母线差动保护误动

母线差动保护误动
母线差动保护误动

母线差动保护误动

摘要:结合BP-2A母线差动保护动作与实际现场,分析母线区外故障引起母联误动的实际情况,并对BP-2A母线差动保护作进一步的分析和建议。

关键词:BP-2A母差保护;母联误动

BP-2A母线差动保护要求必须在区内故障时,有足够的灵敏度去动作母联及母线所有断路器,以可靠隔离故障点,而当区外故障时,为防止断路器误动,必须校验其可靠性。现结合BP-2A母差保护与现场误动母联做出分析,并对现场使用BP-2A母差保护时做出建议。

1 BP-2A母线差动保护原理简介

BP-2A母线差动保护原理采用复式比率差动原理,差动电流Id为各支路电流的向量和,制动电流Ir为各支路电流矢量取模值的和,在制动量的计算中引入差动电流,使得该继电器在区内故障时无制动,而在区外故障时有极强的制动特性。复式比率差动继电器非常明确地区分区内和区外故障,而且选取范围很广,从0到∞,灵敏度高。

BP-2A差动回路是由一个母线大差动和几个各段母线小差动组成的。母线大差动是指除母联断路器和分段断路器以外的母线上所有其余支路电流所构成的差动回路,某段母线小差动是指与该段母线相连接的各支路电流构成的差动回路。其中包括与该段母线相关联的母联断路器和分段断路器。通过大差动判别区内和区外故障,通过各段小差动来选择故障母线。逻辑见图1。

图1 母联逻辑图

双母线内部故障时故障母线的选择,在双母线上总是把双母线作为整体设置总的母线差动保护。总差动保护在外部故障时有良好的选择性,在内部任一条母线故障时都能灵敏动作。BP-2A装置通过母线大差动判别区内和区外故障,通过各段小差动来选择故障母线。一般情况下,母线大差动的构成不受母线运行方式变化的影响,而各段母线小差动,则是根据各分路的分合闸位置,由母线运行方式自适应环节来自动地、实时地进行组合。发生母联断路器失灵(死区)故障时的逻辑行为:当母线发生死区故障,即母联断路器和TA间发生短路时,若II母差动作,切除母联断路器和II母线上各引出线断路器后,故障就会消除,I 母线仍能正常运行。但是很显然母差保护会判I母线小差动有差流,而II母线无差流,从而切除I母线上各支路断路器和母联断路器,而母联电流仍存在。传统的母差保护将无法

继续切除真正的故障点。BP-2A母差保护,有专门的死区故障逻辑,消除死区及母联失灵造成的无法切除故障的后果。在保护动作,发出跳开母联断路器的命令后,经延时,判别母联电流是否越限,若母联电流满足越限条件,且母线复合电压动作,则跳开电压不正常母线上的所有断路器。

2 动作情况分析

2008年7月16日,某220kV变电站110kV双母线合环运行,约16时电网遭受雷击,甲线与乙线为同杆并架出线,同时出现短路电流及母线电压降低,见图2~5。

图2 甲线电流录波图

图3 乙线电流录波图

图4 母联电流录波图

图5 电压录波图

2.1 甲线、乙线相继跳闸(时间相隔几个毫秒母联跳开)

从以上电压、电流图可以看出甲线、乙线同时出现较大短路电流,A、B相母线电压同时降低,检查甲线、乙线跳闸录波图,跳闸正常。检查110kV故障录波器录波图,发现大差动启动,但母线差动并没有动作。检查母差屏有一出口备用灯亮,无其他异常或报告。

2.2 BP-2A母线差动保护

BP-2A母线差动保护,是当发生区外故障时,大差动保护、小差动保护均不启动。如果出现穿越性故障电流或电流互感器饱和而引起不平衡电流,大差动启动依然不会出口(因小差动保护不会启动)。但此次母联出口必然是BP-2A母差保护误动而产生。

2.3 检查甲线、乙线电流互感器

检查甲线、乙线电流互感器保护用准确级为15P20,由电流录波图可以看出甲线、乙线遭受雷击时,电流达到35倍额定电流,因此甲线、乙线电流互感器已严重饱和而形成大差启动的不平衡电流,导致大差动保护启动。

2.4 BP-2A母线差动保护内部逻辑(见图6)

图6 逻辑图

从以上几点综合分析母联误动主要原因,是区外故障引起电流互感器严重饱和而形成大差动保护启动的条件,并由电流畸变影响到母联的零序电流采样,加之内部程序导致备用接点(此程序的开出量)出口跳母联断路器。

