氮氧化物还原措施

氮氧化物还原措施
氮氧化物还原措施

氮氧化物(NOx)是柴油发动机和其他采用稀薄燃烧方式工作的发动机尾气中,最具毒性的污染物。在如何减少NOx排放的各种途径中,SCR-NOx选择性催化还原法是最具现实意义的,它能把发动机尾气中的NOx减少50%。

本文研究了两种选择性催化还原方法,发现NOx的选择性催化还原可以使用碳氢化合物(CHx)还原剂,也可以使用包括尿素在内的氨基化合物。研究表明,利用尿素作为氨的来源更合适一些,为此研制了氧化钒、氧化钛为基体的催化转化器以及尿素供给系统,并选择出了其最佳工作条件。测试表明,柴油发动机在安装该装置后NOx的排放量减少了50%-60%。

NOx是柴油发动机尾气中最具毒性,而且很难去除的有害成份之一。它的毒性远远超过碳氧化合物(COx),据有关文献NOx比碳氧化合物(COx)的毒性高出40倍。除了传统的柴油发动机要解决NOx排放问题以外,随着柴油发动机燃用天然气,如何降低天然气发动机NOx的排放也成了当务之急,而且采用稀薄燃烧方式的汽油发动机也面临着同样难题。

上述发动机的尾气中含有大量的氧气,很难采取传统的方法依赖碳氧化合物(COx)和碳氢化合物(CHx)来还原尾气中的NOx。如果采取机内净化措施,就会发生NOx降低而CO和HC的排放增加的现象。在废气再循环率为15%-20%时,虽然NOx 的排放减少了30%-40%,但是CO和HC的排放增加了两倍。因此要满足欧Ⅲ或以上排放标准,必须使用催化转化器。分析表明,使用催化转化器可以减少50%-60%的NOx。

为了选择清除NOx的最佳方法,就有必要研究柴油发动机的尾气排放情况,特别是NOx排放时的温度区间以及浓度。测试表明,大约80%的NOx是在柴油发动机最大负荷时排放的,其相应的温度区间为350℃-550℃。由于尾气经过排气管路会有一定程度的降温,因此催化转化器的工作温度可以限定在250℃-500℃。

NOx是氧化剂,在没有自由状态的氧时,它能把碳氧化合物(COx)和碳氢化合物(CHx)氧化为二氧化碳和水:

2CO+2NO=N2+2CO2 (1)

4CHx+(8+2x)NO=4CO2+2H2O+(4+x)N2 (2)

因为在大部分情况下,氧气的氧化能力明显高于NOx的氧化能力,在柴油发动机尾气中,CO和HC是主要的潜在的NOx还原剂,但它们容易被氧气氧化,导致上述(1)、(2)反应过程不能进行。因此,必须在采取一种能在氧气富余的情况下确

保还原NOx能力的方案。比如选择性催化还原法,所采用的催化转化器能同尾气中

的或供给的还原剂相互作用,还原尾气中的NOx。

事实上,用以还原柴油发动机尾气中NOx的选择性催化还原剂有两种,即碳氢化合

物及氨基化合物,但它们具有不同的优缺点。

把碳氢化合物(CHx)用作还原剂的好处在于,它能起到还原作用并能从

燃油中获得,不需要附加的车载系统,但是它清除NOx的能力并不是很强。

而把氨基化合物作为选择性催化还原剂,则能更好地清除发动机尾气中的NOx。但在采取这一方案时,需要附加的车载系统,并需要解决其加注问题。另外,氨在没有

完全同NOx相互作用的情况下,也会氧化为NOx。

因此,就有必要对把碳氢化合物和氨作为选择性催化还原剂进行深入研究,研制出能较好还原NOx的催化转化装置,并找出其最佳使用条件。

使用碳氢化合物(CHx)作为选择性催化还原剂

采用碳氢化合物(CHx)选择性催化还原NOx被表示为SCR-NOx-CH,其反

应式为:

2CHx+2yNO+(x/2-y+2)O2=2CO2+yN2+xH2O (3)

NOx在250℃550℃的温度区间排出较多,可以采用铂(300℃以下)、氧化铜和氧化镍进行催化转化。在450℃以下时,采用Cu/ZSM-5铜-沸石催化转化器更有效一些,而在温度更高时,可以采用银、钴、锡或者其他金属及其氧化物进行催化转化。

在SCR-NOx-CH过程中,烯烃(丙烯、乙烯等)以及部分氧化的碳氢化合物(醇类、醛类等)是最有效的还原剂。但在发动机使用甲烷或丙烷-丁烷燃料时,其效果就要打折扣。柴油本身也可以用作NOx的还原剂,它既可以喷入催化转化器前的排气管中,也可以在发动机膨胀行程中喷入气缸。但是发动机的油耗会因此相应增加10%左右,碳氢化合物的排放也会有所上升。

使用碳氢化合物作为NOx选择性催化还原剂的研究表明:

1.涂在催化转化器氧化铝基体上的铂、钯或铂铑金属,能依靠丙烯、丙烷在160℃-260℃的温度区间,在氧气富余的情况下把NOx降至原来的40%-50%。

2.Cu/ZSM-5铜-沸石催化转化器能依靠丙烯、丙烷在260℃-460℃的温度区间,在氧气富余的情况下把NOx降至原来的40%。但工作不稳定,在10-15小时内很快丧失活性。

3.同时采用铜-沸石催化转化器和铂金属催化转化器能在160℃-460℃的温度区间还原大约30%-50%的NOx。

采用氨基化合物选择性还原NOx

虽然同时铂金属或钯金属催化转化器与铜-沸石催化转化器能在

160℃-460℃的温度区间依靠碳氢化合物还原一定数量的NOx,但是这种方法存在着以下不足:

第一,相对来说,该方法清除NOx的效率不是很高,特别是在依靠饱和烃催化还原NOx时。

第二,在中温及高温区间更有效的Cu/ZSM-5铜-沸石催化转化器,在水蒸气的作用下显得强度不够。

因此,有必要采用氨基化合物选择性还原柴油发动机尾气中的NOx,该方法可以表示为SCR-NO-NH3,其反应式为:

4NO+4NH3+O2=4N2+6H2O (4)

在高温区,NH3能同NO反应生成N2:

4NH3+6NO=5N2+H2O (5)

此外,在采用氨基化合物选择性还原柴油发动机尾气中的NOx时,可能会发生一些附带的反应,其中最有害的是氨的深层氧化:

2NH3+5O2=4NO+6H2O (6)

显然,使用气态的氨是个麻烦事,而使用30%-40%的尿素水溶液则更方便和安全一些。尿素可以大批量生产,一般用作肥料,其水溶性好,储存运输很方便,而且价格低廉,使用安全。在水溶液中,尿素与水分子相结合并水解为NH3和CO2。

尿素还原NO的过程为:

CO(NH2)2+2NO+0.5O2=2N2+CO2+2H2O (7)

