实验九 重氮盐的制备及其反应

实验九 重氮盐的制备及其反应
实验九 重氮盐的制备及其反应

实验九 重氮盐的制备及其反应

一、实验目的

1.掌握重氮化反应的原理和重氮盐的制备方法 2.掌握放氮反应的原理和操作方法

3.掌握偶合反应的原理及偶氮化合物的制备方法

二、实验原理

重氮盐通常是伯芳胺在过量无机酸(常用盐酸和硫酸)的水溶液中与亚硝酸钠在低温作用而制得:

ArNH 2NaNO 2HX

ArN 2+X -H 2O NaX

低温过量的HX

++2+2+

在制备重氮盐时,应注意以下几个问题:

⑴ 严格控制在低温。重氮化反应是一个放热反应,同时大多数重氮盐极不稳定,在室温时易分解,所以重氮化反应一般都保持在0~5℃进行。但芳环上有强的间位取代基的伯芳胺,如对硝基苯胺,其重氮盐比较稳定,往往可以在较高的温度下进行重氮化反应。

⑵ 反应介质要有足够的酸度。重氮盐在强酸性溶液重比较不活泼;过量的酸能避免副产物重氮化合物等的生成。通常使用的酸量要比理论量多25%左右。

⑶ 避免过量的亚硝酸。过量的亚硝酸会促进重氮盐的分解,会很容易和进行下一步反应所加入的化合物(例如叔芳胺)起作用,还会使反应终点难于检验。加入适量的亚硝酸钠溶液后,要及时用碘化钾淀粉试纸检验反应终点。过量的亚硝酸可以加入尿素来除去。 ⑷ 反应时应不断搅拌。反应要均匀地进行,避免局部过热,以减少副产物。 制得的重氮盐水溶液不易放置过久,要及时地用于下一步的合成中。 最常见的重氮盐的化学反应有下列两种类型:

⑴ 作用时放出氮气的反应。在不同的条件下,重氮基能被氢原子、羟基、氰基、卤原子等所置换,同时放出氮气。例如,桑德迈耳(Sandmeyer )反应:

ArN 2+Cl -

CuCl 过量浓盐酸ArCl +N 2

在实际操作中,往往将先制备的、冷的重氮盐溶液慢慢地加到冷的氯化亚铜的浓氢卤酸溶液

中去,先生成深红色悬浮的复盐。然后,缓缓加热,使复盐分解,放出氮气,生成卤代芳烃。 ⑵ 作用时保留氮的反应,其中最重要的是偶合反应。例如重氮盐与酚或叔芳胺在低温时作用,生成具有Ar —N=N —Ar '结构的稳定的有色偶氮化合物。重氮盐与酚的偶合,一般在碱性溶液中进行,而重氮盐与叔芳胺的偶合,一般在中性或弱酸性溶液中进行。

偶合反应也要控制在较低的温度下进行,要不断地搅拌,还要控制反应介质的酸碱度。

1.重氮化反应

ArNH 2NaNO 2HCl(或H 2SO 4)

ArN 2+X -NaX H 2O ++++低温

重氮盐的制备方法有两种:反法和正法。 反法:

ArNH 2

溶于

NaOH NaNO 2

混合均匀

H 2SO 4H 2O(冰)

+

例如,对氨基苯磺酸的重氮化反应为反法。

0~5℃

NH 2

SO 3H NaOH

H 2O

NH 2

SO 3Na ++对氨基苯磺酸对氨基苯磺酸钠

NH 2SO 3Na

N 2+HSO 4-SO 3Na

NaNO 2 , H 2SO 4

正法: ArNH 2+HCl

NaNO 2H 2O(冰)

+

例如,对硝基苯胺的重氮化反应为正法。

NH 2

NO 2NaNO 2 , HCl N 2+Cl -

NO 2

0~5℃

对硝基苯胺

氯化对硝基重氮苯

2.重氮盐的性质

60~70℃

SO 3H OH

NaOH

H 2O N 2+HSO 4-SO 3Na

Br 2/H 2O SO 3H

OH

Br

Br

OH

N N NaO 3

S

ONa (黄色)

(检验)

N 2+Cl -NO 2

60~70℃

OH

NO 2

NaOH

H 2O Br 2/H 2O NO 2

OH

Br

Br

N N

O 2N ONa

(橘红色)

OH

(检验)