3 继电保护反事故措施

针对事故,技术管理方面应采取技术措施,以防止事故重复发生。

针对母差保护误动,责成BP-2A生产厂家对保护缺陷进行软件修改,增加了对差动电流的过零判断,杜绝区外故障引发母差误动或误切母联。

针对电流互感器在故障时易发生严重饱和,设计部门在设计安装电流互感器时,准确计算最大短路电流,并做好电流互感器的选型。

讨论BP-2A内部程序出口的优缺点,并在此程序对母联零序判断定值作出优化。

母差动作误跳母联是外部条件及内部程序两个方面共同引起,而母差保护如果出现误动后果非常严重,因此必须加强母差保护的运行维护和管理工作,以保证动作的灵敏性、可靠性。

16年继电保护试题A

一、选择题:(每小题2分,共16分) 1、双侧电源线路上发生经过渡电阻接地,流过保护装置电流与流过过渡电阻电流的相位() A.同相 B. 反相 C.不确定 2、下列关于电力系统振荡和短路的描述中,()是不正确的 A.短路时电流和电压是突变的,而电力系统振荡时各点电压和电流均做往复性摆动; B.振荡时系统任一点的电压和电流之间的相位角都随着功角的变化而变化; C.系统振荡时,将对以测量电流为原理的保护形成影响,如:电流速断保护、电流纵联差动保护等 3、发电机失磁后,发电机参数变化的不正确描述是() A. 励磁绕组电压降低 B.机端阻抗明显增加 C. 输出无功减少 4、微机保护中,常采用的数字滤波器类型是() A. FIR型 B. IIR型 C. DIR型 5、在变压器的复合电压启动过流保护中,复合电压由低电压和负序电压构成,其中低电压启动元件和负序电压启动元件的逻辑关系是() A.与逻辑 B. 或逻辑 C. 根据具体接线确定 6、微机保护定值保存在()中。 A.RAM B. ROM C.EEPROM 7、比较工作电压相位实现故障区段判断方法中,在正方向故障时,采用正序电压作为参考电压,其动作特性等价于() A.全阻抗特性的阻抗继电器 B.方向阻抗特性的阻抗继电器 C.偏移圆阻抗特性继电器 8、主保护或断路器拒动时,用来切除故障的保护是( )。 A.安全自动装置 B.异常运行保护 C.后备保护二、判断题(每空1.5分,共15分): 1、功率方向元件采用非故障的相间电压作为接入功率方向元件的电压参考相量,判别故障相电流的相位,可以完全消除功率方向元件的“电压死区”,因此获得广泛的应用。() 2、采用相电流差进行故障选相时,在发生单相接地故障时,与故障相无关的相电流差突变量最小。( ) 3、输电线纵联电流差动保护可以有效地躲过系统振荡,正确动作,但对于系统的非全相运行,会出现误动作。( ) 4、对检同期的自动重合闸,重合闸就必须装检同期元件。( ) 5、在双侧电源线路上短路点的零序电压始终是最低的,短路点的正序电压始终是最高的。( ) 6、变压器纵差保护定值按照躲过外部短路时的最大不平衡电流进行整定(1)和按躲过变压器励磁涌流整定(2),按1整定时的灵敏度一定低于2时的灵敏度。( ) 7、变压器二次谐波制动是指在差动保护的制动电流中加入二次谐波的因素,从而提高变压器出现励磁涌流时的制动性能。( ) 8、发电机不完全差动保护只对定子绕组相间短路有保护作用,而对绕组匝间短路不起作用。( ) 9、助增电流的存在,使距离保护的测量阻抗增大,保护范围缩短。( ) 10、继电保护的灵敏度校验是为了保证保护不误动的要求设置的。( ) 三、简答题:(44分) 1、(2分)给出一种发电机100%定子接地保护的典型构成方式。 2、(8分)简述母线故障的保护方式;单母线完全电流母线差动保护与高阻抗母线差动保护在实现上的最大差别,并说明高阻抗母线差动保护设置的原因。 3、(7分)引起变压器差动保护的不平衡电流的因素有哪几个?在变压器

发电机差动保护误动原因分析

发电机差动保护误动原因分析 [摘要]差动保护作为发电机的主保护,能否正确动作直接影响到主设备的安全和系统的稳定运行。本篇主要介绍因线路遭受雷击引起发电机组差动保护误动原因进行分析并提出相应的整改措施及电流互感器对差动保护动作的影响进行分析。 [关键词]差动保护;电流互感器;原因分析;整改措施 0 引言 多年来,作为主设备主保护的纵联差动(简称纵差或差动)保护,正确动作率始终在50%~60%徘徊,而零序差动保护甚至低到30%左右,这对主设备的安全和系统的稳定运行都很不利。造成这种局面的原因是多方面的,主要有设计、制造、安装调试和运行维护等。各部门都有或多或少的责任,实际工作中也在不断改进,但是“原因不明”的主设备保护不正确动作事例仍然为数不少。发电机纵差保护可以说是最简单的应用,但仍然存在“原因不明”的误动事故发生,比如在同期操作(人工或自动)过程,主要现象是由于操作不规范,偏离同期三要素(频率、电压幅值、相位)的要求,合闸时发电机发出轰鸣声,随即纵差保护跳闸。 1 发电机差动保护动作情况 山美水电站#1发电机技术改造后于2005年8月投入运行,运行后一切正常。发电机所采用的保护为河南许继集团生产的WFB-800系列保护装置。中性点和机端差动保护电流互感器均为LZZBJ9-10 A2型,10P15 /10P15 级,变比为1500/5,其中中性点电流互感器安装在发电机现场,机端电流互感器安装在新高压开关室,两者相距350m 。如图1 图1 8月23日由于35KV线路遭受雷击,A、B两相短路,雷电波虽经过了一台110KV三卷变的隔离,但还是引起发电机差动保护范围外的区外短路,导致机能差动保护动作。差动保护回路因差流存在并达到动作限值引起差动保护动作,

母差保护的工作原理、保护范围

母差保护的工作原理、保护范围 母线保护装置是正确迅速切除母线故障 的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行 的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器, 按差接法接线,正常运行以及保护范围以外故障

时,差电流等于零,保护范围内故障时差电 流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计 算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操 作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护 退出

“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因为一些运行人员曾看到过,甚至在母线 倒闸操作时发生过母线差动保护误动,但其 根本原因是对母线差动保护缺乏正确认识. 母线倒闸操作如严格按照规定进行,即并、 解列时的等电位操作,尽量减少操作隔离开 关时的电位差,严禁母线电压互感器二次侧 反充电,充分考虑母线差动保护非选择性开 关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护 的工作原理如不遭到破坏,一般应投入运行. 根据历年统计资料看,因误操作引起母线短 路事故,几率还很高.尽管近几年为防止误 操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规 使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线 差动保护投入有着极其重要的现实意义.投 入母线差动保护倒母线, 可以在万一发生