在工业条件下把尿素事先分解为NH3,可以使还原NOx的效率高出10%-40%。

钒-钛催化转化器的试验表明,钒和钛的比例应该接近1。在550℃-580℃的高温区,为了获得较高的选择性,建议向钒-钛催化转化器中加入二价铁作为促进剂。

NH3与NO的比值应接近化学计量值。过量的氨虽然能还原更多的NOx,但同时也产生其他一些问题。

钒-钛催化转化器的优点在于它能促进上述(4)、(5)方程式中反应,而且

不会形成新的NOx。更重要的是,当汽车尾气中NOx较少或没有时,氨会被氧化为分子氮。

Cu/ZSM-5铜-沸石催化转化器的试验表明,当时用气态碳氢化合物(CHx)作为还原剂时,部分丙烯被氧化成CO,而且其浓度比尾气中原来的CO浓度高出许多倍。因此,为了避免CO的排放量增加以及碳氢化合物过量,就应该再加装一个铂催化转化器。

Cu/ZSM-5铜-沸石催化转化器在260℃-460℃的温度区间,依靠碳氢化合物(丙烯和丙烷)能还原20%-60%的NOx,但是这种催化转化器工作不太稳定,而且在10-15小时内就会很快丧失活性。

氧化铝基体的铂催化转化器以及铂铑催化转化器能依靠丙烯和丙烷氧化NO,在180℃-260℃的温度区间能转换大约20%的NO,且工作性能稳定。经过300多小时的测试,其活性并未降低。所以铂类催化转化器催化转化NO的效率不高,但它具有较长的工作寿命,可以用于固定式柴油动力设备。

为了扩大催化转化器的工作范围,可以同时使用Cu/ZSM-5铜-沸石催化转化器以及氧化铝为基体的铂催化转化器。当HC与NO的比例小于或等于1的情况下进行的试验表明,它们可以在180℃-460℃的温度区间转换20%-30%的NOx。

综上所述,使用碳氢化合物作为还原剂来催化转化NOx效率不高。

而采用氨基化合物作为还原剂,并使用钒钛催化转化器的效果要好得多。试验中尿素的供给采用了两种方案。一种是把尿素溶液直接喷入SCR催化转化器前的排气管路中。另一种是把事先水解后的尿素供往催化转化器。

试验表明,钒钛催化转化器在500℃-550℃的温度区间仍然具有活性。把事先水解后的尿素供往钒钛催化转化器,能更好地还原NOx。由于柴油燃烧产物中存在二氧化硫,钒钛催化转化器NOx的实际转化能力可能低于此实验数据。

由于氨本身具有很高的毒性,最大允许量为2.0mg/m3,因此NH3与NO的

比值应处于在0.81.1的范围内,这对于清除NOx来说是足够的。

对比尿素供给的两种方案发现,尿素事先水解后再供往催化转化器的效果更好一些,能在450℃-520℃的温度区间清除50%-60%的NOx。

因此,应当采用氨基化合物选择性还原NOx,并使用钒钛催化转化器,采

用40%的尿素溶液作为还原剂,水解后供往催化转化器。NH3与NO的比值控制在

0.91.0的范围内。钒钛催化转化器的基体用费赫拉尔铁铬铝合金薄片制成,成分为

铬15%-23%,铝5%,其余的为铁。金属薄片的厚度为0.05mm,每英寸具有200个小孔。

选择性催化还原柴油发动机尾气中的NOx,既可以利用碳氢化合物作为还

原剂,也可以使用包括尿素在内的氨基化合物作为还原剂。但是根据利用碳氢作为

还原剂思路,暂时还没开发出工作性能稳定、使用寿命较长的催化转化器。铂催化

转化器只在低温区间较好地清除NOx。而使用包括尿素在内的氨基化合物作为还原剂,其清除NOx的效果要更胜一筹。

选择性催化还原脱除氮氧化物工艺简介

选择性催化还原脱除氮氧化物工艺简介 选择性催化还原脱除氮氧化物工艺(简称SCR工艺)简介 一、该工艺概述:选择性催化还原脱除氮氧化物工艺技术是我公司技术研发中心独立研发,拥有自主自主知识产权的技术工艺。该技术工艺成熟,性价比极高,占地面积小,脱硝效率高(可达90%以上),无“三废”排放。 二、工艺技术说明及主要特点: 1、高脱硝效率,减少氨逃逸 ①烟气经过独特设计的脱硝反应器,与还原剂在催化剂层进行充分反应,保证脱硝率90%以上,可完全实现达标排放; ②喷氨格栅经严格计算、独特设计,还原剂氨经喷氨格栅喷入烟道,可与烟气充分混合,在烟道内均匀分布,保证了脱硝催化剂的烟气覆盖率及脱硝效果; ③当进入SCR反应器前的烟气分布不均匀时,会导致脱硝效率下降,为保证脱硝效率,在SCR反应器入口前的烟道内各急转弯头布置导向叶片,缓转弯头及烟道扩散收缩段布置导流板,从而使进入SCR反应器的烟气更均匀,有效保证了脱硝效率; ④合理选择催化剂,保证脱硝反应在适宜温度内进行,避免副反应的发生,保证脱硝效率; ⑤做好烟道的密封设计和施工,避免烟气泄漏,保证烟气100%通过催化剂; ⑥反应器内的积灰,不仅会直接或间接地减少催化剂有效体积而降低SCR性能,同时变硬的灰块掉下会造成催化剂的机械损伤,故在结构设计上应尽量减少积灰的可能。反应器进口烟道设置积灰斗,防止大颗粒灰渣进入反应器;反应器内防止积灰的设计除吹灰器系统以外,在结构设计上主要还体现在以下几个方面:整流板、催化剂上的金属格栅和金属网、防积灰板、合理设计催化剂节距。 2、无二次污染 采用我公司自主研发、设计的SCR法烟气脱硝技术,利用氨做还原剂,在催化剂作用下将燃煤锅炉烟气中的NO x还原为N2后排放,无废气产生;氨区泄漏及安全阀排放的少量氨用清水吸收后,可送至脱硫系统作为脱硫吸收剂,无废水排放;本脱硝工艺全部反应均为气相反应,无废渣生成。 3、净化温度低 我公司结合业主方实际设计工艺路线,选择适宜的催化剂,有效降低了反应温度,烟气经省煤器后可直接进行脱硝反应,无需加热或降温; 4、防止设备腐蚀 本项目液氨储罐采用16MnR材质,氨系统管路采用不锈钢材质,均具有良好的耐腐蚀性。 烟气管路、相关设备及反应器均采用Q235B。因烟气在本系统中的温度介于350℃~400℃之间,不会形成液体凝结,腐蚀性较小,可满足系统防腐要求,该选材方案也符合国内外脱硝行业的通用惯例。 5、防止系统堵塞 每层催化剂模块均设置吹灰器,防止催化剂堵塞,保证系统安全稳定运行。 6、工艺设备紧凑,运行可靠 反应器邻近锅炉建设,一方面节省反应器支撑结构用材,一方面有效节约占地面积,减少烟气在烟道输送过程中降温。液氨储罐、蒸发系统、缓冲罐布局合理紧凑,安全系数高。 7、保证流场的均匀性 在安装了脱硝装置后,为了保证回到空气预热器的烟气流场分布均匀,在连接烟道内设置了若干导流板,有效的消除了流场的不均匀性。 三、本工艺流程示意图(本图仅供参考):

氮氧化物废气的处理..

