气动泵流量控制系统的设计方案

气动泵流量控制系统的设计方案
气动泵流量控制系统的设计方案

气动泵流量控制系统的设计

近年来,随着计算机进入控制领域,以及新型的电力电子功率元器件的不断出现,使采用全控制开关功率元件进行脉宽调制

本系统以AVR系列的atmega32单片机为核心,通过设置atmega32的PWM控制寄存器产生脉宽可调的PWM波,对比例电磁阀的输入电压进行调制,从而实现了对气体流量的变量控制。单片机通过均速管流量计采集实际流量信号,根据该信号在其内部采用数字PID算法对PWM控制寄存器的值进行修改,从而达到精确的变量控制。为了防止外界干扰信号进入控制系统,单片机和均速管之间采用光电隔离,提高了系统的可靠性。

由均速管流量计对气体额流量进行监测,该种流量计属差压式流量计,由单点测速的皮托管演变发展而来,基于流体力学能量守衡原理,遵从伯努利定律,控制气体流量采用比例电磁阀。通过

4×4键盘和128×64液晶模块实现人机对话,便于用户操作。系统结构如图1所示。

图1流量控制系统框图流量控制算法

考虑气动泵泵气过程的非线性等因素,采用了人类专家的知识和求解问题的启发式规则来构造专家控制器,从而实现流量的智能控制,保证气动泵供气的稳定性。

1基于专家系统的智能PID控制简介

专家系统主要有五部分:知识库、数据库、推理机、解释部分和知识获取部分。军工业生产所遇到的被控对象千变万化,其复杂程度也不相同。本系统的被控对象具有比较大的非线性、滞后性等特性,考虑到对其控制性能、可靠性、实时性的要求,将专家系统简化,不设人机自然语言对话,将知识库、规则集缩小,于是专家系统变成了专家控制器,从而能使专家系统在控制器上实现。

基于专家系统的智能PID控制器如图2所示。专家知识库是根据熟练操作工或专家的经验和知识,把各种工况下被控对象特性所对应的PID参数记录在数据库中而形成;数据库存放被控对象的输入和输出信号、给定信号<即获得了偏差和偏差变化率);逻辑推理机则从数据库中取出实际运行数据,根据给出的推理机制,从专家知识库中选择合适的参数,实现参数自整定PID控制。

图2专家PID控制器原理框图

2流量的专家PID控制

在军工业生产中,当我们不完全了解一个系统和被控对象,或被控对象的结构和参数不能完全掌握,或得不到精确的数学模型时,这个时候往往采用PID控制技术最为方便。PID算法以其结构简单、稳定性好、工作可靠、高速方便而成为工业控制的主要技术之一。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。系统控制器的结构和参数必须通过经验和现场调试来确定。

模拟PID控制器的控制规律为:

(1>

式中,KP—比例系数;TI—积分常数;TD—微分常数;u0—控制常量。

由于单片机控制是一种采样控制,它只能根据采样时刻的偏差值计算控制量,而不能像模拟控制那样连续输出控制量,进行连续控制;并且,单片机处理数据的量有限,综合考虑该系统采用增量式PID控制,其算式为:

u(k>=u(k-1>+Δu(k>(2>

Δu(k>=KP[e(k>-e(k-1>]+KIe(k>+KD[e(k>-2e(k-1>+e(k-2>](3>

气体流量值经过比例换算之后作为气泵的给定值,通过PID控制器的输出来控制气泵的流量。e(k>为气泵给定流量与实际测量值的偏差;e(k-1>为上一时刻的误差值;e(k-2>为上一采样时刻的误差值。KP是解决幅值震荡,KP大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;KI是解决动作响应速度快慢的,

KI大了响应速度慢,反之则快;KD是消除静态误差的,一般KD设置都比较小,而且对系统影响比较小。

由于气体流量测量的特殊性以及气体控制过程中的非线性、时变、滞后等特性,采用上述PID控制算法不能达到令人满意的效果,由此采用辅以专家控制规则来进行补偿控制。根据气泵偏差及其变化率,本文提出的控制器按以下6种情况进行设计:

①当|e(k>|>M1

Δu(k>=Δumax或者Δu(k>=-Δumax(4>

此时,系统相当于实施开环控制。

②当e(k>·Δe(k>≥0时,误差在朝绝对值增大方向变化,或误差为常值,未发生变化。如果此时|e(k>|>M2<设定的误差界限),说明误差也较大,可考虑由控制器实施较强的控制作用,以达到使误差绝对值朝减小方向变化,并迅速减小误差的绝对值,调节器输出可为

Δu(k>=KI{KP[e(k>-e(k-1>]+KIe(k>+KD[e(k>-2e(k-1>+e(k-2>]}1)(5>

如果|e(k>|③当e(k>·Δe(k><0、Δe(k>·Δe(k-1>>0或者e(k>=0时,说明误差在朝减小的方向变化,或者已经达到平衡状态。此时可考虑采取保持控制器的输出不变,输出为

Δu(k>=0(6>

④当e(k>·Δe(k><0、Δe(k>·Δe(k-1><0时,误差处于极值状态,系统出现振荡现象。如果此时误差的绝对值较大,即

|e(k>|≥M2,则采用较强的控制作用。

Δu(k>=K2KPe(k>

反之则考虑实施较弱的控制作用。

Δu(k>=K3KPe(k>

⑤当|e(k>|<ε,ε为一任意小的正数,可取为0.001。此时误差很小,考虑加入积分环节,减少稳态误差。控制算法为普通比例加积分控制

Δu(k>=KP[e(k>-e(k-1>]+KIe(k>(9>

⑥当e(k>=0时,说明系统已经达到平衡状态,此时可考虑维持当前控制量不变。调试发现当误差达到控制精度要求后可维持当前控制量不变,从而避免小范围的波动使被控对象更快稳定下来。