主变压器差动保护动作的原因及处理

主变压器差动保护动作的原因及处理 一、变压器差动保护范围: 变压器差动保护的保护范围,是变压器各侧的电流互感器之间的一次连接部分,主要反应以下故障: 1、变压器引出线及内部绕组线圈的相间短路。 2、变压器绕组严重的匝间短路故障。 3、大电流接地系统中,线圈及引出线的接地故障。 4、变压器CT故障。 二、差动保护动作跳闸原因: 1、主变压器及其套管引出线发生短路故障。 2、保护二次线发生故障。 3、电流互感器短路或开路。 4、主变压器内部故障。 5、保护装置误动 三、主变压器差动保护动作跳闸处理的原则有以下几点: 1、检查主变压器外部套管及引线有无故障痕迹和异常现象。 2、如经过第1项检查,未发现异常,但曾有直流不稳定接地隐患或带直流接地运行,则考虑是否有直流两点接地故障。如果有,则应及时消除短路点,然后对变压器重新送电。差动保护和瓦斯保护共同组成变压器的主保护。差动保护作为变压器内部以及套管引出线相间短路的保护以及中性点直接接地系统侧的单相接地短路保护,同时对变压器内部绕组的匝间短路也能反应。瓦斯保护能反应变压器内部的绕组相间短路、中性点直接地系统侧的单相接地短路、绕组匝间短路、铁芯或其它部件过热或漏油等各种故障。 差动保护对变压器内部铁芯过热或因绕组接触不良造成的过热无法反应,且当绕组匝间短路时短路匝数很少时,也可能反应不出。而瓦斯保护虽然能反应变压器油箱内部的各种故障,但对于套管引出线的故障无法反应,因此,通过瓦斯保护与差动保护共同组成变压器的主保护。 四、变压器差动保护动作检查项目: 1、记录保护动作情况、打印故障录波报告。 2、检查变压器套管有无损伤、有无闪络放电痕迹变压器本体有无因内部故障引起的其它异常现象。 3、差动保护范围内所有一次设备瓷质部分是否完好,有无闪络放电痕迹变压器及各侧刀闸、避雷器、瓷瓶有无接地短路现象,有无异物落在设备上。 4、差动电流互感器本身有无异常,瓷质部分是否完整,有无闪络放电痕迹,回路有无断线接地。 5、差动保护范围外有无短路故障(其它设备有无保护动作)差动保护二次回路有无接地、短路等现象,跳闸时是否有人在差动二次回路上工作。 五、动作现象及原因分析: 1、差动保护动作跳闸的同时,如果同时有瓦斯保护动作,即使只报轻瓦斯信号,变压器内部故障的可能性极大。 2、差动保护动作跳闸前如变压器套管、引线、CT有异常声响及其它故障现

双母线电流差动保护的基本原理及发展过程

第3期(总第147期) 2008年6月 山 西 电 力 SHANXI EL ECTRIC POWER No 13(Ser 1147) J un 12008 双母线电流差动保护的基本原理及发展过程 王为华1,刘云峰2,郭小丽3 (11山西电力科学研究院,山西太原 030012;21晋城供电分公司,山西晋城 048000; 31太原供电分公司,山西太原 030012) 摘要:介绍了不同时期母线保护采用的技术,并进行了比较,分析了母线保护技术的发展趋势,阐述了母线微机保护技术的特点及其优越性。 关键词:母线保护;基本原理;发展过程中图分类号:TM77 文献标识码:A 文章编号:167120320(2008)0320066203 收稿日期:2008201205,修回日期:2008204202 作者简介:王为华(19632),男,山西榆社人,2000年毕业于太 原理工大学计算机及应用专业,工程师; 刘云峰(19782),男,山西晋城人,2000年毕业于华北电力大学电气专业,助理工程师; 郭小丽(19692),女,山西太原人,1990年毕业于临汾电力技校输配电运行与检修专业。 1 双母线完全电流差动保护和母联相位比 较式保护 20世纪70至80年代,双母线完全电流差动 和母联相位比较式母线保护,因其原理及二次接线简单等特点,在电网上广泛应用。111 元件固定连接的母线完全差动保护11111 工作原理(见图1) 双母线同时运行时,将元件固定连接于2条母线上,这种母线称为固定连接母线。其差动保护称为固定连接方式的母线完全差动保护 。 图1 原理接线图 在正常运行及区外故障时,启动元件KA ,选择元件KA1,KA2均无电流通过。区内母线1故障时,启动元件KA ,选择元件KA1均有故障电流通过,选择元件KA2的电流为零,因此母联断 路器及连接在1母上元件的断路器均动作跳闸。同理区内母线2故障时,将母联断路器及连接在2母 上元件的断路器动作跳闸。11112 双母线完全电流差动保护的评价 双母线完全电流差动保护的优点是: a )接线比较简单,调试方便,运行人员易于掌握; b )当元件固定连接时,母差保护有很好的选择性; c )当母联断路器断开时,母线差动保护仍有选择能力;在2组母线先后发生短路时,母线差动保护仍能可靠的动作。 其缺点是:当元件固定连接方式破坏时,若任1组母线上发生短路故障时,就会将2组母线上的连接元件全部切除,因此它适应运行方式变化的能力较差。 112 母联相位比较式母线差动保护11211 工作原理 总差动电流回路由母线上连接元件(不包括母联断路器)的电流互感器的二次回路组成,母联断路器的电流互感器的二次回路单独引出,接入相位比较回路(见图2)。 a 交流电流回路 · 66·

差动保护误动原因分析及解决措施

差动保护误动原因分析及解决措施 摘要:文章针对变压器差动保护误动率较高的现状,阐述了变压器差动保护的工作原理和作用,探究了引起变压器差动保护误动的原因,主要包括以下几方面:二次回路接线错误或设备性能欠佳、区外故障、电流互感器局部暂态饱和及和应涌流等,并提出了相应的解决措施。 关键词:差动保护;误动;和应涌流 变压器是配电网的重要组成设备,其运行状态直接影响着配电网供电的稳定性和可靠性,为了确保变压器安全、可靠的运行,通常给变压器安装差动保护装置,目前多数变压器都采用纵联差动保护为主保护。然而运行时,差动保护引起的保护误动时常出现,据相关部门的统计数据显示,某区域在2010~2013年,变压器差动保护共动作1 035次,其中误动作有237次,误动率高达22.9%,部分误动原因没有查清楚,就允许变压器继续运行,给整个配电网的可靠运行造成安全隐患。基于此,本文对变压器差动保护误动问题进行了探讨。 1 差动保护的基本工作原理及作用 1.1 基本工作原理 变压器正常运行时,高低两侧的不平衡电流近似于零,若保护区域内发生异常或者故障,同时不平衡电流数值达到差动继电器动作电流时,保护装置开始动作,跳开断路器,切断故障点。 1.2 保护作用 差动保护是相对合理、完善的快速保护之一,能准确反映出变压器绕组的各种短路,例如:相间、匝间及引出线上的相间短路等,避免变压器内部及引出线之间的各种短路导致变压器损坏的重要作用。 2 差动保护误动的原因分析及解决措施 2.1 二次回路接线错误或设备性能欠佳 经过多年运行统计可知,引起差动保护误动的一个原因是二次回路接线错误或者二次设备性能欠佳。变压器差动保护二次接线线路复杂,通常要进行三角形和星形接法的变换,现场调试时工作人员一疏忽就极易将接线弄错,主要表现在以下几方面:电流互感器极性接反、组别和相别错误。为了避免上述问题,可加强对调试安装人员进行专业技能培训,提高业务水平,在调试运行时,关键环节要重点进行检查。 2.2 区外故障