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物废气的处理 摘要:氮氧化物是主要的大气污染物之一,本文介绍了含氮氧化物废气的产生原因及处理方法。 关键词:氮氧化物;处理技术; 前言 氮氧化物是指一系列由氮元索和氧元素组成的化合物,包括有N2O、NO、N2O3 、NO2、N2O4、N2O5,通常用分子式NO x 来统一表示。大气中NO x主要以NO、NO2的形式存在。 NO x的危害早已被人们所认识到,主要体现在: (1)氮氧化物对人体的危害很大,可直接导致人体的呼吸道损伤,而且是一种致癌物。 (2)氮氧化物会使植物受损伤甚至死亡。 (3)在阳光的催化作用下,氮氧化物易与碳氢化物发生复杂的光化反应,产生光化学烟雾,导致严重的大气污染。 (4)氮氧化物会导致臭氧层的破坏。 (5)氮氧化物也易与水气结合成为含有硝酸成分的酸雨川。 以上光化学烟雾、酸雨及臭氧问题,近年来有逐渐恶化的趋势,已经成为政府及社会公众非常关心的问题。 氮氧化物的产生主要来自于两个方面:自然界本身和人类活动。据统计,由自然界本身变化规律产生的NOx每年约500×106t,人类活动产生的NOx每年约50×106t。从数据来看,虽然人类活动产生的NOx较自然界本身产生的NOx少得多,但由于人类活动产生的NOx往往比较集中,浓度较高,且大多在人类活动环境区域内,因而其危害性更大。 人类活动产生的氮氧化物主要来源于两个方面: (1)含氮化合物的燃烧; (2)亚硝酸、硝酸及其盐类的工业生产及使用。据美国环保局估计,99%的NOx产生于含氮化合物的燃烧,如火力电厂煤燃烧产生的烟气、汽车尾气等。在亚硝酸、硝酸及其盐类的工业生产及使用过程中,由于它们的还原分解,会放出大量的NOx,其局部浓度很高,处理困难,危害大。 在含NOx废气中,对自然环境和人类生存危害最大的主要是NO和NO2。NO为无色、无味、无臭气体,微溶于水,可溶于乙醇和硝酸,在空气中可缓慢氧化为NO2,与氧化剂反应生成NO2,与还原剂反应生成N2。NO2溶于水和硝酸,和水反应生成HNO3和HNO2,和碱及强碱弱酸盐反应生成硝酸盐和亚硝酸盐,和还原剂反应还原为N2。

氮氧化物废气处理工艺与方案

浙江嘉化能源化工股份有限公司4000吨/年BA技改项目 氮氧化物废气处理工艺方案 一、工艺技术及介绍 1.1 工艺技术介绍 CN型氮氧化物废气处理反应器是南京市环境保护科学研究院的专利技术,常熟市胜诺环保设备有限公司获独家授权制造并且在全国范围内市场推广的专利产品。专利号ZL 02 2 63020.1。 该技术是基于南京市环境保护科学研究院《炽热碳还原处理氮氧化物废气的工艺研究》,原理是利用以NO、NO为代表的气相氮氧化物2在高温条件下都可以被碳还原成氮气,达到从废气中去除氮氧化物的目的。 该技术的特点是对废气中氮氧化物浓度变化范围适应性宽,并且呈现出废气中氮氧化物浓度越高处理效率越高的特点。 与传统的氮氧化物废气选择性催化法、氨-碱溶液两级吸收法、碱-亚硫酸铵吸收法、硝酸氧化-碱吸收法、尿素还原法和丝光沸石吸附法等处理工艺比较,CN型氮氧化物废气处理反应器具有运行稳定、运行费用低、没有二次污染物产生、操作简单、投资小和保证达标排放等优势,在大多数情况下只需一台废气处理反应炉就可以全部解决问题,无需任何的能力装置,自身的热气体拨风系统可以将废气自动引入处理装置,省却了废气引风系统,降低了设备投资。在工厂需要时还可以副产热水回收热能。

型氮氧化物废气处理反应器,它具有的设备单一、工艺简单CN. 和易操作性使得它几乎是可以无故障、长周期的运行;先进、独到的技术使得氮氧化物废气的处理变得简单;卓越的性能确保用户氮氧化物废气能够达标排放;低成本运行使得氮氧化物废气的处理不再是企业的负担。 氮氧化物废气处理反应器在催化剂制造、金属溶解、贵金属冶炼、硝化反应、金属表面处理、多晶硅表面清洗等硝酸使用行业已经有很好的应用,并得到了用户的广泛赞誉。 本反应器采用氮氧化物废气处理专利技术(专利号ZL 02 2 63020.1)进行处理。原理为:2NO+ C = CO+ N2 2 2NO+ 2C = 2CO+ N2 22 该化学反应是一个可以自发进行的放热反应。在常温下该化学反应不能自发进行是因为反应活化能的势垒阻隔。提高反应温度到600-800℃可以克服反应活化能的势垒阻隔,在此条件下反应对NO和NO没有选择性,都能反应,并且反应迅速进行,该反应的反应热2本身可以维持反应体系的温度。所以简而言之,该反应器就是让NO和NO废气通过燃烧的焦炭层,让焦碳和NO、NO在高温下发生还原22反应,把废NO、NO气还原成氮气。因为氧气会消耗焦炭,所以整个2系统要严格控制氧的进入。本专利技术可以做到排气筒目测无黄烟,3以下。240 mg/m可以保证排放废气中氮氧化物浓度在 本工艺装置在常熟市开拓催化剂公司(硝酸溶金属和转炉分解硝酸

浅谈空气中的氮氧化物的污染及其治理

浅谈空气中的氮氧化物的污染及其治理 摘 要 氮氧化物是只由氮、氧两种元素组成的化合物,包括氧化二氮,一氧化氮,三氧化二氮,二氧化氮,四氧化二氮,五氧化二氮。氮氧化物是大气的主要污染物之一, 是治理大气污染的一大难题。本文介绍了氮氧化物的来源以及治理氮氧 化物的主要方法,分析了这些方法处理氮氧化物的优点或缺点,并预测未来处理氮氧化物方法的发展趋势。 关键词 氮氧化物 产生 危害 治理 天然排放的氮氧化物,主要来自土壤和海洋中有机物的分解,属于自然界的氮循环过程。人为活动排放的氮氧化物,大部分来自化石燃料的燃烧过程,如汽车、飞机、内燃机及工业窑炉的燃烧过程;也来自生产、使用硝酸的过程,如氮肥厂、有机中间体厂、有色及黑色金属冶炼厂等。据80年代初估计,全世界每年由于人类活动向大气排放的氮氧化物,约5300万吨。 氮氧化物对环境的损害作用极大,它既是形成酸雨的主要物质之一,也是形成大气中光化学烟雾的重要物质和消耗臭氧的一个重要因子。其危害主要包括: 1.NOx 对人体及动物的致毒作用。NO 对血红蛋白的亲和力非常强,是氧的数十万倍。一旦NO 进入血液中,就从氧化血红蛋白中将氧驱赶出来,与血红蛋白牢固地结合在一起。长时间暴露在NO 环境中较易引起支气管炎和肺气肿等病变。这些毒害作用还会促使早衰、支气管上皮细胞发生淋巴组织增生,甚至是肺癌等症状的产生。 2.对植物的损害作用,氮氧化物对植物的毒性较其它大气污染物要弱,一般不会产生急性伤害,而慢性伤害能抑制植物的生长。危害症状表现为在叶脉间或叶缘出现形状不规则的水渍斑,逐渐坏死,而后干燥变成白色、黄色或黄褐色斑点,逐步扩展到整个叶片。 3.NOx 是形成酸雨、酸雾的主要原因之一。高温燃烧生成的NO 排人大气后大部分转化成NO ,遇水生成HNO 3、HNO 2,并随雨水到达地面,形成酸雨或者酸雾。