综上所述,系统调节器控制规律实际相当于变结构PID控制器,根据误差及误差变化情况选择不同的控制规律,以便使系统迅速达到给定流量值。硬件部分

1PWM控制原理

PWM控制功率输出级为开关型结构,功耗小。在功率驱动放大电路中需要将PWM输出的电压信号转换为比例电磁铁的电流控制信号。因此,可采用大功率场效应晶体管IRF540,它能够提供足够大的电流驱动比例阀的比例电磁铁等效线圈,通过调整单片机的PWM 波就可以实现电磁阀输入电压占空比的调节,从而实现对流量的调节。

PWM控制系统是非线性、非连续控制系统。其控制原理:先给被控参数设定一个期望值,接着该参数与测得的实际值经比较环节得出误差信号,误差信号再与一个三角波信号经比较器进行比较,当误差信号大于三角波信号时,就输出脉冲,反之不输出,因此,比较器输出一系列等振幅不等宽的矩形波,其脉冲宽度与误差信号成线性关系。根据该原理,采用PWM控制器输出的脉冲去触发开关,开关再去触发执行机构,执行机构按脉冲宽度的时间动作,从而达到自动控制参数的目的。

图3PWM控制系统框图

图3中,PWM控制器的输出u(t>为

式中,M为PWM波的幅值;T为PWM的脉冲周期;Tk为PWM波的采样时间,k=0,1,2,3,…;b为比例系数。

2比例电磁阀

比例电磁阀在20世纪60年代末就已经得到了应用,最初是用于液压控制系统,随着单片机和集成电路的发展,其逐渐应用到各种气体的流量控制中。比例型电磁铁的工作原理如下:线圈通电后,轭铁和衔铁内部产生磁通并产生电磁吸力,将衔铁吸向轭铁,同时衔铁上的弹簧受到压缩,当衔铁上的电磁力和弹簧力平衡时,衔铁停止位移。比例型电磁铁的衔铁运动时,气隙保持恒定,即衔铁在有效行程范围内,吸力保持恒定,而电磁铁的吸力在有效行程范围内和线圈的电流大小成正比。目前,过程控制用比例电磁阀均为单级阀,和普通单级电磁阀区别不大,如图4所示。控制信号进入控制器放大后,在比例电磁铁线圈的两端加上一定的电压,转换成一定的电流信号,驱动衔铁<即阀芯)开启,阀芯上的电磁力和弹簧力平衡后,阀门的开度不变;输入信号变化,阀门的开度也发生变化,从而达到控制所需参数的目的。

图4单级比例电磁阀

软件部分

1PWM波的产生

设计采用单片机atmega32产生PWM信号。atmega32的定时/计数器的PWM模式可以分成快速PWM和频率<相位)调整PWM两大类。本设计采用快速PWM模式,快速PWM可以得到比较高频率的PWM输出,响应比较快,因此具有很高的实时性。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。快速PWM模式的控制寄存器设置如下:

//输出端口初始化

PORTD=0x44;

DDRD=0x20;

//T/C1初始化

TCCR1A=0xC3;/*比较匹配时OC1A输出高电平,在top值时清零ICP下降沿捕捉,

时钟1/8分频<暂定),即工作在反相pwm模式*/

TCCR1B=0x0A;//10位快速pwm模式

TCNT1H=0x00;//startat0

TCNT1L=0x00;

2控制系统的程序流程

其控制程序的流程图如图5所示。

图5流量控制流程框图

3PID子程序流程

将系统误差e(k>和误差变化率Δe(k>变化范围定义为e(k>,e(k>={NB,NM,NS,O,PS,PM,PB},各元素分别代表流量差值及流量差值变化率。根据不同的e(k>,Δe(k>的量化取值和控制器数学模型,选择相应的控制器计算公式进行PID运算,从而完成流量的智能控制。专家PID控制算法的PID子程序计算流程如图6所示。

图6PID子程序框图

Matlab下的仿真

Matlab是控制系统的一种分析和仿真软件,利用它可以方便准确地对控制系统进行仿真,为了验证数字PID算法的可靠性,采用Matlab6.5下的simulink组件对增量数字PID算法进行了仿真,仿真结果如图7所示。仿真结果表明运用PID对PWM方波进行调解具有良好的动态性和稳定性,从而证明了该气体流量控制系统得可行性。

图7仿真结果结语

传统的气体流量控制大多采用高速开关电磁阀,电磁阀的频繁开关会产生很大滞后性,不利于控制的系统的实时性。本设计采用了西门子的专用PID模块,大大简化了程序。同时,采用了图形编程方式,使程序更直观,交互界面更加友好。运用数字PID算法结合AVR单片机的PWM功能实现了气体流量的控制,利用PWM信号控制比例电磁阀开口的大小,实现了流量的连续控制,减少了滞后性,同时采用了增量式数字PID算法调节,实现了闭环控制,使系统调节更准确、更稳定。此外,运用Matlab软件进行了仿真,证明了系统的可行性。数字PID算法调整控制参数较之硬件PID控制器操作简便,系统设置灵活。

泵流量控制方法(经典)

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用。 流量调节方法连续调节泵的流量特性曲线变化泵系统的效率变化流量减小20%时,泵的功率消耗出口阀开度调节可以最大流量减小,总压头不变,流量特性略微变化明显降低94% 旁路阀调节可以总压头减小,曲线特性发生变化明显降低110% 调整叶轮直径不可以最大流量和压头均减小,流量特性不变轻微降低67% 调速控制可以最大流量和压头均减小,流量特性不变轻微降低65%

二次泵系统与一次泵变流量系统优缺点、设计要点及控制逻辑

一次泵变流量系统(VPF) 1、控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩 机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保 证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。

“—→”代表系统控制 “—→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2.压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