变压器差动保护误动分析及对策(一)

变压器差动保护误动分析及对策(一) 要:文章对微机型变压器差动保护动作的原因,从事件的形成以及保护的原理给予了详细地分析。对新建的、运行的或设备更新改造的发电厂和变电站的变压器差动保护误动提出了对策。 关键词:差动保护误动动作特性电流互感器 0引言 电力变压器是电力系统中最关键的主设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证。作为主设备主保护的微机型纵联差动(简称纵差或差动)保护,虽然经过不断的改进,但是还存在一些误动作的情况,这将造成变压器的非正常停运,影响电力系统的发供电,甚至是造成系统振荡,对电力系统发供电的稳定运行是很不利的。因此对新建或设备更新改造的发电厂和变电站的变压器差动保护误动原因进行分析,并提出了防止变压器差动误动的对策。 1变压器差动保护 变压器差动保护一般包括:差动速断保护、比率差动保护、二次(五次)谐波制动的比率差动保护,不管哪种保护功能的差动保护,其差动电流都是通过变压器各侧电流的向量和得到,在变压器正常运行或者保护区外部故障时,该差动电流近似为零,当出现保护区内故障时,该差动电流增大。现以双绕组变压器为例进行说明。

1.1比率差动保护的动作特性比率差动保护的动作特性见图1。当变压器轻微故障时,例如匝间短路的圈数很少时,不带制动量,使保护在变压器轻微故障时具有较高的灵敏度。而在较严重的区外故障时,有较大的制动量,提高保护的可靠性。 二次谐波制动主要区别是故障电流还是励磁涌流,因为变压器空载投运时会产生比较大的励磁涌流,并伴随有二次谐波分量,为了使变压器不误动,采用谐波制动原理。通过判断二次谐波分量,是否达到设定值来确定是变压器故障还是变压器空载投运,从而决定比率差动保护是否动作。二次谐波制动比一般取0.12~0.18。对于有些大型的变压器,为了增加保护的可靠性,也有采用五次谐波的制动原理。 1.2差动速断保护的作用差动速断保护是在较严重的区内故障情况下,快速跳开变压器各侧断路器,切除故障点。差动速断的定值是按躲过变压器的励磁涌流,和最大运行方式下穿越性故障引起的不平衡电流,两者中的较大者。定值一般取(4~14)Ie。 2变压器差动保护误动作原因分析 根据变压器差动保护误动作可能性的大小,大致分为新建发电厂和变电站、运行中发电厂和变电站、设备更新改造的发电厂和变电站三个方面进行说明,这种分类方法并不是绝对相互区别,只是为了便于在分析问题时优先考虑现实问题。 2.1新建发电厂和变电站变压器差动保护误动作原因分析新建变电站的变压器差动保护误动作,在变压器差动保护误动作中占了较大的比

高压电机差动保护动作的几种原因

咼压电机差动保护动作的几种原因 时间:2016/1/30 点击数:526 高压电机在运行过程中特别是改造初次投产时会因接线不正确、变比选择不匹配及其他疏漏,引起电机、 变压器差动保护动作,这些问题如不能及时、准确的处理,便会影响到油气生产。我们在实践中找到了很多解决此类问题的办法,供大家共享。 1电机差动保护动作原因分析 1.1已经投产运行中的电机 已经投产运行的电机当岀现差动保护动作时,大都不是因为接线错误了,而是因为电机、电缆或保护装置岀现了问题。解决办法:对电机差动保护的定值和动作值进行比对,就能大致判断岀故障的主要原因并决定先对那些设备进行检查。一般来说,依次对电机、电缆进行绝缘测试、直阻测试,对差动回路包括电流互感器进行测试,检查是否有异常,对保护装置进行检查,也可分班同时进行检查。根据我们的经验,主要是电机内部短路、电缆短路特别是有中间接头的地方以及 CT和二次回路的问题。 投产后的电机也会因外界因素或运行方式的改变,造成电机差动保护动作。我单位卫二变电所就出现了这 种问题。卫二变高压622注水电机在正常运行时,由于给2号主变充电,造成622注水电机差动保护动作。 这个看似没有关联的操作却引起了差动保护动作。后经分析、查找、试验,发现差动电流互感器开关侧其 二次线错接在了测量级上,其电机两侧CT的特性不一致。当给 2号35kV主变充电时就会有直流分量和 谐波串到6kV电机保护回路中(具体分析不在这里赘述),造成差流过大(动作值 1.6A左右,动作整定 值1.02A )。更改后,再次启动电机并用钱形电流表(4只表)检测二次回路,其差流正常,保护不再误 动。 2改造或新设备第一次投产时,电机差动保护动作原因分析 由于安装人员技术水平不高或是粗心或是对设备了解不够、理解偏差,对电机、保护装置改造后或是新设 备第一次投产试运行时,往往会岀现差动保护动作的现象。下面就介绍我供电服务中心所管辖的变电所岀现过的几种情况。 ⑴郭村变624高压注水电机改造后,几乎每次启动都会出现差动保护动作(动作值 6.2A-7.2A。动作整定 值5.2A )。对装置的参数整定,CT的极性、接线进行反复检查均没问题,电机试验也正常。后来确认, 由于电机距离开关柜较远(1000m ),电机中心点CT的带负载能力不够,从而在电机直接启动时(启动电流是额定电流的4-6倍)造成差流岀现。测量电动机尾端到开关柜保护装置的接线直阻为 3.5欧,CT带 负载能力为2.2欧。我们从厂家制造了两只专用CT,二次绕组都制成保护级且变比相同,把其副边串接起 来,在不改变变比的情况下,提升了带负载能力。改造后正常。 ⑵郭村变624电机再次改造后,第一次试运行出现了差动速断跳闸,动作值30.2A,动作整定值21.7A。我们对电机、电缆、CT变比、极性及二次回路进行了检查,都没有问题。对差速的动作值与动作整定值进行比对分析,不该是电机差动CT极性接反(相角差180度),接反后其动作值应在 42A以上,更像是差 动回路或一次回路相序不对,其动作电流肯定大于 21.7A,一般小于42A。其动作值与启动电流 258 2015年9月下 的大小成正比,也可以每次启动时,用四只钳形电流表测得数据,再根据余玄定理大致算岀来理想状态下