氮氧化物的产生机理及脱氮技术原理.

氮氧化物的产生机理及脱氮技术原理: 一、氮氧化物的产生机理 在氮氧化物中,NO占有90%以上,二氧化氮占5%-10%,产生机理一般分为如下三种: (a热力型 燃烧时,空气中氮在高温下氧化产生,其中的生成过程是一个不分支连锁反应。其生成机理可用捷里多维奇(Zeldovich反应式表示。 随着反应温度T的升高,其反应速率按指数规律。当T<1500℃时,NO的生成量很少,而当T>1500℃时,T每增加100℃,反应速率增大6-7倍。 热力型氮氧化物生成机理(Zeldovich反应式 在高温下总生成式为 (b瞬时反应型(快速型 快速型NOx是1971年Fenimore通过实验发现的。在碳氢化合物燃料燃烧在燃料过浓时,在反应区附近会快速生成NOx。 由于燃料挥发物中碳氢化合物高温分解生成的CH自由基可以和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成,其形成时间只需要60ms,所生成的与炉膛压力0.5次方成正比,与温度的关系不大。 上述两种氮氧化物都不占NOx的主要部分,不是主要来源。 (c燃料型NOx 由燃料中氮化合物在燃烧中氧化而成。由于燃料中氮的热分解温度低于煤粉燃烧温度,在600-800℃时就会生成燃料型,它在煤粉燃烧NOx产物中占60-80%。

在生成燃料型NOx过程中,首先是含有氮的有机化合物热裂解产生N,CN,HCN 和等中间产物基团,然后再氧化成NOx。由于煤的燃烧过程由挥发份燃烧和焦炭燃烧两个阶段组成,故燃料型的形成也由气相氮的氧化(挥发份和焦炭中剩余氮的氧化(焦炭两部分组成。 燃料中氮分解为挥发分N和焦炭N的示意图 二、低NOx燃烧技术原理 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOx的生成机会。 1在燃用挥发分较高的烟煤时,燃料型NOx含量较多,快速型NOx极少。燃料型NOx是空气中的氧与煤中氮元素热解产物发生反应生成NOx,燃料中氮并非全部转变为NOx,它存在一个转换率,降低此转换率,控制NOx排放总量,可采取: (1减少燃烧的过量空气系数; (2控制燃料与空气的前期混合; (3提高入炉的局部燃料浓度。 2热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOx,产生的主要条件是高的燃烧温度使氮分子游离增加化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取: (1减小燃烧最高温度区域范围; (2降低锅炉燃烧的峰值温度; (3降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成:

氮氧化物废气的处理

氮氧化物废气的处理

氮氧化物废气的处理 姓名:贺佳萌 学号:1505110107 专业班级:应化1101 指导老师:曾冬铭

氮氧化物的来源 天然(5×108t/a): 自然界细菌分解土壤和海 洋中有机物而生成 人类活动( 5×107t/a ): 1.工业污染 ?主要是由于在工业生产过程中(特别是在石油化工企业)燃烧化石燃料而产生的,它主要包括二部分: ?一是在工艺生产过程中排放的泄漏的气体污染物,如化工厂及煤制气厂; ?二是在工业生产用的各种锅炉、窑炉排放的污染物; 2.生活污染 主要是指城镇居民、机关和服务性行业,因做饭、取暖、沐浴等生活需 要,燃烧矿物质燃料而向大气排放的氮氧化合物等污染物质,是大气污 染的有害气体产生的主要来源之一 3.交通污染 主要来自两个方面: ?一是汽车、火车、轮船和飞机等交通工具在运动过程中排放的一氧化碳、氮氧化合物等; ?二是在原料运输过程中.由于某些原料的泄漏及直接向空排放而造成的污染 氮氧化物的危害 1.腐蚀作用 氮氧化物遇到水或水蒸气后能生成一种酸性物质,对绝大多数金属和有机物均产生腐蚀性破坏。它还会灼伤人和其它活体组织,使活体组织中的水份遭到破坏,产生腐蚀性化学变化。 2.对人体的毒害作用 它们和血液中的血色素结合,使血液缺氧,引起中枢神经麻痹。吸入气管中会产生硝酸,破坏血液中血红蛋白,降低血液输氧能力,造成严重缺氧。而且据研究发现,在二氧化氮污染区内,人的呼吸机能下降,尤其氮氧化物中的二氧化氮可引起咳嗽和咽喉痛,如果再加上二氧化硫的影响,会加重支气管炎、哮喘病和肺气肿,这使得呼吸器官发病率增高。与碳氢化合物经太阳紫外线照射,会生成一种有毒的气体叫光化学烟雾。这些光化学烟雾,能使人的眼睛红痛,视力减弱,呼吸紧张,头痛,胸痛,全身麻痹,肺水肿,甚至死亡 3.对植物的危害 一氧化氮不会引起植物叶片斑害,但能抑制植物的光合作用。而植物叶片气孔吸收溶解二氧化氮,就会造成叶脉坏死,从而影响植物的生长和发育,降低产量。如长期处于2—3ppm的高浓度下,就会使植物产生急性受害 4.对环境的污染