气动隔膜泵操作规程

气动隔膜泵操作规程 气动隔膜泵操作规程 1、气动隔膜泵输送的物料其温度应<100℃,以保护膜片的正常使用。 2、气动隔膜泵开车前经系统检查都完好后,再使用泵头内充满被输送的料液,以使料液能自流进泵。 3、接通电源,再使变速机的拖动电机启动,然后调节转差离合器控制装置微调旋钮,使曲轴转动。 4、取下控制阀上盖,用手按动补油阀芯上端多次,排除液压腔内空气,直至没有气泡出现为止,此时即为液压油充满液压腔,即可开始正常工作。 5、气动隔膜泵使用时控制阀压力最好与喷嘴压力一致,不要形成膜片前有过大的压力差。 6、气动隔膜泵在使用中应经常检查进料泵温度、出泵料液压力、泵的运行情况。 7、气动隔膜泵停车时先将转差离合器控制装置调旋到‘0’位,曲轴停止转动。 8、气动隔膜泵如停用时间过长,则需对泵头部分剩余料液排除,以防球阀将进出料口堵住、锈蚀。 9、气动隔膜泵一般使用40#机油,换油时应将原有油清洗干净。 10、经常保持气动隔膜泵的清洁性,及电机良好的绝缘性,及时做好运行、停运、事故、维修等记录。QBK气动隔膜泵是第三代气动双隔膜泵,具有使用寿命长,不会停顿等优点,它既能抽送流动的液体,又能输送一些不易流动的介质,具有自吸泵、潜水泵、屏蔽泵、泥浆泵和杂质泵等输送机械的许多优点。 1、不需灌引水.吸程高达5m.扬程达70m.出口压力≥6kg/cm2。 2、流动宽敞,通过性能好.允许通过最大颗粒直径达10mm。抽送泥浆、杂质时,对泵磨损甚微; 3、扬程、流量可通过气阀开度实现无级调节(气压调节在1—7kg/cm2之间): 4、该泵无旋转部件,没有轴封,隔膜等抽送的介质与泵的运动部件、工件介质完全隔开,所输送的介质不会向外泄漏。所以抽送有毒、易发挥或腐蚀性介质时,不会造成环境污染和危害人身安全; 5、不必用电.在易燃、易爆场所使用安全可靠; 6、可以浸没在介质中工作: 7、使用方便、工作可靠、开停只需简单地打开和关闭气体阀门.即使由于意外情况而长时间无介质运行或突然停机泵也不会因此而损坏.一旦超负荷,泵会自地动停机,具有自我保护性能,当负荷恢复正常后,又能自动启动运行; 8、结构简单、易损件少,该泵结构简单,安装、维修方便,泵输送的介质不会接触到配气阀,联杆等运动部件,不象其他类型的泵因转子、活塞、齿轮、叶片等部件的磨损而使性能逐步下降: QBK气动隔膜泵既能抽送流动的液体,又能输送一些不易流动的介质,具有自吸泵、潜水泵、屏蔽泵、泥浆泵和杂质泵等输送机械的许多优点。 1、不需灌引水.吸程高达5m.扬程达70m.出口压力≥6bar。 2、流动宽敞,通过性能好.允许通过最大颗粒直径达10mm。抽送泥浆、杂质时,对泵磨损甚微; 3、扬程、流量可通过气阀开度实现无级调节(气压调节在1—7 bar之间): 4、该泵无旋转部件,没有轴封,隔膜泵|等抽送的介质与泵的运动部件、工件介质完全隔开,所输送的介质不会向外泄漏。所以抽送有毒、易发挥或腐蚀性介质时,不会造成环境污染和危害人身安全; 5、不必用电.在易燃、易爆场所使用安全可靠;

二次泵系统与一次泵变流量系统优缺点设计要点及控制逻辑

一次泵变流量系统(VPF) 1、 控制方式 冰机控制 负荷测定:蒸发器的流量和温差 冷量调节: 与活塞机组的介跃调节不一样,离心冷水机组的控制是根据实际需求负荷的大小来控制压缩机的运行状态,最终通过改变导叶开度的大小来控制。改变导叶开度的大小,可调节制冷剂循环流量,控制蒸发温度,调节制冷量,最终达到加载、卸载,控制出水温度的目的。这种调节可实现无级连续调节,可精确调节到负荷要求,精密控制出水温度。模糊逻辑根据温度误差(与设定值的偏差) 和变化速度求出所需的加载/卸载量,从而将冷水温度控制在设定的范围内。导叶电机根据4~20mA 的电流输入信号,每0. 3 %地增加或减小导叶的开启度,这样的调节足以保证经导叶调节后流量的连续性,实现无级调节。加载时,导叶开启度增大;卸载时导叶开度减小。高精度的导叶连续调节可精确控制水温在±0. 3 ℃以内。见图2。控制系统根据温度偏差值和温度变化速度来确定是否需要加载、卸载或保持容量不变。见表1。 在接近系统的安全阈值时,会进行加载或卸载限制。图3示出了出水温度控制的循环。 “ —→”代表系统控制 “ —→”代表控制系统实施操作后有可能引起的现象如图3 所示,系统控制和实施控制操作 后而需要的进一步控制形成封闭循环。控制操作的实施最终通过导叶开并增大或减小来完成。控制系统经过综合使导叶维持在某一开启度进行制冷或达到安全限而关机。 例如机组刚开机过程的加载过程,在电流限制的同时导叶由小逐渐开大,冷水温度不断下降,达到制冷的目的。当机组达到负荷后,出水温度已达到或低于设定点的温度,这时进行卸载过程,导叶逐渐关小,出水温度基本维持不变,电流逐渐减小,最终维持在部分负荷运行。如果负荷过低,使机组导叶关小到某一值时,排气温度达到保护限,控制导叶不能继续关小(或导叶已关到最小) ,则导叶维持该状态运行,出水温度将进一步下降,当下降到低于出水温度设定点3 ℃以下时,则机组由控制系统控制进行安全关机。或进入再循环运行模式控制。 冰机加减机: 加机(4种方式?): 1. 冷冻水系统供水温度T S1高于系统设定温度T SS 并持续一段时间 2. 压缩机运行电流百分比(适用于出水温度精度要求高的场合,需要注意机组出力和运行电流不符合的情况) 3.计算负载 4.如运转中主机已达最大流量,则须加开一台主机(发生机率不高)。 减机: 1.依压缩机电流百分比(1 运行机组台数%RLA(运行机组)%设定-∑≥ ) 2. flow*△T 3.系统流量