8.2-母线差动保护的基本原理

8.2 母线差动保护原理 ——单母线完全电流差动保护 ——高阻抗母线差动保护 ——具有比率制动特性的中阻抗母线差动保护

为了满足速动性和选择性的要求,母线保护都是按差动原理构成的。实现母线差动保护必须考虑在母线上一般连接着较多的电气元件(如线路、变压器、发电机等),因此就不能像发电机的差动保护那样,只用简单的接线加以实现。但不管母线上元件有多少,实现差动保护的基本原则仍是适用的。

(1)在正常运行以及母线范围以外故障时,在母线上所有连接元件中,流入的电流和流出的电流相等。 (2)当母线上发生故障时,所有与母线连接的元件都向故障点供给短路电流或流出残留的符合电流。 (3)从每个连接元件中电流的相位来看,在正常运行及外部故障时,至少有一个元件中的电流相位和其余元件中德电流相位是相反的。 根据原则(1)和原则(2)可构造电流差动保护,根据原则(3)可以构造电流比相式差动保护。

负荷1 电源 负荷2 1 I 2 I 3 I 3 21I I I +=负荷1 电源 负荷2 1 I 2 I 3 I 03 21=++I I I 若支路1、2、3上均安装相同变比的电流互感器,则三个电流互感器的电流之和应等于0(理想情况)。 =∑I

母线故障时的电流特征 若支路1、2、3上都安装有相同变比的电流互感器,则母线故障时,三个电流互感器的电流之和应等于短路电流(二次值)。 电源 1 I 2I 3 I 0321=+++k I I I I k I 依KCL : 即: k I I I I -=++321

8.2.1 单母线完全电流差动保护 KD 1p I 2p I 3 p I pn I 1 s I 2 s I 3s I sn I KA I 0 11 TA 1 ===∑∑==n i pi n i si KA I n I I 正常工作时

光纤差动保护动作原因分析

关于线路光纤差动保护误动的原因分析 1、摘要 2014年5月30日晚22:57分,在内蒙杭锦旗源丰生物热电厂,发生两条线路光纤差动保护动作跳闸事故;后经调度同意恢复线路供电,在操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸,经检查1#主变没有任何故障,申请调度令再次恢复供电,调度同意并仅限最后一次恢复供电,当又一次次操作1#主变进行冲击合闸时,本条线路光纤差动保护动作跳闸。至此,不能正常运行。 2、基本概况及事故发生经过 内蒙杭锦旗源丰生物热电厂有两台发电机变压器组,主变高压侧为35KV系统,两路进线由上级220KV变电站引来,两路进线之间有母联开关,启动备用变压器由Ⅰ段母线供电。由于两路进线在上级变电站为同段母线输送,所以正常运行时母联合环,两台机组并列运行。听当值运行人员讲,5月30日晚22:08分,事故发生之前系统报出过TV断线、零序过压、主变过负荷故障,并且C相系统电压均为零的状况,即刻到35KV配电室巡视,最终发现在Ⅱ段主变出线柜跟前闻见焦糊味。当即汇报调度采取措施,申请调度断开35KV母联开关310,保证Ⅰ段发电机变压器组正常运行。然后意在使Ⅱ段发电机变压器组退出运行,以便检查Ⅱ段主变出线柜焦糊味的来源情况。结果在间隔50分钟后,当晚22:57分左右,2#主变差动保护动作,跳开高低压侧开关,发电机解列.Ⅰ段、Ⅱ段线路光纤差动保护莫名其秒的同时动作跳闸,1#主变高低压侧开关紧跟着也跳闸,造成全厂停电事故。

上述情况发生后,向调度汇报,申请恢复线路供电,以保厂用系统不失电安全运行。调度要求自行检查故障后在送电,在晚上23:50分,检查出2#主变出线柜C相CT接地烧毁,后向调度汇报并经调度同意恢复了供电。厂用电所带设备运转正常后,计划启动Ⅰ段发电机变压器组,调度同意.在3:49分,操作1#主变冲击合闸时,本条线路光纤差动保护动作跳闸,同时向调度汇报。在检查1#主变没有任何故障后,申请调度令,恢复杭源一回线供电.调度同意并仅限最后一次恢复供电, 4:52分, 操作1#主变冲击合闸时, 本条线路光纤差动保护再次动作跳闸,11:33分申请调度恢复本厂厂用电系统,经调度同意,在11:39分恢复了厂用电系统. 根据其它运行人员反映,在此次事故之前,也有光纤差动保护动作跳闸的事情发生,而且不只一次。并且奇怪的是,在两台机组并列运行时,想让两台机组分段运行。在分断联络开关时,线路光纤差动保护也会同时动作跳闸,两条线路全部失电。或是正常操作断开一条线路时,也会使另一条线路光纤差动保护动作跳闸,说明光纤差动保护动作非常不可靠,存在着巨大引患. 3、光纤差动保护误动的原因分析 经过认真检查,2#主变出线柜C相CT接地烧毁(一次对二次及地绝缘为零),B相CT也有严重拉弧现象,C相CT二次侧也有拉弧过的痕迹.A、B、C相CT一次触头螺丝没有紧死,有不同程度的虚接现象。必须重新更换CT.这也说明相关装置报出TV断线、零序过压、主变过负荷故障的原因所在, C相CT接地并存在严重拉弧现象,那么 C相系