三、实验药品

2mol ﹒L -1氢氧化钠溶液,对氨基苯磺酸,对硝基苯胺,1mol ﹒L -1亚硝酸钠溶液,浓硫酸

(d=1.84),饱和溴水,苯酚(碱溶液),盐酸(1:1),β-萘酚(碱溶液)。

四、实验仪器

烧杯,试管,玻璃棒。

五、实验步骤

1.对氨基苯磺酸的重氮化反应(反法)

在一个50mL烧杯中放入8mL水、4mL2mol·L-1氢氧化钠溶液和1g对氨基苯磺酸,搅拌溶解后,加入6mL1 mol·L-1亚硝酸钠溶液。于搅拌下将此溶液倾入另一个含有0.8mL浓硫酸(相对密度1.84)和20g碎冰的小烧杯中,继续搅拌5nin。对氨基苯磺酸的重氮盐(对磺基重氮苯)呈白色晶体析出。

2.对氨基苯磺酸的重氮盐的放氮反应

对羟基苯磺酸的生成:在小试管中放入2mL对氨基苯磺酸的重氮盐(溶液及晶体),在水浴中加热至60~70℃,仔细观察颜色变化和有无气泡冒出[1]。至气泡冒完后,取出冷却。在冷却后的溶液中加入2~3mL饱和溴水,仔细观察现象[2]。

3.保留氮的反应——偶合反应

在小试管中放入1mL对氨基苯磺酸的重氮盐,加入1mL苯酚的氢氧化钠溶液。振荡混合后,观察试管中生成物的颜色。用玻璃棒蘸取一滴滴在滤纸上,观察其颜色。

4.对硝基苯胺的重氮化反应(正法)

在一个50mL烧杯中放入0.9g对硝基苯胺,再加入3mL盐酸(1∶1),搅拌使溶解。在另一个50mL烧杯中将30g碎冰和6.5mL1 mol·L-1亚硝酸钠溶液相混合,在搅拌下倒入对硝基苯胺的盐酸溶液中。继续搅拌反应物5min,生成的重氮盐应为淡黄色透明溶液。如有不溶物,过滤除去。

5.氯化对硝基重氮苯的放氮反应

对硝基苯酚的生成:在小试管中放入上述重氮盐溶液3mL,在水浴中加热至60~70℃,观察颜色变化[3]及有无气泡冒出。冷却后,加入1~2mL饱和溴水,观察有无白色沉淀析出[4]。6.保留氮的反应——偶合反应

在小试管中放入1mL上述重氮盐溶液,加入1mLβ-萘酚的碱溶液。振荡混合后,观察生成物的颜色。用玻璃棒蘸一滴滴在滤纸上,观察其颜色。

附注

[1] 由白色晶体—无色溶液—黄色溶液,同时有N2冒出。

[2] 加过量饱和溴水有白色晶体析出。

[3] 淡黄色溶液—黄色溶液,同时有N2冒出。

[4] 最初析出时的沉淀因溶液颜色干扰为淡土黄色,水洗后为白色。

思考题

1.为什么重氮化反应一般都要保持在0~5℃进行?如果温度过高或溶液酸度不足会产生什么副反应?

2.偶合反应为什么也要控制在较低温度下进行及控制反应介质的酸碱度?

