析与超滤 透析法是利用半透膜将分子大小不同的蛋白质分开。 超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。 2、凝胶过滤法 也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。 (三)根据蛋白质带电性质进行分离 蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。 1、电泳法 各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。

蛋白质提取与纯化技术总结

蛋白质提取与纯化技术 选择材料及预处理 以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。 微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。 蛋白质的分离纯化 一,蛋白质(包括酶)的提取 大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。 (一)水溶液提取法 稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋

蛋白质和酶的分离与纯化

蛋白质和酶的分离纯化及鉴定 蛋白质是生命体中的重要物质基础之一。从分子水平上认识生命现象,已成为现代生物学发展的主要方向。要研究蛋白质,首先要得到高度纯化的目的蛋白。蛋白质在组织或细胞中一般都是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质。要想从成千上万种蛋白质混合物中纯化出目的蛋白,就要根据蛋白质的理化性质不同设计出合理的分离方法。 目前研究为止酶除核酶外本质都是蛋白质,因此酶的分离纯化方法基本是采用蛋白质的分离纯化方法,但是酶的活性受到多种因素的影响,因此酶的分离纯化比一般的蛋白质要求更高。 一、质分离纯化的一般原则 1. 原料的选择 原则:来源方便,成本低,易操作、安全的原料。 蛋白分布:体液、组织、细胞定位 2. 破碎方法: (1) 机械方法:通过机械运动产生的剪切力的作用,使细胞或组织破碎的方法。 如:捣碎法、研磨、匀桨法 (2) 物理方法:通过温度、压力、声波等各种物理因素的作用,使组织细胞破碎的方法。 如:反复冻融、渗透压、超声破碎 (3) 化学方法:通过各种化学试剂对细胞膜的作用,使细胞破碎的方法. 如:甲苯、丙酮、氯仿和非离子型的表面活性剂(Triton和Tween) (4) 酶促法:溶菌酶、蜗牛酶等 3. 目的蛋白或酶的特异、快速、精确的定性或定量方法 4. 先粗后细,分级分离 粗分:将得到的蛋白溶液先利用简单、快速、易处理的方法除去大部分杂蛋白。如: 盐析、离心、有机溶剂沉淀等。 精制:利用蛋白质性质的差异,采用不同的方法,如:离子交换层析、分子筛、吸附层析、亲和层析、电泳、离心、结晶等方法进一步纯化。 5. 避免蛋白质的变性(pH、适合的温度和缓冲体系等) 二、常用的蛋白质的分离纯化技术 可以根据各种蛋白质的结构、理化性质不同设计分离方法。 (一)根据蛋白质的溶解度不同进行分离

相关文档
最新文档