母差保护的工作原理

母差保护的工作原理、保护范围 来源:电力网时间:2007-12-19 责任编辑:葛红波母线保护装置是正确迅速切除母线故障的重要设施,它的拒动和误动都将给电力系统带来严重危害.母线倒闸操作是电力系统最常见也是最典型的操作,因其连接元件多,操作工作量大,对运行人员的综合操作技能也提出了较高的要求.基于一次设备的客观实在性,运行人员对一次设备误操作所带来的危害都有一个直接的较全面的感性认识. 但对母线差动保护在倒闸操作过程中进行的一些切换、投退操作则往往认识模糊. 1 母线差动保护范围是否是确定的,保护对象是否是不变的 通常讲的差动保护包含了母线差动保护、变压器差动保护、发电机差动保护和线路差动保护.实现差动保护的基本原则是一致的,即各侧或各元件的电流互感器,按差接法接线,正常运行以及保护范围以外故障时,差电流等于零,保护范围内故障时差电流等于故障电流,差动继电器的动作电流按躲开外部故障时产生的最大不平衡电流计算整定. 但也应该十分清楚,母线差动保护与变压器差动保护、发电机差动保护又有很大的不同:即母线的主结线方式会随母线的倒闸操作而改变运行方式,如双母线改为单母线运行,双母线并列运行改为双母线分段并列运行,母线元件(如线路、变压器、发电机等)可以从这一段母线倒换到另一段母线等等.换句话说,母线差动保护的范围会随母线倒闸操作的进行、母线运行方式的改变而变化(扩大或缩小),母线差动保护的对象也可以由于母线元件的倒换操作而改变(增加或减少).忽视了这一点,在进行母线倒闸操作时,对母线差动保护的一些必要的切换投退操作肯定就认识模糊、甚至趋于盲目了. 2 母线倒闸操作时是否须将母线差动保护退出“在进行倒闸操作时须将母线差动保护退出”是错误的,之所以产生这种错误认识,是因一些运行人员曾看到过,甚至在母线倒闸操作时发生过母线差动保护误动,但其根本原因是对母线差动保护缺乏正确认识.母线倒闸操作如严格按照规定进行,即并、解列时的等电位操作,尽量减少操作隔离开关时的电位差,严禁母线电压互感器二次侧反充电,充分考虑母线差动保护非选择性开关的拉、合及低电压闭锁母线差动保护压板的切换等等,是不会引起母线差动保护误动的.因此,在倒母线的过程中,母线差动保护的工作原理如不遭到破坏,一般应投入运行.根据历年统计资料看,因误操作引起母线短路事故,几率还很高.尽管近几年为防止误操作在变电站、发电厂的一次、二次设备上安装了五防闭锁装置,但一些运行人员违规使用万能钥匙走错间隔、误合、误拉仍时有发生.这就使在母线倒闸操作时,保持母线差动保护投入有着极其重要的现实意义.投入母线差动保护倒母线,可以在万一发生误操作造成母线短路时,由保护装置动作,切除故障,从而避免事故的进一步扩大,防止设备严重损坏、系统失去稳定或发生人身伤亡事故. 事实上,与其说母线倒闸操作容易引起母线差动保护误动,倒不如说,母线倒闸操作常常会使母线差动保护失去选择性而误切非故障母线. 3 母线倒闸操作后,是否要将母线差动保护的非选择性开关合入,实际工作中一些运行人员片面地认为,母线倒闸操作会使母线差动保护失去选择性,故在操作完成后,合入母线差动保护的非选择性开关.产生这一认识误区的根源在于他们不明白母线差动保护装置中设置这一非选择性开关的目的. 母线保护有多种类型,不同类型的母线保护其实现保护的工作原理

电动机差动保护的原理及应用

电动机差动保护的原理及应用 摘要:本文阐述了大型电动机差动保护原理。分析了差动保护的分类及对灵敏度的影响并介绍了差动原理逻辑图。 关键词:差动保护、比率差动、二次谐波闭锁比率差动 引言 大型高压电动机作为昂贵的电气主设备在发电厂,化工厂等大企业得到广泛的应用。如果发生严重故障导致电机烧毁,将严重影响生产的正常进行,造成巨大的经济损失,因此必须对其提供完善的保护。现有电动机综合保护装置主要针对中小型电动机,为其提供电流速断,热过载反时限过流,两段式定时限负序,零序电流,转子停滞,启动时间过长,频繁启动等保护功能。而对于2000KW以上特大容量电动机,则无法满足其内部故障时对保护灵敏度与速动性的要求,因而研制此装置并配合综合保护装置,为高压电动机提供更可靠更灵敏的保护措施。按照《电力装置的继电保护和自动装置设计规范》GB50062的要求:2MW 及以上的电机应装设纵差保护。 一概述 为了实现这种保护,在电动机中性点侧与靠近出口端断路器处装设同一型号和同一变化的两组电流互感器TA1和TA2。两组电流互感器之间,即为纵差保护的保护区。电流互感器二次侧按循环电流法接线。设两端电流互感器一、二次侧按同极性相串的原则相连,即两个电流互感器的二次侧异极性相连,并在两连线之间并联接入电流继电器,在继电器线圈中流过的电流是两侧电流互感器二次电流I·12与I·22之差。继电器是反应两侧电流互感器二次电流之差而动作的,故称为差动继电器。 在中性点不接地系统供电网络中,电动机的纵差保护一般采用两相式接线,用两个BCH-2型差动继电器或两个DL-11型电流继电器构成。如果采用DL-11型继电器,为躲过电动机启动时暂态电流的影响,可利用出口中间继电器带0.1s 的延时动作于跳闸。如果是微机保护装置,则只需将CT二次分别接入保护装置即可,但要注意极性端。一般在保护装置端子上有交流量或称模拟量输入的端子,分别定义为Ia1、Ia1*、Ic1、Ic1*(电机的端电流),Ia2、Ia2*、Ic2、Ic2*(电机的中性线电流),带*的为极性端。 保护装置的原理接线图如图2所示。电流互感器应具有相同的特性,并能满足10%误差要求。 微机保护原理框图见图如下:

35kV 母线差动保护的调试

35kV母线差动保护的调试 周剑平(镇海炼化检安公司) 摘要: 对BUS1000母线差动保护继电器的原理进行分析,介绍了镇海炼化公司第二热电站35kV母线差动保护的调试方法。通过合理的调试,减少由于35kV母线差动保护出现误动而引起故障。关键词:继电器差动保护调试 1概述 镇海炼化公司第二热电站35kV及110kV母线的差动保护采用美国通用电气公司(GE)生产的BUS1000保护装置,BUS1000保护装置是一种高速静态保护系统,动作时间可达到10毫秒,灵敏度高,防误动性能好,运行中如出现电流回路断线,经10秒延时即闭锁继电器出口,防止误动作。BUS1000保护装置对电流互感器的要求不高,允许各回路的电流互感器具有不同的变比,但变比差异不能超过10倍,互感器的最小饱和电压应大于100V。 2000年8月,发生炼油303线电缆炸裂事故,二电站的35kV母差保护出现误动,至使部分装置失电,影响到生产。因此,搞清BUS1000保护装置误动的原因及采取何种方法解决,如何通过合理的调试来验证保护装置的完好显得尤为重要。 2BUS1000保护装置的动作原理 图1和图2分别为BUS1000保护装置内部故障及外部故障的原理图。

图1内部故障时BUS1000原理图 图2外部故障时BUS1000原理图

被保护母线上各线路的电流互感器(即主电流互感器)二次电流经BUS1000装置中的辅助电流互感器转换为统一的0~1A的电流,再经电流/电压转换板变成0~1V交流电压信号,经整流后成为直流电压信号。由图中可以看出,整流后的直流电压VF与各线路的电流之和成正比,V D 与各线路的电流之差成正比。BUS1000保护装置是一个比率制动差动保护,用VF作制 动量,反应制动电流I F ,V D 作动作量,反应差动电流I D ,V D 和V F 经加法器和电平比较器后获得 以下动作特性: I D -KI F ≥0.1 式中:I D -差动回路电流; I F -制动回路电流; K-比率制动系数。 电平比较器是一个固定门槛的比较器,当输入差流大于0.1安培时输出信号,继电器动作。比率制动系数K可在0.5~0.9之间调节,它决定了继电器的动作特性和灵敏度。图3为继电器的动作特性曲线(图中电流值为辅助电流互感器二次值)。 图3BUS1000的比率差动特性曲线图

变压器差动保护误动原因分析

变压器差动保护误动原因分析 前言国内35kv及以下的变电所中,普遍采用的保护是以分立式继电器构成的。其最大的特点是二次回路构成简单、直观明了、经济、可靠。当电力系统发生故障时,就会伴随着电流突增、电压突降以及电流与电压间相位差角发生变化,这些基本特点就构成了各种不同原理的继电保护装置[1]。作为变压器主保护的纵联差动(简称差动)保护,正确动作率始终在50%一60%徘徊,这对变压器的安全和系统的稳定运行很不利。造成“原因不明”的变压器不正确动作是多方面的,设计研究、制造、安装调试和运行维护部门都有或多或少的责任,虽然实际工作中各个相关的制造厂家都在不断的改进技术提高动作的可靠性,但是变压器差动误动事例仍然为数不少[2]。本文的目的在于总结自己的经验并与同行交流讨论,共同为提高变压器差动保护装置运行水平而努力。 2 差动保护误动的原因分析 2.1 励磁涌流引起变压器差动保护误动 变压器励磁涌流的特点是正常运行情况下其值很小,一般不超过变压器额定电流的3%一5%,变压器工作在磁通的线性段OS,如图1。铁芯未饱和,其相对导磁率μ很大,变压器绕组的励磁电感也很大。当发生外部短路时,由于电压下降,励磁电流更小,因此这些情况下对励磁电流的影响一般可以不考虑[3]。 图1 Φ= f (I) 和 u = f (I) 的关系曲线 当变压器空投或故障切除后电压恢复时,由于变压器铁心中的磁通急剧增大,使铁心瞬间饱和, 相对导磁率接近1,变压器绕组电感降低,伴随出现数值很大的励磁涌流,包含有很大成分的非周期分量和高次谐波分量,并以二次谐波为主,其数值可以达到额定电流的6~8倍以上,出现尖顶形状的励磁涌流,如图2,在起始瞬间励磁涌流衰减很快,对于一般中小型变压器,经0.5 ~1s后,其值不超过额定电流的0.25~0.5倍,大型变压器励磁涌流的衰减速度较慢,衰减到上述值要2~3s,既变压器的容量越大衰减越慢,同时励磁涌流波形出现间断,有间断角,此电流流入差动继电器,可能引起保护装置误动[4]。 浪涌电流和变压器的激磁涌流一样,只流过变压器一侧,在变压器空投合闸或切除外部短路的电压恢复过程中,全部激磁涌流都将流入差动回路,势必造成变压器差动保护的误动作。且在一台变压器产生激磁涌流的同时,与其并联运行的变