催化还原法治理氮氧化物

催化还原法治理氮氧化物 摘要 简单介绍了治理废气的几种方法,主要阐述了催化还原法治理NOx气 体的方法流程。 关键词:氮氧化物,催化还原 NOx是一种棕红色有臭味的气体, 具有强烈的刺激性, 人若吸入, 日积月累, 会导致气管炎、心脏病、肺气肿、肺癌等症。在我厂电镀生产产生的废气中, NOx废气是一种危害较大、较难治理的酸性废气。 烟气脱销技术主要有气相反应法、液体吸收法、吸附法等几类。 气相反应法又包括3 类:(1)电子束照射法和脉冲电晕等离子体法;(2)选择性催化还原法、选择性非催化性还原法和炽热碳还原法; (3)低温常压等离子体分解法等。第(1)类是利用高能电子产生自由基将NO 氧化为NO2,再与H2O 和NH3作用生成NH4NO3化肥并加以回收,可同时脱硫脱硝;第(2)类是在催化或非催化条件下,用NH3、C 等还原剂将NO x 还原为无害N2的方法;第(3)类则是利用超高压窄脉冲电晕放电产生的高能活性粒子撞击NO x 分子,使其化学键断裂分解为O2 和N2的方法。 液体吸收NO x 的方法较多,应用也较广。NO x 可以用水、碱溶液、稀硝酸、浓硫酸吸收。由于NO 极难溶于水或碱溶液,因而湿法脱硝 效率一般不很高。于是采用氧化、还原或络合吸收的办法以提高NO 的净化效果。与干法相比,湿法具有工艺及设备简单、投资少等优点,有些方法还能回收NO x,具有一定的经济效益。缺点是净化效果差。

吸附法脱除NO x,常用的吸附剂有分子筛、活性碳、天然沸石、硅胶及泥煤等。其中有些吸附剂如硅胶、分子筛、活性碳等,兼有催化的性能,能将废气中的NO 催化氧化为NO2,然后可用水或碱吸收而得以回收。吸附法脱硝效率高,且能回收NO x,但因吸附容量小,吸附剂用量多,设备庞大,再生频繁等原因,应用不广泛。 总的看来,目前工业上应用的方法主要是气相反应法和液相吸收法两类。这两类方法中又分别以催化还原法和碱吸收法为主,前者可以将废气中的NO x 排放浓度降至较低水平,但消耗大量NH3,有的还消耗燃料气,经济亏损大;后者可回收NO x 为硝酸盐和亚硝酸盐,有一定经济效益,但净化效率不高,不能把NO x 降至较低水平。因此,要找到一种或几种技术上可行、经济上合理、适合中国国情的脱硝技术,还需作出更大的努力。 催化还原法 催化还原法分为选择性催化还原法(SCR)和非选择性催化还原法两类。非选择性催化还原法是在一定温度和催化剂(一般为贵金属Pt、Pd 等)作用下,废气中的NO2和NO 被还原剂(H2、CO2、CH4)及其他低碳氢化合物等燃料气)还原为N2,同时还原剂还与废气中O2作用生成H2O 和CO2。反应过程放出大量热能。该法燃料耗量大,需贵金属作催化剂,还需设置热回收装置,投资大,国内未见使用,国外也逐渐被淘汰,多改用选择性催化还原法。 选择性催化还原法(SCR) 该法用NH3做还原剂,加入氨至烟气中,NOx在300~400 ℃的催化剂

如何降低烟气中氮氧化物的含量

1 重要性和产生的原因 氮氧化物(NOX)是锅炉排放气体中的有害物之一。燃煤锅炉在1996年国家要求控制在650mg/m3,而2004年第3时段排放标准进一步提高要求控制在450 mg/m3;所以对于我们燃煤机组的火电厂热电厂减少NOX的排放迫在眉睫。 在燃烧过程中, NOX生成的途径有3条: 1)热力型NOX:是空气中氮在高温(1 400℃以上)下氧化产生; 2)快速型NOX:是由于燃料挥发物中碳氢化合物高温分解生成的CH自由基和空气中氮气反应生成HCN和N,再进一步与氧气作用以极快的速度生成NOx; 3)燃料型NOX:是燃料中含氮化合物在燃烧中氧化生成的NOx,称为燃料型NOx。 2 降低的方法 对于没有脱硝设备和脱硝燃烧器的燃煤锅炉来说,也就是采用低氮燃烧技术来减少NOX 的生成机会。 1)在燃用挥发分较高的烟煤时,燃料型NOX含量较多,快速型NOX极少。燃料型NOX是空气中的氧与煤中氮元素热解产物发生反应生成NOX,燃料中氮并非全部转变为NOX,它存在一个转换率,降低此转换率,控制NOX排放总量,可采取: (1)减少燃烧的过量空气系数; (2)控制燃料与空气的前期混合; (3)提高入炉的局部燃料浓度。 2)热力型NOx:是燃烧时空气中的N2和O2在高温下生成的NOX,产生的主要条件是高的燃烧温度使氮分子游离增本化学活性;然后是高的氧浓度,要减少热力型NOX的生成,可采取 : (1)减少燃烧最高温度区域范围; (2)降低锅炉燃烧的峰值温度; (3)降低燃烧的过量空气系数和局部氧浓度。 具体来说,就是在保证锅炉燃烧安全的前提下,采取以下措施来减少氮氧化物的生成: (1)低过量空气燃烧

NOx的治理方法

NOx的治理方法 3.1液体吸收法 此法是利用氮氧化物通过液体介质时被溶解吸收的原理,除去NOx废气。此方法设备简单、费用低、效果好,故被化工行业广泛采用,现在主要的方法有: 3.1.1 碱液吸收法比较各种碱液的吸收效果,以NaOH作为吸收液效果最好,但考虑到价格、来源、操作难易以及吸收效率等因素,工业上应用最多的吸收液是Na2CO3。 3.1.2仲辛醇吸收法此法采用蓖麻油裂解的副产物—仲辛醇作为吸收液处理NOx尾气。仲辛醇不但能有效地吸收NOx,且自身被氧化成一系列的中间产物,该系列中间产物可以氧化得到重要的化工原料己酸。吸收过程中,NOx有一小部分被还原成NH3,大部分被还原成N2。 3.1.3 磷酸三丁酯(TBP)吸收法此法先将NOx中NO全部转化为NO2后在喷淋吸收塔内进行逆流吸收,以TBP为吸收剂,在吸收NOx 后形成配合物TBP·NOx,其吸收率高达98%以上,配合物TBP·NOx与芳香醇(α–醇酸醋)反应能回收得到TBP,回收率高达99.2%,且NOx几乎全部被还原成氮气,不会产生二次污染。 3.1.4 尿素溶液吸收法应用尿素作为氮氧化物的吸收剂,其主要的反应为: NO+NO2?N2O3;N2O3+H2O?2HNO2; (NH2)2CO+2HNO2?CO2+2N2+3H2O 此法运行费用低,吸收效果好,不产生二次污染。然而,只用尿素溶液吸收,尾气中氮氧化物浓度仍高达0.06%-0.08%。为进一步提高净化效率,用弱酸性尿素水溶液吸收,通常可以加硫酸、硝酸、盐酸或者醋酸。吸收液的温度控制在30℃~90℃, pH 值在1~3之间,吸收后尾气中NOx的去除率高达99.95%。 3.1.5 吸收还原法该法是用含二价铁螯合物的碳酸钠溶液洗涤烟气。其主要反应为: Na2CO3+SO2?Na2SO3+CO2 NO+Fe·EDTA?Fe·EDTA·NO Na2SO3+ Fe·EDTA·NO? Fe·EDTA +Na2SO4+1/2N2 SO2和NOx经反应后生成Na2SO4,并放出氮气,净化效率可达90%,其产物还可利用。 3.2固体吸附法 固体吸附法主要包括分子筛法、泥煤法、硅胶法和活性炭法。 3.2.1分子筛法常用的分子筛主要有丝光沸石Na2Al2Si10O24·7H2O。该物质对NOx有较高的吸附能力,在有氧条件下,能够将NO氧化为NO2加以吸附。 3.2.2泥煤法国外采用泥煤作为吸附剂来处理NOx废气,吸附NOx后的泥煤,可直接用作肥料不必再生,