电动隔膜泵操作规程

隔膜计量泵操作规程 开机前的准备 1.检查站泵内的油质、油量(传动箱内以油标水平中线为准,三阀油杯和隔膜腔内以不得底于 红色指示线为准)是否符合要求; 2.检查进出料管路上的焊缝、连接处螺栓、密封面性能等是否完好,检查泵的吸入、排出管 道是否畅通; 3.首次起动的泵起动前应盘动连轴器数次,不得有任何卡阻现象,检查站电机旋转方向与 泵上剪关是否一致。 4.将泵进行适应性运行,尤其是停车5天以上,启动时一定要从“0”行程启动, (短期停泵可在任意位置起动)无负荷运转5分钟后,再将活塞行程调节到所需位置, 进行负荷运转; 5.加压运转:关闭隔膜泵三阀油杯内的放气阀,逐渐增加压力到期额定压力。 二正常运行 1.正常运行中,柱塞密封部位手触感觉不烫,不泄漏,传动箱体内油温不得超过650C。 2.经常检查三阀油杯中的油位、油质是否符合要求,并观察油面有无波动,如发现波动说明阀汇漏。 3.安全阀经调整后严禁旋动调节螺钉,严禁触动补油阀球,保持三阀油杯内油液清洁。 4.经常检查进料液温度(一般≤1000C),出泵料液压力(≤额定压力)。 三停车及其它 1.先将调量机构调到“0”位,曲轴停止转动,但电动机仍。在运行,然后切断电源, 电动机停止转动。 2.如果泵需较长时间停运,则需对泵内料液排除干净,以防泵体堵塞、锈蚀。

3.伟动箱内一般用20#或30#机械油,伟动箱、三阀油杯内应保持久额定的油位。 4.泵内的润滑油应每隔6个月更换一次,换新油时应将原有油常委会清除,置换干净后再注入新油。 5.保持设备外表清洁、电动机绝缘良好。 6.作好设备运行、停运、事故、维修记录。 7.注意事项:隔膜泵属于容积泵,尤其要在操作时注意:(1).开泵时先开泵的进出口再开电机, 不然会憋压导致泵损坏;(2).停泵时先关电机再关进出口阀。 常见问题: 一、泵无法启动如何来维修: 1、是阀芯严重磨损卡死。 2、是中轴的轴套磨损。此时应更换铜套。 3、是中轴两端螺杆掉落。 4、是两层膜片都破裂。 5、是隔膜泵倒置或平放。阀芯不能回位(第一代和第二代) 二、流量过低如何来维修: 1、是进出口单向阀(塑料球)磨损变小。或有条状物,大颗粒卡住塑料球。导致吸料时排料口的料液回灌控制工程网版权所有, 排料时又把物料从进料口压回去。 2、是隔膜片常时间拉伸变形,导致物料腔容积变小。三是黑色,厚的那层膜片破损。中轴带动时走不到位。 三、泵的动作缓慢,抽送速度变慢如何来维修: 1、是气源气压减小。先看看进气压力表的压力,压力值在4~7公斤为正常。然后检查气源阀门的开度位置,如气源开闭是用电 磁阀的话,则检查电磁阀塑料阀片有无破损,导致塑料阀片不能完全打开。 2、是消音器堵塞,气不能快速的排出,导致抽送速度减慢。 3、是压缩空气的水或杂质过多。进入隔膜泵配气阀后堵塞进气孔,或是卡住配气阀芯。 4、配气阀上下端盖由于常时间受阀芯的冲击导致阀盖破损漏气。 5、泵内部中轴四个密封环磨损而串气。 四、物料里面有杂质或油污如何来维修: 1、清洗杂质或油污

聚合装置安全操作规程

聚合装置安全操作规程 1范围 为指导、规范操作者正确操作和使用设备,体现“以人为本”的安全原则,保障人身、设备的安全,特制定本规程。 本规程适用于V AE聚合生产装置所有人员。 2内容和要求 2.1生产岗位通用安全操作规程 2.1.1严格遵守劳动纪律、工艺纪律、操作纪律、工作纪律。严格执行交接班制度、巡回检查制度,禁止脱岗,禁止与生产无关的一切活动。 2.1.2认真执行岗位安全操作细则,防止刀伤、碰伤、棒伤、砸伤、烫伤、踩膜跌倒及身体被卷入转动设备等人身事故和设备事故的发生。 2.1.3开机前,必须全面检查设备有无异常,对转动设备,应确认无卡死现象、安全保护设施完好、无缺相漏电等相关条件,并确认无人在设备作业,方能启动运转。启动后如发现异常,应立即检查原因,及时反映,在紧急情况下,应按有关规程采取果断措施或立即停车。 2.1.4严格遵守特种设备管理制度,禁止无证操作。正确使用特种设备,开机时必须注意检查,发现不安全因素应立即停止使用并挂上故障牌。 2.1.5不准超高、超重装运原料,不准超高堆放物料,防止倾斜倒塌伤人。

2.1.6按章作业,有权拒绝上级或其他部门的违章指令。 2.1.7搞好岗位安全文明生产,发现隐患(特别对因泄漏而易引起火灾的危险部位)应及时处理及上报。及时清理杂物、油污及物料,切实做到安全消防通道畅通无阻。 2.1.8设备试运转等应严格执行有关规程、制度,做好用火点的监控工作。 2.2安全操作规程 2.2.1离心泵的开停车安全操作规程 ⑴检查要启动的泵处于备用状态,如:送电,泵的各部件、地脚有无松动,接地是否良好,润滑油液位一般在1/2视镜处,有无漏油等。 ⑵进行盘车,一般要盘一周以上,无异常。 ⑶打开泵的入口阀、压力表阀、泵的排气阀,排完气后关闭排气阀。 ⑷确认在出口阀关闭的情况下启动泵,观察压力表慢慢上升至额定扬程,慢慢打开泵的出口阀。若泵启动后,压力表上升压力不多且振动激烈,泵可能有气,则关出口阀停泵,重新排气,再重新启动泵。 ⑸泵启动后,检查送出管线,确认无问题后方可离开现场。 ⑹停泵时应先关闭出口阀,然后停泵,关压力表阀、泵的入口阀。若泵停下后要检修则需将泵内液体倒空,进行水冲洗。 ⑺若两台离心泵要切换,则先打开备用泵入口阀,排气后启动备用泵,开出口阀,无问题时关运行台出口阀,停泵,关压力表阀,关