沉淀反应实验研究报告

实验蛋白质地沉淀反应与颜色反应 一、实验目地 掌握鉴定蛋白质地原理和方法.熟悉蛋白质地沉淀反应,进一步熟悉蛋白质地有关反应. 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色.不同地蛋白质由于所含地氨基酸不完全相同,颜色反应亦不完全相同.颜色反应不是蛋白质地专一反应,一些非蛋白物质也可产生同样地颜色反应,因此不能根据颜色反应地结果来决定被测物是否为蛋白质.另外,颜色反应也可作为一些常用蛋白质定量测定地依据.蛋白质是亲水性胶体,在溶液中地稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件地,相对地.如果条件发生了变化,破坏了蛋白质地稳定性,蛋白质就会从溶液中沉淀出来. 三、实验仪器 、吸管、滴管、试管、电炉、试纸、水浴锅、移液管 四、实验试剂 、卵清蛋白液:鸡蛋清用蒸馏水稀释倍,层纱布过滤,滤液放在冰箱里冷藏备用. 、苯酚:苯酚加蒸馏水稀释至. 、’试剂:汞溶于浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体积地蒸馏水,混匀,取上清夜备用.此试剂可长期保存. 、尿素晶体 、:晶体溶于蒸馏水,稀释至 、:溶于蒸馏水,稀释至 、浓硝酸 、茚三酮溶液:茚三酮溶于地乙醇并稀释至. 、冰醋酸 、浓硫酸 、饱和硫酸铵溶液:蒸馏水中加硫酸铵至饱和. 、硫酸铵晶体:用研钵研成碎末. 、乙醇. 、醋酸铅溶液:醋酸铅溶于蒸馏水并稀释至 、氯化钠晶体 、三氯乙酸溶液:三氯乙酸溶于蒸馏水中并稀释至 、饱和苦味酸溶液:蒸馏水中加苦味酸至饱和. 、醋酸溶液. 五、实验步骤 蛋白质地颜色反应 (一)米伦(’)反应 、苯酚实验:取苯酚溶液于试管中,加’试剂,电炉小心加热观察颜色变化. 、蛋白质实验:取蛋白液,加’试剂,出现白色地蛋白质沉淀,小心加热,观察现象. (二)双缩脲反应 、取少量尿素晶体放在干燥地试管中,微火加热熔化,至重新结晶时冷却.然后加溶液,摇匀,再加滴溶液,混匀,观察现象. 、取蛋白液,加溶液,摇匀,再加滴溶液,混匀,观察现象. (三)黄色反应 取一支试管,加入蛋白液及浓硝酸滴.加热,冷却后注意颜色变化.然后再加入溶液,观察颜色有什么变化. (四)茚三酮反应 取蛋白液于试管中,加滴茚三酮溶液,加热至沸,即有蓝紫色出现. 蛋白质地沉淀 (一)蛋白质地盐析作用

实验九-重氮盐的制备及其反应知识分享

实验九-重氮盐的制备 及其反应

实验九 重氮盐的制备及其反应 一、实验目的 1.掌握重氮化反应的原理和重氮盐的制备方法 2.掌握放氮反应的原理和操作方法 3.掌握偶合反应的原理及偶氮化合物的制备方法 二、实验原理 重氮盐通常是伯芳胺在过量无机酸(常用盐酸和硫酸)的水溶液中与亚硝酸钠在低温作用而制得: ArNH 2NaNO 2HX ArN 2+X -H 2O NaX 低温 ++2+2+ 在制备重氮盐时,应注意以下几个问题: ⑴ 严格控制在低温。重氮化反应是一个放热反应,同时大多数重氮盐极不稳定,在室温时易分解,所以重氮化反应一般都保持在0~5℃进行。但芳环上有强的间位取代基的伯芳胺,如对硝基苯胺,其重氮盐比较稳定,往往可以在较高的温度下进行重氮化反应。 ⑵ 反应介质要有足够的酸度。重氮盐在强酸性溶液重比较不活泼;过量的酸能避免副产物重氮化合物等的生成。通常使用的酸量要比理论量多25%左右。 ⑶ 避免过量的亚硝酸。过量的亚硝酸会促进重氮盐的分解,会很容易和进行下一步反应所加入的化合物(例如叔芳胺)起作用,还会使反应终点难于检验。加入适量的亚硝酸钠溶液后,要及时用碘化钾淀粉试纸检验反应终点。过量的亚硝酸可以加入尿素来除去。 ⑷ 反应时应不断搅拌。反应要均匀地进行,避免局部过热,以减少副产物。 制得的重氮盐水溶液不易放置过久,要及时地用于下一步的合成中。

最常见的重氮盐的化学反应有下列两种类型: ⑴ 作用时放出氮气的反应。在不同的条件下,重氮基能被氢原子、羟基、氰基、卤原子等所置换,同时放出氮气。例如,桑德迈耳(Sandmeyer )反应: ArN 2+Cl -CuCl 过量浓盐酸ArCl +N 2 在实际操作中,往往将先制备的、冷的重氮盐溶液慢慢地加到冷的氯化亚铜的浓氢卤酸溶液中去,先生成深红色悬浮的复盐。然后,缓缓加热,使复盐分解,放出氮气,生成卤代芳烃。 ⑵ 作用时保留氮的反应,其中最重要的是偶合反应。例如重氮盐与酚或叔芳胺在低温时作用,生成具有Ar —N=N —Ar '结构的稳定的有色偶氮化合物。重氮盐与酚的偶合,一般在碱性溶液中进行,而重氮盐与叔芳胺的偶合,一般在中性或弱酸性溶液中进行。 偶合反应也要控制在较低的温度下进行,要不断地搅拌,还要控制反应介质的酸碱度。 1.重氮化反应 ArNH 2NaNO 2HCl(或H 2SO 4)ArN 2+X -NaX H 2O ++++低温 重氮盐的制备方法有两种:反法和正法。 反法: NaNO 2H 2SO 4H 2O(冰)+ 例如,对氨基苯磺酸的重氮化反应为反法。