氮氧化物还原措施

氮氧化物(NOx)是柴油发动机和其他采用稀薄燃烧方式工作的发动机尾气中,最具毒性的污染物。在如何减少NOx排放的各种途径中,SCR-NOx选择性催化还原法是最具现实意义的,它能把发动机尾气中的NOx减少50%。 本文研究了两种选择性催化还原方法,发现NOx的选择性催化还原可以使用碳氢化合物(CHx)还原剂,也可以使用包括尿素在内的氨基化合物。研究表明,利用尿素作为氨的来源更合适一些,为此研制了氧化钒、氧化钛为基体的催化转化器以及尿素供给系统,并选择出了其最佳工作条件。测试表明,柴油发动机在安装该装置后NOx的排放量减少了50%-60%。 NOx是柴油发动机尾气中最具毒性,而且很难去除的有害成份之一。它的毒性远远超过碳氧化合物(COx),据有关文献NOx比碳氧化合物(COx)的毒性高出40倍。除了传统的柴油发动机要解决NOx排放问题以外,随着柴油发动机燃用天然气,如何降低天然气发动机NOx的排放也成了当务之急,而且采用稀薄燃烧方式的汽油发动机也面临着同样难题。 上述发动机的尾气中含有大量的氧气,很难采取传统的方法依赖碳氧化合物(COx)和碳氢化合物(CHx)来还原尾气中的NOx。如果采取机内净化措施,就会发生NOx降低而CO和HC的排放增加的现象。在废气再循环率为15%-20%时,虽然NOx 的排放减少了30%-40%,但是CO和HC的排放增加了两倍。因此要满足欧Ⅲ或以上排放标准,必须使用催化转化器。分析表明,使用催化转化器可以减少50%-60%的NOx。 为了选择清除NOx的最佳方法,就有必要研究柴油发动机的尾气排放情况,特别是NOx排放时的温度区间以及浓度。测试表明,大约80%的NOx是在柴油发动机最大负荷时排放的,其相应的温度区间为350℃-550℃。由于尾气经过排气管路会有一定程度的降温,因此催化转化器的工作温度可以限定在250℃-500℃。

还原NOx的各种处理方法

3.1 选择性催化还原法(SCR法) 此法的原理为:使用适当的催化剂,在一定温度下以氨作为催化反应的还原剂,使氮氧化物转化成无害的氮气和水蒸汽。反应式如下: 4NO + 4NH3 + O2 =4N2 + 6H2O 8NH3 + 6NO2 =7N2 + 2H2O 催化剂不同,反应所需温度也不一样。以二氧化钛为载体的钯、铂催化剂,所需的反应温度为300~400℃,而以焦炭为催化剂,反应温度为100~150℃。此法具有净化率高(可达85 %以上),工艺设备紧凑,运行可靠,氮气放空,无二次污染等特点,但此法存在投资与运行费用(投资费用80美元/ kW)较高,消耗氨液,氮氧化物不能回收等不足之处。若在联合SCR/ VOC(易挥发的有机化合物)催化系统中,气流将首先通过一种氧化催化剂将VOC转化成CO2 和H2O。该法NOx脱除率可达99.0 %。 3.2 非催化选择性还原性(SNCR法) 该法原理同SCR法,由于没有催化剂的帮助,反应所需温度较高,为900~1200℃。反应式为 4NH3 十6NO→5N2 十6H2O 由于反应温度高,此法要控制好反应温度,以免氨被氧化成氮氧化物。此法的净化率为50 %~60 %,其特点是不需催化剂,旧设备改造少,投资较SCR法小(投资费用15美元/ kW)。但氨液消耗量较SCR法多。近来研究用尿素代替NH3作为还原剂,使得操作系统更加安全可靠,而不必担心因NH3的泄漏造成新污染。 3.3 催化助热燃烧技术 催化助热燃烧技术是采用催化剂使燃烧火焰温度从l800~2000℃降低到 1 500℃左右,从而显著地阻止了NOx的生成。这是针对含氮少的气体燃烧的燃烧法,可有效降低NOx 的排放。 NOx的催化脱除研究有氨选择性催化还原法,贵金属、金属氧化物和分子筛催化分解法,烃选择性还原法,活性炭为载体和还原剂催化还原法,CO脱除法,紫外光作用下气相光催化氧化法,而各种催化剂的研究是当今重点[5]。 目前,国内外已开发了多种脱硝工艺,评价各种工艺应从氮氧化物净化率、装置成本、运行费用以及副产物处理和二次污染等多方面综合评价。在这方面,国外技术开发较早,已积累了丰富经验,适当引进国外技术是必要的,但最终必须实现国产化[6]。 参考文献 [1] 刘圣勇,袁超,蒋国良,岳建芝,孙金华。全球性大气污染的现状及对策。河南农业大学学报,2003. [2] 刘圣勇,袁超,蒋国良,岳建芝,孙金华. 全球性大气污染的现状及对策. 河南农业大学学报, 2003. [3] 彭会清,胡海祥,赵根成,田爱堂。烟气中硫氧化物和氮氧化物控制技术综述。广西电力, 2003. [4] 何志桥,王家德,陈建孟。生物法处理NOx 废气的研究进展。环境污染治理技术与设备,2002. [5] 李定邦,刘兆辅,张大年。节能型光解法废气脱硫脱硝技术研究。化学世界,2002.