离心水泵流量控制的方法

离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。离心水泵流量常用控制方法: 1、出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 2、旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 3、调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 4、调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 1)泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率

都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 2)能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。(2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。离心水泵流量控制方法总结: 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况选用:

一次泵变流量系统的设计

一次泵变流量系统的设计 郝庆1) 张子平1) 穆丽慧2) 1)(河北工程大学) 2)(海南元正建筑设计咨询有限责任公司天津分公司) 摘 要 一次泵变流量V PF(variable primary flow)系统是中央空调系统的最新布置形式,与一二次泵系统相比在初投资和运行费用上更具有优势。目前国内一些采用一次泵变流量系统的工程在运行中出现许多问题,本文从制冷机组的选择、旁通流量的设计、机组的启停控制、泵和机组的布置方式、一次泵变流量控制方式的选择、机房外的布置6个方面说明V PF的设计要点。 关键词 V PF 设计 一二次泵系统 大流量小温差 The design of variable primary flow system H ao Qing1) Zhang Ziping1) M u Lihui2) 1)(Hebei Eng ineering University) 2)(H ainan Yuanzheng Architectural Design&Consultation Co.,Ltd.) ABSTRACT Variable primary flow system is the new est system of center air conditioning sys tems,which has larg e advantages in first cost and operational cost than primary/secondary sys tems.M any domestic eng ineering applying VPF ex ists many questions.The key of VPF design is advised from six sides of chiller selection,bypass flow design,chiller sequencing,pump and chiller configuration,VPF control modes selection and configuration outside plant. KEY WORDS VPF;design;primary/secondary systems;low temperature difference and high flow 中央空调系统是根据最大冷/热负荷设计的。由于冷/热负荷受气候等因素影响经常变化,使中央空调系统大多数时间在部分负荷工况下运行,同时由于风机盘管除污器未及时清理,风机盘管选型不合适,风机盘管内空气的分布不均匀,末端使用的三通阀、管网的布置不合理等原因,使中央空调2个水系统绝大多数时间在大流量小温差下运行,造成系统运行费用的增加[1]。因此提高中央空调水系统的供/回水温差,降低空调运行成本,受到越来越多的关注。随着空调机组自动控制技术的发展,空调机组蒸发器和冷凝器的流量已经允许在一定范围内变化,一般为设计流量的30%~130%,这使得水泵变流量运行成为可能。中央空调水系统形式经历了一二次泵系统(一次泵定速,二次泵定速),一二次泵系统(一次泵定速,二次泵变速),移除了自力式流量控制阀,一次泵变流量系统,压差变送器代替流量表,独立压力流量控制阀的使用,风机盘管控制阀的发展(控制水泵频率的压差传送器从供回水干管上移到最不利环路上和将压力独立控制阀安装在风机盘管上),热回收机组8个发展阶段[1]。一次泵变流量系统作为中央空调水系统的最新布置方式,更好地解决了一二次泵系统出现的问题,特别在初投资、运行费用方面具有突出优势[2]。国内很多工程都采用了一次泵变流量系统,但出现了系统运行不稳定、末端过冷或者过热、压差旁通控制阀长期关闭、变频器频率变化范围过小等现象。 1 一二次泵系统存在的问题 1)所有的一二次泵系统在一次网和二次网的管接处都有一个汇合点,如图1上O点。当二次 第7卷 第6期 2007年12月 制冷与空调 REFRI GERA T ION AN D AIR-CON DIT I ON ING 47 51 收稿日期:2006 09 01 通讯作者:郝庆,Email:haoqing8866@https://www.360docs.net/doc/c76259497.html,

隔膜泵维护保养

1、隔膜泵维护与保养 发布者:l g p u m p s888发布时间:2009-9-411:30:48阅读:2253次(1)检查隔膜泵管路及结合处有无松动现象。用手转动隔膜泵,试看隔膜泵是否灵活。 (2)向轴承体内加入轴承润滑机油,观察油位应在油标的中心线处,润滑油应及时更换或补充。 (3)拧下隔膜泵泵体的引水螺塞,灌注引水(或引浆)。 (4)关好出水管路的闸阀和出口压力表及进口真空表。 (5)点动电机,试看电机转向是否正确。 (6)开动电机,当隔膜泵正常运转后,打开出口压力表和进口真空泵视其显示出适当压力后,逐渐打开闸阀,同时检查电机负荷情况。 (7)尽量控制隔膜泵的流量和扬程在标牌上注明的范围内,以保证隔膜泵在最高效率点运转,才能获得最大的节能效果。 (8)隔膜泵在运行过程中,轴承温度不能超过环境温度35C,最高温度不得超过80C 。 (9)如发现隔膜泵有异常声音应立即停车检查原因。 (10)隔膜泵要停止使用时,先关闭闸阀、压力表,然后停止电机。 (11)隔膜泵在工作第一个月内,经100小时更换润滑油,以后每个500小时,换油一次。 (12)经常调整填料压盖,保证填料室内的滴漏情况正常(以成滴漏出为宜)。 (13)定期检查轴套的磨损情况,磨损较大后应及时更换。 (14)隔膜泵在寒冬季节使用时,停车后,需将泵体下部放水螺塞拧开将介质放净。防止冻裂。 (15)隔膜泵长期停用,需将泵全部拆开,擦干水分,将转动部位及结合处涂以油脂装好,妥善保存。