重氮化与重氮盐的转化

第十三章 重氮化与重氮盐的转化 第一节 概述 一、重氮化反应及其特点 1. 重氮化合物定义: 指分子中含有两个氮原子相连的基团,而这个基团只有一端与碳原子相连,而另一端则不与C 原子相连。(与偶氮化合物相区别) 2. 重氮化反应定义: 将芳伯胺等胺基化合物在低温下及强酸(其中盐酸及硫酸最为常用)水溶液中,与亚硝酸作用生成重氮盐的反应,称为重氮化反应。 Ar N H 2+NaN O 2+2HX Ar N + 2X +O H 22+NaX 3. ★重氮化反应在有机合成中的应用: 用来合成与亲电取代反应相悖的化合物,尤其是各种偶氮染料、有机颜料的重要的基本的方法,在精细有机合成中被广泛应用。 如:间氯甲苯的合成。 4.脂肪胺与芳胺的重氮化反应特点: 由脂肪伯胺得到的重氮化合物很不稳定,容易分解成醇类化合物,在有机合成上没有多少价值。 由芳伯胺制得的重氮化合物性质稳定,可用来制备许多重要的中间体。在精细化学品的合成中有着重要的意义。 二、重氮盐的结构与性质 1.重氮盐的结构 重氮盐的结构为: 重氮盐的反应一般是在强酸性到弱碱性介质中进行的。其pH 值的高低与目的反应有关。 2.★重氮盐的性质 (1)重氮盐具有类似铵盐的性质,一般可溶于水,不溶于有机溶剂。重氮化后溶液是否澄清可作为反应正常与否的标志。 (2)干燥的重氮盐极不稳定,受热爆炸。 (3)重氮盐在低温水溶液中比稳定且具有高反应活性。生产中常不必分离出重氮盐结晶,而用其水溶液进行下一步反应。 (4)重氮盐可发生两类反应:一类是重氮基转化为偶氮基(偶合)或肼基(还原),非脱落氮原子的反应;另一类是重氮基被其他取代基所置换,同时脱落两个氮原子放出氮气的反应。 (5)重氮盐性质活泼,本身价值不高,但通过上述两类重氮盐的反应,可制得一系列重要的有机中间体。 A r N N Cl A r N N Cl A r N N C l ++ +

免疫学——沉淀反应

实验报告 课程名称:病原生物学与免疫学实验 指导老师:陈玮__ _____成绩:______________ 实验名称:沉淀反应和补体参与的免疫反应 实验类型:___________同组学生姓名:钟一鸣 1.沉淀反应——双向琼脂扩散试验 【实验原理】 双向扩散是将可溶性抗原和抗体分别加到琼脂板相对应的孔中,两者各自向四周扩散,如果抗体和抗原相对应,则在两者比例适当处形成白色沉淀线。若同时含有若干对抗原抗体系统,因其扩散速度不同,可在琼脂中出现多条沉淀线。观察沉淀线的位置、形状等可对抗原或抗体作出定性分析。本试验常用于检测抗原抗体的纯度,滴定抗体的效价以及用已知抗体(抗原)检测和分析未知抗体(抗原)。临床上用此法检测患者血清中的甲胎球蛋白AFP ,作为原发性肝癌的重要诊断指标。双向扩散实验所需时间较长(24h ),灵敏度不高。 【实验现象】 沉淀线 Ag 对照 Ag 对照 Ag 待测 Ag 待测 Ag 对照 Ab Ab