氮氧化物废气的处理

字号:小|中|大 文章出处:责任编辑:作者:人气:691发表时间:2015-11-23 08:34:00 摘要:氮氧化物是主要的大气污染物之一,本文介绍了含氮氧化物废气的产生原因及处理方法。 前言氮氧化物是指一系列由氮元索和氧元素组成的化合物 ,包括有 N2O、NO、N2O3 、NO2、N2O4、N2O5,通常用分子式NOx 来统一表示。大气中NOx主要以NO、NO2的形式存在。NOx的危害早已被人们所认识到 ,主要体现在: (1)氮氧化物对人体的危害很大,可直接导致人体的呼吸道损伤,而且是一种致癌物。 (2)氮氧化物会使植物受损伤甚至死亡。 (3)在的催化作用下,氮氧化物易与碳氢化物发生复杂的光化反应产生光化学烟雾,导致严重的大气污染。 (4)氮氧化物会导致臭氧层的破坏。 (5)氮氧化物也易与水气结合成为含有硝酸成分的酸雨川。以上光化学烟雾、酸雨及臭氧问题,近年来有逐渐恶化的趋势,已经成为政府及社会公众非常关心的问题。氮氧化物的产生主要来自于两个方面:自然界本身和人类活动。据统计,由自然界本身变化规律产生的NOx每年约500×106t,人类活动产生的NOx每年约50×106t。从数据来看,虽然人类活动产生的NOx较自然界本身产生的NOx少得多,但由于人类活动产生的NOx往往比较集中,浓度较高,且大多在人类活动环境区域,因而其危害性更大。 人类活动产生的氮氧化物主要来源于两个方面: (1)含氮化合物的燃烧; (2)亚硝酸、硝酸及其盐类的工业生产及使用。据美国环保局估计,99%的NOx产生于含氮化合物的燃烧,如火力电厂煤燃烧产生的烟气、汽车尾气等。在亚硝酸、硝酸及其盐类的工业生产及使用过程中,由于它们的还原分解,会放出大量的NOx,其局部浓度很高,处理困难,危害大。 在含NOx废气中,对自然环境和人类生存危害最大的主要是NO和NO2。NO为无色、无味、无臭气体,微溶于水,可溶于乙醇和硝酸,在空气中可缓慢氧化为NO2,与氧化剂反应生成NO2,与还原剂反应生成N2。NO2溶于水和硝酸,和水反应生成HNO3和HNO2,和碱及强碱弱酸盐反应生成硝酸盐和亚硝酸盐,和还原剂反应还原为N2。 氮氧化物的来源:天然(5×108t/a):自然界细菌分解土壤和海洋中有机物而生成.人类活动(5×107t/a): 1. 工业污染主要是由于在工业生产过程中(特别是在石油化工企业)燃烧化石燃料而产生的,它主要包括二部分:一是在工艺生产过程中排放的泄漏的气体污染物,如化工厂及煤制气厂; 二是在工业生产用的各种锅炉、窑炉排放的污染物; 2. 生活污染主要是指城镇居民、机关和服务性行业,因做饭、取暖、沐浴等生活需要,燃烧矿物质燃料而向大气排放的氮氧化合物等污染物质,是大气污染的有害气体产生的主要来源之一 3. 交通污染主要来自两个方面:?一是汽车、火车、轮船和飞机等交通工具在运动过程中排放的一氧化碳、氮氧化合物等; ?二是在原料运输过程中.由于某些原料的泄漏及直接向空排放而造成的污染

氮氧化物控制原理及技术

氮氧化物排放控制原理及新技术 中国环境学会 2011年03月31日 李俊华,陈亮,常化振,郝吉明清华大学环境科学与工程系 (通讯地址:清华大学环境系,100084,Tel:62771093,email:lijunhua@https://www.360docs.net/doc/c79539694.html,) 摘要:NOx排放量逐年增加,造成区域酸沉降趋势不断恶化,大气中二次颗粒物臭氧(O3)和微细可吸入颗粒物(PM2.5)居高难下,严重影响人体健康和生态环境质量。本文介绍了我国NOx排放趋势,重点讨论了NOx控制原理及关键控制技术的研究进展。基于目前烟气脱硝技术存在的问题,提出了脱硝催化剂原材料和制备工艺国产化、针对我国不同煤种研究催化剂适应性的问题,以及下一步燃煤烟气协同污染控制最新研究方向。 关键词:氮氧化物,燃煤烟气,稀燃汽车,排放,脱硝催化剂,协同控制 1 我国NOx排放现状 《国家环境保护“十一五”规划》提出确保实现SO2减排目标,实施燃煤电厂脱硫工程,实施酸雨和SO2污染防治规划,重点控制高架源的SO2和NOx排放,综合改善城市空气环境质量。随着“十一五”期间对电厂实施烟气脱硫效果明显,大气SO2浓度及硫沉降均有所下降。但NOx作为一类主要的大气污染物,在我国其排放量仍在增加,不仅对人体健康造成直接危害,同时也不仅会造成空气中NO2浓度的增加、区域酸沉降趋势不断恶化,还会使对流层O3浓度增加,并在空气中形成微细颗粒物(PM),影响大气环境质量[1,2]。 我国以煤为主的能源结构和发电结构,使得燃煤成为NOx的最大来源,全国NOx排放量的67%来自煤炭燃烧,其中燃煤电厂是NOx排放的最大分担者。2007年全国NOx排放量为1643.4万吨,工业排放NOx1261.3万吨,其中火电厂排放811万吨,占全国NOx排放量的49.4%,占工业NOx排放的64.3%[3]。今年NOx排放量将达到1800万吨,未来若无控制措施,NOx排放在2020年将达到3000万吨以上,届时我国将成为世界上第一大NOx排放国,污染将进一步加重,污染进一步加重。我国于2004年1月1日起执行的《火电厂大气污染物排放标准》(GB13223—2003),将新建燃煤电厂的氮氧化物的排放浓度控制在450mg/Nm3。对于氮氧化物污染严重和环境容量有限的经济发达地区,当地政府提出了更高的排放要求,如北京为了迎接2008年奥运会,将NOx排放标准严格到100mg/Nm3。因此针对重点源开展NOx排放控制原理及新技术的研究变得十分必要和迫切。 2 固定源烟气NOx排放控制原理及技术

氮氧化物产生与控制分析

氮氧化物产生与控制分析

前言 能源与环境是当今社会发展的两大问题,如何文明用能、合理用能已经成为人们越来越关注的话题。在能源的利用中,矿物燃料的燃烧要排放出大量污染物。例如,我国每年排入大气中的87%的SO2、68%的NOx和60%的粉尘均来自于煤的直接燃烧,因此,文明用能、合理用能,发展高效、低污染的清洁煤燃烧技术,降低NOx和SO2的排放量是当前亟待解决的问题。 循环流化床锅炉是最近二十年里发展起来的一种新型燃烧 技术,它的主要特点在于燃料及脱硫剂经多次循环、反复地进行低温燃烧和脱硫反应,炉内湍流运动强烈。它不但能达到90%的脱硫效率和与煤粉炉相近的燃烧效率,而且具有燃料适应性广、负荷调节性能好、灰渣易于综合利用等优点。本文对循环流化床锅炉中的NOx生成机制进行深入研究,分析影响NOx浓度的因素,探讨控制NOx排放量的措施,为循环流化床锅炉的设计、运行提供参考。 1NOx的生成机制 煤燃烧过程中产生的氮氧化物主要是一氧化氮(NO)和二氧化氮(NO2),这两者统称为NOx,此外还有少量的氧化二氮(N2O)产生。和SO2的生成机理不同,在煤燃烧过程中氮氧化物的生成量和排放量与煤燃烧方式、特别是燃烧温度和过量空气系数等燃烧条件关系密切。 在煤燃烧过程中,生成的NOx途径有三个: (1)热力型NOx(Thermal NOx),它是空气中的氮气在高温下氧化而生成的。