《《继电保护》练习册答案习题一一、填空_第(13)页》

二、判断题 1、对于中性点非直接接地电网,母线保护采用三相式接线. 2、母线完全电流差动保护对所有连接元件上装设的电流互感器的变比应相等.( √) 3、电流相位比较式母线保护的工作原理是根据母线外部故障或内部故障时连接在该母线上各元件电流相位的变化来实现的. 4、电流比相母线保护只与电流的相位有关,而与电流的幅值无关. 5、母线完全差动保护是在母线的所有连接元件上装设专用的电流互感器,而且这些电流互感器的变比和特性完全相同. 三、简答题 1、在母线完全电流差动保护中,母线的所有连接元件上,为什么都装设相同变比和特性的电流互感器?答:母线完全电流差动保护也是按差动原理构成的,正常运行及母线外部短路时,流进母线的电流等于流出母线的电流,对一次电流而言,,即,此时保护应可靠地不动作;当母线发生短路时,流进母线的电流为短路电流,流出母线的电流为零,即(短路点的总电流),此时流入差动继电器的电流为按电流互感器变比减小的短路电流,保护应可靠地动作.由以上分析可知,只有当电流互感器的变比选得相同时,才有即流入差动继电器的电流为零,从而保证保护不误动作.若变比选得不同,则 保护就可能误动作.在母线完全差动保护中,选择特性相同的电流互感器,是为了减小母线外部短路时流入差动继电器的不平衡电流,从而降低整定值,提高保护的灵敏度. 2、何谓母线不完全差动电流保护?它有何优缺点? 答:仅将对端有电源的连接元件,即发电机、变压器、分段断路器、母联断路器差入的保护,叫母线不完全差动电流保护. 其优点是:只需在供电元件上装电流互感器,且各自的变比可不相等.不需要在母线所有连接元件上装设电流互感器,这样既简化了接线又大大降低了费用.所以不完全差动保护广泛用于6~10kV配电母线上. 其缺点是:正常运行时差回路的不平衡电流较大,保护要按躲过最大不平衡电流整定. 这样,不完全差动保护的灵敏度较完全差动保护要低一些. 3、按照技术规程规定,哪些母线上应装设专用母线保护? 答:(1)110kV及以上的双母线和分段母线,为了保证有选择地切除任一故障母线; (2)110kV及以上单母线,重要发电厂或110kV以上重要变电所的35~66kV母线,按电力系统稳定和保证母线电压等要求,需要快速切除母线上故障时; (3)35~66kV电力网中主要变电所的35~66kV双母线或分段母线,当在母联或分段断路器上装设解列装置和其他自动装置后,仍不满足电力系统安全运行要求时; (4)对于发电厂和主要变电所的1~10kV分段母线或并列运行的双母线,需快速而有选择地切除一段或一组母线上的故障,或线路断路器不允许切除线路电抗器前的短路时. 4、母线发生故障的原因有哪些? 答: (1)母线绝缘子或断路器套管的闪络; (2)装在母线上的电压互感器及装在母线和断路器之间的电流互感器故障; (3)操作切换时引起空气断路器及隔离开关的支持绝缘子损坏; (4)由于运行人员的误操作. 四.综合题 1.典型事故 事故简述:1999年3月23日7时36分,某变电站220KV甲乙线线路单相瞬时故障,重合成功、故

电动机差动保护误动原因分析与对策

电动机差动保护误动原因分析与对策 摘要:随着新建火力发电动机组容量地不断扩大,相应的辅机容量随之增大,纵联差动保护作为2MV A及以上高压电动机的主保护得到了越来越广泛地应用。介绍了电动机纵联差动保护,并针对纵联差动保护经常误动的情况,分析了电动机纵联差动保护误动作的原因,并给出了相应地解决办法,以确保机组地安全稳定运行。 关键词: 差动保护电流互感器不平衡电流 Abstract: along with the newly built thermal power motivation group capacity expands unceasingly, the corresponding auxiliary capacity increases, longitudinal differential protection of high voltage motor as2MV A and above the main protection is applied more and more widely. Introduces motor differential protection, and for longitudinal differential protection maloperation analysis often, motor differential protection maloperation cause, and gives corresponding solutions, to ensure the safe and stable operation of unit. Key words: differential protection current transformer current balance 0 引言 随着电力行业的不断发展,新建火力发电动机组容量越来越大,相应的辅机容量也随之增大。根据第9.6.1条的规定:2MV A及以上的电动机应装设纵联差动保护。对于2MV A以下中性点具有分相引线的电动机,当电流速断保护灵敏性不够时,也应装设本保护。在纵联差动保护的实际应用中,经常由于两侧电流互感器的相序、极性连接不当或电流互感器本身选择不合理等原因误动作,严重影响主要辅机的正常运转,危及机组地安全运行。为解决这个问题,须找出差动保护误动作的原因,并提出切合可行的改进措施。 1 纵联差动保护介绍 由图1可见,在不考虑电流互感器励磁电流影响的情况下,当电动机正常运行时,流过电动机绕组两侧的电流一致。以A相电流为例,电动机一次侧的电流Ia1和Ia2大小相等,方向一致,经过电流互感器转换到二次侧电流分别是Ia1’和Ia2’,从理论上讲Ia1’和Ia2’也应大小相等,方向一致。这样,流过纵联差动保护装置内部差动元件的电流就为零,差动保护不动作。当电动机内部发生相

变压器差动保护的基本原理及逻辑图

变压器差动保护的基本原理及逻辑图 1、变压器差动保护的工作原理 与线路纵差保护的原理相同,都是比较被保护设备各侧电流的相位和数值的大小。 2、变压器差动保护与线路差动保护的区别: 由于变压器高压侧和低压侧的额定电流不相等再加上变压器各侧电流的相位往往不相同。因此,为了保证纵差动保护的正确工作,须适当选择各侧电流互感器的变比,及各侧电流相位的补偿使得正常运行和区外短路故障时,两侧二次电流相等。例如图8-5所示的双绕组变压器,应使

8.3.2变压器纵差动保护的特点 1 、励磁涌流的特点及克服励磁涌流的方法 (1)励磁涌流: 在空载投入变压器或外部故障切除后恢复供电等情况下在空载投入变压器或外部故障切除后恢复供电等情况下,变压器励磁电流的数值可达变压器额定6~8倍变压器励磁电流通常称为励磁涌流。 (2)产生励磁涌流的原因 因为在稳态的情况下铁心中的磁通应滞后于外加电压90°,在电压瞬时值u=0瞬间合闸,铁芯中的磁通应为-Φm。但由于铁心中的磁通不能突变,因此将出现一个非周期分量的磁通+Φm,如果考虑剩磁Φr,这样

经过半过周期后铁心中的磁通将达到2Φm+Φr,其幅值为如图8-6所示。此时变压器铁芯将严重饱和,通过图8-7可知此时变压器的励磁电流的数值将变得很大,达到额定电流的6~8倍,形成励磁涌流。

(3)励磁涌流的特点: ①励磁电流数值很大,并含有明显的非周期分量,使励磁电流波形明显偏于时间轴的一侧。

②励磁涌流中含有明显的高次谐波,其中励磁涌流以2次谐波为主。 ③励磁涌流的波形出现间断角。 表8-1 励磁涌流实验数据举例 (4)克服励磁涌流对变压器纵差保护影响的措施: 采用带有速饱和变流器的差动继电器构成差动保护; ②利用二次谐波制动原理构成的差动保护; ③利用间断角原理构成的变压器差动保护; ④采用模糊识别闭锁原理构成的变压器差动保护。 2、不平衡电流产生的原因 (1)稳态情况下的不平衡电流

相关文档
最新文档