2、隔膜泵维护与保养 隔膜 泵维 护与 保养 [日期:2009-10-23 10:32] 隔膜泵维修,隔膜泵维护检修规程 1隔膜泵检修总则 适用范围 本规程适用于化工企业2WMF-250/40型隔膜宏的维护与检修。 结构简述 隔膜泵为卧式对称双缸往复式,由机身、曲轴、中轴、柱塞、隔膜组、控制阀等主要部件组成,驱动装置由电磁调速异步电机通过摆线减速机驱动。 设备性能 设备性能见表1。 表1 项目指标项目指标项目指标 最大流量 最大压力250L/H

一次泵变流量系统

随着设计水平及机械加工水平的进步,冷水机组的效率越来越。这使得冷水机房的能耗结构发生了较大的变化。水泵的能耗比例已经成为一个比较重要部分,所以如何在水泵的节能措施上去的取得进展已成为一项重要课题。 通常来说,空调系统是按照满负荷设计的,当负荷变化时,虽然冷水机组可以根据负荷调节相应的冷量输出,但是常规冷水系统在在冷水机组的蒸发器侧的流量配置是固定的,定流量的冷冻水泵能耗没有跟随主机的部分负荷运行而变化水量。也没跟着冷水机组减载。近年来在电子及自控技术的辅助下,冷水机组的制造技术得到有效提高,尤其是机组对负荷变化的响应时间大大缩短。先进的冷水机组可以在极大的范围内变流量运行;同时,与通过供水温度来控制机组负荷一样,变蒸发侧水流量控制机组负荷运行,同样能够保证出水温度在允许的偏差范围内正常运行。因此,当负荷变化时,可以使冷水机组的蒸发器侧流量随用户的需求而变化,从而节约蒸发器侧水泵的能耗,同时可使用流量保护措施使机组在流量允许的范围内运行。 在管路系统固定不变的前提下,变频水泵的效率特性和水系统的阻力特性接近,理论上水泵的能耗与流量成3次方的关系,系统的阻力随着部分负荷时流量的下降而下降[(水量1/水量2)2=水阻1/水阻2]。如果蒸发侧的流量允许随着负荷的变化而变化,那么蒸发侧的水泵就无需全年保持夏季设计日的满载流量,在部分负荷运行时段,水泵如冷水机组一样,部分负荷时流量减小,与此同时水泵的能耗大幅降低从而达到节能的目的。 目前,较通行的水系统设计通常有两种方式:1.一次泵定流量系统2.二次泵变流量系统。相对于这两 一次泵变流量系统中选择可变流量运行的冷水机组,当机组运行时,蒸发器的供回水温差基本恒定,蒸发侧流量随负荷侧流量的变化而改变,从而达到“按需供应”,并使得降低水泵在部分负荷时的供水量成为可能,最终降低系统运行能耗。末端冷量由冷冻水量调配,冷水机组生产的冷量由流经蒸发器的水流量和相对固定的温差决定。其系统形式类似于一次泵定流量系统,增加了一套自控系统,同时定流量水泵变

聚合装置安全操作规程

编号:SM-ZD-90304 聚合装置安全操作规程Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

聚合装置安全操作规程 简介:该规程资料适用于公司或组织通过合理化地制定计划,达成上下级或不同的人员之间形成统一的行动方针,明确执行目标,工作内容,执行方式,执行进度,从而使整体计划目标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 范围 为指导、规范操作者正确操作和使用设备,体现“以人为本”的安全原则,保障人身、设备的安全,特制定本规程。 本规程适用于VAE聚合生产装置所有人员。 2 内容和要求 2.1生产岗位通用安全操作规程 2.1.1 严格遵守劳动纪律、工艺纪律、操作纪律、工作纪律。严格执行交接班制度、巡回检查制度,禁止脱岗,禁止与生产无关的一切活动。 2.1.2 认真执行岗位安全操作细则,防止刀伤、碰伤、棒伤、砸伤、烫伤、踩膜跌倒及身体被卷入转动设备等人身事故和设备事故的发生。 2.1.3 开机前,必须全面检查设备有无异常,对转动设

备,应确认无卡死现象、安全保护设施完好、无缺相漏电等相关条件,并确认无人在设备作业,方能启动运转。启动后如发现异常,应立即检查原因,及时反映,在紧急情况下,应按有关规程采取果断措施或立即停车。 2.1.4严格遵守特种设备管理制度,禁止无证操作。正确使用特种设备,开机时必须注意检查,发现不安全因素应立即停止使用并挂上故障牌。 2.1.5不准超高、超重装运原料,不准超高堆放物料,防止倾斜倒塌伤人。 2.1.6按章作业,有权拒绝上级或其他部门的违章指令。 2.1.7搞好岗位安全文明生产,发现隐患(特别对因泄漏而易引起火灾的危险部位)应及时处理及上报。及时清理杂物、油污及物料,切实做到安全消防通道畅通无阻。 2.1.8设备试运转等应严格执行有关规程、制度,做好用火点的监控工作。 2.2 安全操作规程 2.2.1 离心泵的开停车安全操作规程 ⑴检查要启动的泵处于备用状态,如:送电,泵的各部

泵流量控制方法(经典)

离心泵流量控制方法探讨 泵的流量调节方法一览表 本文详细介绍了泵(离心泵、往复泵)的流量调节方法,如改变泵的装置特性曲线(如可以进行出口阀调节、旁路调节、转速调节、切割叶轮外径、更换叶轮、堵死几个叶轮流道等)、改变泵的特性曲线,并对每种调节方法进行了阐述及对其使用的特点进行了分析。