煤,尤其是其挥发分中的各种元素比也会影响到NOx的排放量。显然,O/N比越大,NOx排放量较高。H/C比越高,则NO 越难于被还原,故NOx排放量也越高。另外,S/N比会影响到各自的排放水平,因为S和N氧化时会相互竞争,故SO2排放量越高,NOx排放量越低。 2.2 过量空气系数的影响 当风不分级时,降低过量空气系数,在一定程度上可限制反应区内的氧浓度,因而,对热力型NOx和燃料型NOx的生成都有一定的控制作用,采用这种方法可使NOx排放量降低 15%~20%,但是CO浓度会增加,燃烧效率会下降。 当风分级时,可有效地降低NOx的排放量。一般情况下,二次风从床上一定距离送入较好,如果过低则对NOx的排放量影响甚小。随着一次风量的减少、二次风量的增加,N被氧化的速度下降,NOx排放量也随之下降,并在某一风量分配下达到最小值。 2.3 燃烧温度的影响 燃烧温度对NOx的排放量的影响已取得共识,即随着炉内燃烧温度的提高,NOx的排放量将升高,因此,可以通过降低床温来控制NOx的排放量。但是,床温的降低会带来两个不利的后果,一个是CO炉内浓度将增加,不完全燃烧热损失增大,从而使得燃烧效率下降;另一个是不利于N2O分解,从而使得N2O的排放浓度增加。 2.4 脱硫剂的影响

氮氧化物控制技术

工业锅炉NOx控制技术指南 (试行) 环境保护部华南环境科学研究所

目次 1 适用范围 (1) 2 引用文件 (1) 3 术语和定义 (1) 3.1工业锅炉INDUSTRIAL BOILER (1) 3.2氮氧化物NITROGEN OXIDES,NO X (1) 3.3控制技术CONTROL TECHNOLOGY (1) 4 工业锅炉氮氧化物排放特性 (1) 5 氮氧化物控制技术 (2) 5.1低氮燃烧技术 (2) 5.2选择性非催化还原脱硝技术 (3) 5.3选择性催化还原脱硝技术 (6) 5.4化学吸收技术 (9) 5.5组合技术 (10) 6 控制技术选用建议 (10) ii

1 适用范围 本指南适用于以煤、油和气为燃料,单台出力10~65 t/h的蒸汽锅炉、各种容量的热水锅炉及有机热载体锅炉;各种容量的层燃炉、抛煤机炉。 使用型煤、水煤浆、煤矸石、石油焦、油页岩、生物质成型燃料等的锅炉,参照本指南。 本指南不适用于以生活垃圾、危险废物为燃料的锅炉。 2 引用文件 下列文件中的条款通过本指南的引用而成为本指南的条款。凡是不注日期的引用文件,其最新版本适用于本指南。 GB 13271 锅炉大气污染物排放标准 HJ 462 工业锅炉及炉窑湿法烟气脱硫工程技术规范 HJ 562 火电厂烟气脱硝工程技术规范选择性催化还原法 HJ 563 火电厂烟气脱硝工程技术规范选择性非催化还原法 DB44/765 广东省地方标准锅炉大气污染物排放标准 3 术语和定义 3.1 工业锅炉industrial boiler 指提供蒸汽或热水以满足生产工艺、动力以及采暖等需要的锅炉。 3.2 氮氧化物nitrogen oxides, NOx 指由氮、氧两种元素组成的化合物。工业锅炉烟气中的氮氧化物主要为一氧化氮(NO)和二氧化氮(NO2)两种。 3.3 控制技术control technology 针对生活、生产过程中产生的各种环境问题,为减少污染物的排放,从整体上实现高水平环境保护所采用的与某一时期的技术、经济发展水平和环境管理要求相适应,在公共基础设施和工业部门得到应用的,适用于不同应用条件的一项或多项改进、可行的污染防治工艺和技术。 4 工业锅炉氮氧化物排放特性 工业锅炉排放的氮氧化物(NOx)来自燃料燃烧过程,主要类型包括:空气中的氮气在高温下被氧 1

酸洗车间含NOX、HNO3、HF等废气催化还原法净化法应用

酸洗车间含NOX、HNO3、HF等废气催化还原法净化法应用 摘要:简要介绍酸洗车间含NOX、HNO3、HF等废气催化还原法净化法主要原理及流程、材质选择,并对为有效捕集含酸废气,在工艺操作程序上进行了说明。 关键词:NOX HNO3 HF等废气催化还原法 1、前言 热轧板、不锈钢冷轧板、热加压管等工艺流程需要或用户对产品的需求,需要对钢板或钢管进行酸洗,去掉表面的氧化铁皮。由于有些钢板或钢管表面氧化铁皮质密等因素,需要采用氢氟酸、硝酸进行酸洗,随之会产生含有NOX、HNO3、HF废气,它们对周围的环境产生污染,即影响操作人员健康,又影响生产。为了解决这一问题,对各处理槽设置废气净化系统。下面以某热挤压钢管项目酸洗生产线为例,对工艺操作,废气捕集、酸洗污染物成分、净化系统材质选择等方面进行介绍。 2、酸洗工艺流程 需要酸洗的钢管通过小车运输进入酸洗车间后,工人使用链条将钢管挂在行车上的酸洗大梁上,然后移动至除油槽上方,此时,除油槽顶部滑动顶板移开,工人控制行车将酸洗大梁缓缓落下,搁在除油槽两边的升降立柱上,工人通过辅助钩将行车的吊钩从酸洗大梁上脱离,然后,滑动顶板密闭,升降立柱下降,将钢管浸入酸液内。 经过一定时间以后,升降立柱上升,将钢管提出液面,升降立柱上升时,两边保持一定的速度差,在上升的同时让钢管倾斜细微角度,以便让残留在钢管内部的酸液倾流出来。上升到顶后,工人先通过辅助钩将行车的吊钩挂上酸洗大梁的吊耳,然后滑动顶板移开,工人再控制行车将酸洗大梁连同钢管一同吊入下一个酸洗槽体。 清洗槽及热水洗槽可略去滑动顶板的平移动作,其余各个槽体的操作与除油槽的操作基本相同,钢管酸洗后可以再冲洗平台采用高压水枪进行人工冲洗。 3、酸洗污染物成分 酸洗槽内介质为15%HNO3和8%p采用二段式填料水吸收+SCR净化系统的工艺流程。选择性催化还原法(Selective Catalytic Reduction,以下简称SCR)是指在催化剂的作用下,以NH3作为还原剂,“有选择性”地与废气中的NOX反应并生成无毒无污染的N2和H2O。其主要反应方程式为: NO2+NO+2NH3=2N2+3H2O (1) 4NO+O2+4NH3=4N2+6H2O (2) 2NO2p(排气筒高度以30米计) 5、酸洗净化系统流程 酸洗车间酸洗槽采用HNO3+HF混酸酸洗工艺,在进行酸洗时,会产生大量的NOx废气,为此,酸槽配置“槽边抽风系统”,以控制酸洗废气不逸散出酸槽并完全收集,改善车间内部环境,消除外部环境污染。从酸槽收集来的酸洗NOx 废气再经过净化处理后达标排放。 为确保捕集废气效果,工艺上对有酸雾溢出的酸槽上口专设活动盖板,盖板操作程序如下: (1)初始状态:槽内料篮在高位,活动盖板开着,槽边抽风关小,吊有成

相关文档
最新文档