具体的泵的流量调节方法见下表1——1。 表1——1 泵的流量调节方法

请问泵的流量是怎么调节的 请问高速泵的流量是怎么调节的我发现泵的额定流量比如为10m3,最小稳定流量为2m3,比如我现在后面装置需要6m3的量,这个时候是通过出口阀门调节呢还是打10m3走4m3的旁路阿谢谢各位!! 还有些疑问:1、旁路怎么防止泵产生憋压不是很明白---我现在设置的是泵流量达到泵厂家要求的最小稳定流量的时候旁路阀门才打开,平时是关着的! 2、现在一家国外的泵厂家返回的资料是这样子的,我要求的是2.61m3,可是他给我的泵却是4.5M3的,而他的最小稳定流量竟然在2.3m3,那我平常不是只能在最小流量线附近操作了这样子对高速泵肯定不好,现在泵厂家要求平常一直开旁路,让我很郁闷 3、我想的是一旦泵流量到达最小稳定流量,泵就有两个去向,可是我怎么知道这两条线的各自流量,因为我要保证我后续设备的物料量啊,不能全被打回流阿!! 4、还有就是泵出口关闭压力怎么确定阿? 5、我们计算泵的 H的时候,给出了 HA,厂家给的 HR,指的是水那转化成介质是不是也应该乘密度? 请各位说的仔细一点,我对这个不是很清楚呢 ]lexuan_0211 发表于 2008-6-13 13:44 一般来说,通过阀门调节能够达到效果。 lz需要的量在此泵的流量范围内,没有问题。llttjj2850 发表于 2008-6-13 13:45 通过出口调节阀来控制流量,走旁路只是改变管径,并没有改变流量,只是增加了管道阻力和流速。 如果有变频器可以调节频率,也可调节流量。rongyang504 发表于 2008-6-13 14:05 我的泵不是变频的,变频的用的很平常吗我觉得变频的机泵一般用在重要的地方!

一体化污水处理设备操作规程

一体化污水处理设备 操作规程

一体化污水处理设备操作规程 一、总则 1、本规程是用于指导污水处理、正常运行的技术文件和依据,它包括职责、管理范围、运行原理、操作守则、维护管理等相关内容。企业还应按企业实际情况和相关规定制定实施细则和岗位职责,作为本规程的细化和补充。 2、本规程适用于污水处理设备的水处理操作运行员工及管理、技术和维护检验人员。 3、污水处理营运人员,应进行相关岗位的培训,应达到懂原理、会操作、能诊断、可排故,同时还可进行简单的维护管理,保证处理效果。 4、特别提示:不认真阅读本规程或违规进行操作,将可能造成事故或损失。 二、职责 1、污水处理站员工应保证站内所有设施的完好,并处于良好的运行工作状态,发现故障及时排除,不得带病工作,不得违章作业。 2、严格执行本规程和企业相关规定,尽职尽责搞好本职工作,实现安全运行,达到废水处理要求效果。 3、做好营运工作记录和水质检测报表,接受企业相关部门的检查。 三、管理范围 从污水进入污水处理设备起,至污水流经污水处理设备的各个单元,实现达标排放后的全部构筑物、设备、仪表、控制系统和安全系统。 四、工艺说明 1、工艺流程说明 本工艺采用物化方式。 废水首先通过提升泵将调节池收集的废水泵入反应池,提升泵2台,一备一用。 反应池分三格,采用搅拌机搅拌,使药液快速充分混合反应:第一格进行中和反应,采用pH自动控制,当废水呈酸性时自动加入NaOH调节pH至6~8范围内,当废水呈碱性时自动加 入H 2SO 4 调节pH至6~8范围内;第二格进行混凝反应,手动开启泵加入适量的PAC(聚合氯化 铝),加药量以产生细小矾花为准,第三格进行絮凝反应,采用加药桶自流加入PAM充分混合,以助凝产生更大的矾花。

一次泵冷水变流量系统设计及控制策略

一次泵冷水变流量系统设计及控制策略 摘要一次泵变流量系统与一次泵定流量/二次泵变流量系统相比具有初投资小、节省制冷机房占地面积和降低运行费用等优点。本文阐述了一次泵变流量系统在工程应用时在设计上应注意的问题以及应采取的相关控制策略。 关键词一次泵冷水变流量系统设计控制策略

0 引言 随着经济的发展和人们生活水平的提高,空调能耗在生产和生活总能耗的比重越来越大,目前国内空调能耗占居民建筑能耗的25%~35%,占公共建筑能耗的30%~45%。空调系统年能耗中冷水机组的能耗约占33%,水泵能耗约占22%,冷却塔能耗约占2%,风机能耗约占43%,尽管水泵功率较小,但水泵能耗却占到制冷机房能耗的2/3[1]。可见,如果水系统采用节能技术,具有很大的节能空间。空调水系统的发展经历了定流量,一次泵定流量/二次变流量,随着制冷机组控制技术的发展,近年来一次泵变流量系统也不断得到应用。目前离心机蒸发器最小冷水流量可降到设计流量的30%左右[2],螺杆机蒸发器最小冷水流量可降到设计流量的40%左右[3],蒸发器最小允许水流量与冷水机组品牌有关,在工程应用中须向产品制造厂家进行详细咨询。在一定范围内改变蒸发器水流量,不会对冷水机组的效率及稳定性产生影响,这为一次泵变流量系统的工程应用提供的技术保障,但是要充分发挥一次泵变流量系统减少初投资及节能潜力,在实际应用中应如何进行系统设计,怎样进行系统控制,是暖通设计师值得关注的问题。 1 冷水变流量系统常用类型 “变流量系统”是指在水路系统的空调末端使用二通调节阀的系统,是与水路系统末端使用三通调节阀或不使用调节阀的“定流量系统”相对而言的。所谓“变流量”与“定流量”均是指输送冷水的水路系统的流量是变化的。变流量系统根据其系统构成形式不同,又可分为“相对的变流量系统”,即冷量制备环路是定流量,而冷量输送环路是变流量(如一次泵定流量/二次泵变流量系统(图1)、传统的一次泵变流量系统(图2));和“真正的变流量系统”,即冷水机组蒸发器变流量系统(如一次泵变流量系统(图3))。 图1 一次泵定流量/二次泵变流量系统 一次泵定流量/二次泵变流量系统利用旁通管将冷量制备环路和冷量输配环路在水力上分离开来,因此这里的旁通管除了具有旁通流量使冷量制备环路保持定流量运行的作用外,另外还有“解耦”的作用,防止一次泵和二次泵串联运行。这种系统型式有时会在旁通管上设一个止回阀,以防止回水通过旁通管回流到供水端与冷水机组的出水混合而升高系统供水

QBY-50气动隔膜泵检修规程

内蒙古亿利化学工业有限公司ELION 厂设备维护检修规程 编制: 日期: 校对: 日期: 审核: 日期: 批准: 日期:

发布日期: 目录 QBY-50气动隔膜泵检修规程................ ....... . .. (4) 1总则............................. . ..... ……................................... ..(4) 1.1适用范围.......................... . ... ……................................... ..(4) 1 .2结构简述………………………………… ...…… ...….………………………… .. 4) 1 .3技术性能………………………………… ...…… ...….………………………… .. 4) 2 完好标准....................................... ........... ..................................... .. 4) 2.1零、部件............................ .. ............................................ . (4) 2.2 运行性能…………………… ...………………… ...….………………………… .. 4) 2 .3技术资料………………………………… ..……...….………………………… ..(4) 2.4 设备及环境………………… ......... ……...….………………………… ..(4) 3 隔膜泵设备维护………………………………… ..……… ...….………………… .. 5) 3.1 日常维护………………………………… ...…… ...….………………………… .. 5) 3. 2定期检查内容…………………… ...………………… .………………………… .. 5) 3.3常见故障处理方法……………………… ..……...….………………………… ..(5) 3.4 紧急情况停车……………… ......... ……...….………………………… ..(5) 4 检修周期和检修内容…………………… ..……… ...….………………………… .. 5) 4.1 检修周期………………………………… ...…… ...….……………………… .….. 5) 4 . 2检修内容…………………… ...………………… ...….……………………… .….. 6) 5检修方法及质量标准…………………… ..……… ...….………………………… ... 6) 5.1 检修方法简述…………………………… ...…… ...….………………………… ... 6) 5. 2检修质量标准……………… ...………………… ...….………………… . …… .. 6) 6试车与验收…………………… ..……… ...… .……………………… ..……… ...….. 7) 6.1 试车前准备工作..……………………… ...…… ...….……………………… ..….. 7) 6.2 试车……………… ...………………… ...….……………………… .………… .. 7) 6.2 验收……………… ...………………… ...….……………………… .………… .. 7) 7 维护检修安全注意事项……… ..……… ...….……………………… ..………… ..(8) 6.1 维护安全注意事项… .………………… ...…… ...….……………………… ...….. 8)

离心泵的控制方案

一、 离心泵的控制方案 1、离心泵工作原理 离心泵是通过离心力的原理工作的。离心泵工作原理是在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下被甩向外围而流进泵壳,于是叶轮中心压力降低,这个压力低于进水池液面的压力,液体就在这个压力的作用下有吸入池进入叶轮,这样泵就可以不断的吸入压出,完成液体的输送。 2、离心泵的主要参数 离心泵的主要参数包括:流量、扬程、功率、效率、转速和汽蚀余量等。 3、泵的类型 ①叶片式泵:它对介质的输送是靠有叶片的叶轮高速旋转而完成的。 ②容积式泵:它对介质的输送是靠泵体工作室容积的周期性变化而完成的。 ③其他类型泵:只改变输送介质的位能和利用输送介质本身能量的泵。 4、离心泵特性 由于离心泵的叶轮和机壳之间存在空隙,泵的出口阀全闭,液体在泵体内循环,泵的排量为零,压头最大;随着出口阀的逐步开启,排出量随之增大,出口压力将慢慢下降。 泵的压头H ,排量Q 和转速n 之间的函数关系:、 排出量Q → ↑ 压头 n 1 n 2 n 3 n 4 a a’

H =R 1n 2 – R 2Q 2 5、管路特性 HL=hp+hL+hf +hv 4项阻力: 1)管路两端的静压差引起的压头hp ; 2)管路两端的静压柱高度hL ; 3)管路中的摩擦损失压头hf ; 4)控制阀两端节流损失压头hv ; 当系统达到稳定工作状态时,泵的压头H 必然等于HL ,这是建立平衡得条件。左图中泵的 特性曲线与管路特性曲线的交点C ,即是泵的平衡工作点。 工作点C 的流量应符合工艺预定的要求,可以通过改变hv 或其它手段来满足这一要求,这是离心泵的压力(流量)的控制方案的主要依据。 6、离心泵的控制方案 1)直接节流法 排出量Q → ↑ 压头

矿井水处理操作规程模板

矿井水处理操作规 程

山西阳城皇城相府集团皇联煤业有限公司 矿井水处理操作规程

目录 一.总则-------------------------------------------------------------------------------- 4二.规章制度-------------------------------------------------------------------------- 4 1.设备包机制度 ------------------------------------------------------------------ 4 2.设备保养制度 ------------------------------------------------------------------ 5 3.设备巡检管理制度 ------------------------------------------------------------ 6 4.水处理工岗位责任制 --------------------------------------------------------- 7三.管理范围-------------------------------------------------------------------------- 8四.工艺说明-------------------------------------------------------------------------- 8 1.工艺流程方框图 --------------------------------------------------------------- 8 2.工艺流程简介 ------------------------------------------------------------------ 9 ( 1) 调节水量 --------------------------------------------------------------------- 9 ( 2) 混凝反应 --------------------------------------------------------------------- 9 ( 3) 泥水分离 --------------------------------------------------------------------10 ( 4) 深度过滤 --------------------------------------------------------------------10 ( 5) 消毒处理 -------------------------------------------------------------------- 11 ( 6) 污泥脱水 -------------------------------------------------------------------- 11五.系统操作规程 ------------------------------------------------------------------12 1.系统运行 -----------------------------------------------------------------------12

相关文档
最新文档