1).六边形排列孔中,六条沉淀线在抗体孔周围衔接成一个完整的圆形 2).三角形排列孔中,出现两条沉淀线,且二者相交顶端相连 【实验结果】 待测样本AFP阳性,与阳性对照含有浓度基本相同的AFP 【讨论】 1).六边形排列孔中出现完整的圆形,说明阳性对照抗原和待测样本抗原浓度基本接近,使得六个孔中各沉淀线离中央孔的距离接近,围成完整的圆形 2).三角形和六边形排列孔的沉淀线均较接近中央孔,说明待测抗原和阳性对照抗原的浓度略大于抗体浓度。 3).制琼脂板时,不能太薄,且因要打六边形孔,尽量保证边上的孔不能太浅 4).沉淀线不明显可能和抗原抗体浓度以及放置时间有关,放置时间过短则沉淀线不明显,过长则会使已经形成的沉淀线解离或散开而出现假阴性 2.免疫电泳试验——对流免疫电泳试验 【实验原理】 带电的胶体颗粒可在电场中移动,移动的方向与胶体颗粒所带的电荷有关,蛋白质抗原在PH8.6的缓冲液中带负电荷,故由阴极向阳极移动,抗体球蛋白的等电点为PH6-7,故在PH8.6的缓冲液中带负电荷少,且分子较大,移动缓慢,同时因电渗作用,反向阴极移动,于是形成抗原与抗体相对移动的情况,在二者相遇的最适比例处产生白色沉淀。此种在双向免疫扩散的基础上加电泳的方法称为对流免疫电泳。由于抗原、抗体在电场中做定向移动,限制了琼脂双向扩散时抗原、抗体朝各方向自由扩散,因而提高了实验的敏感度,同时缩短试验时间,故可作快速诊断。 【实验现象】 Ag Ab Ab Ag

肥达试验和沉淀反应实验报告

实验报告

二者均在正常值内,患伤寒的可能性小; H抗体效价超过正常值,O抗体效价正常,可能是接种了伤寒菌苗或者是接种的回忆反应;O抗体效价超过正常值,H抗体效价正常,可能是伤寒早期或者其他沙门氏菌感染; 一般间隔1~2周复查,若抗体效价比前次结果增高2~4倍,则具有诊断价值。 实验报告

任务二:打孔 1.待琼脂板凝固后在琼脂板中间部分打四个孔,孔径3mm,孔距10mm。在左上角打一个孔作为标记。用胶头滴管吸去空上废液。 提示: (1)打孔时要小心,勿使琼脂层脱离载玻片或琼脂板底层开裂,以免加样时顺裂缝或底部散失。一旦出现裂缝或脱离现象,可向孔内滴加少许温琼脂加以弥补或将琼脂板在火焰高处来回通过几次补底。 (2)在琼脂板左上角打上标记孔,有助于确定正负极方向和样本上样位置,通常情况下,有标记孔侧,放置于正极端。 任务三:加样 1.如下图所示加样,用移液枪每个孔加10微升对应液体: C:人待测血清;D:人阳性血清;E:抗人血清抗体/诊断血清 提示: (1)抗原和抗体在一定的pH条件下,由于带电荷量的多少及分子量大小不同,在电场中以不同的速度作定向移动。在pH8.6的缓冲液中,多数蛋白质抗原物质带负电荷,在电场作用下向阳极移动,而其抗体大多为Y球蛋白,等电点较高,带负电荷较少,且分子量较大,电泳速度慢,受电渗作用影响向负极移动。 (2)加样时勿使样品外溢或在边缘残存小气泡,以免影响扩散结果。 (3)抗原、抗体的量应相接近时容易出现沉淀带,反之不易发生,如抗原过多,可造成假阴性结果,可通过稀释抗原加以解决。 任务四:正确放置琼脂板至电泳槽 1.向电泳槽中加入约2/3体积的pH8.6 0.05mol/L巴比妥溶液,将加好样的琼脂板放入电泳槽,有标记孔的一侧放在正极端。 2.用纱布条搭在琼脂板两侧,以便电泳。 提示: (1)电泳时抗原、抗体电极方向不可放反。 (2)搭桥时应注意与凝胶接触紧密,否则会使电流不均匀,致使沉淀线歪斜、不均匀。 任务五:确定电泳电压 1.设置电泳仪Us=6V,Is=4mA,Ts=60:00 提示: 电压、电流增大时,电泳时间可更短。但电压过高则孔径变形,可将琼脂融化,电流过大抗原抗体蛋自易变性,干扰实验结果;电压过低时沉淀线出现的时间会延长。

沉淀反应实验报告

实验蛋白质的沉淀反应与颜色反应 一、实验目的 掌握鉴定蛋白质的原理和方法。熟悉蛋白质的沉淀反应,进一步熟悉蛋白质的有关反应。 二、实验原理 蛋白质分子中某种或某些集团可与显色剂作用,产生颜色。不同的蛋白质由于所含的氨 基酸不完全相同,颜色反应亦不完全相同。颜色反应不是蛋白质的专一反应,一些非蛋白物 质也可产生同样的颜色反应,因此不能根据颜色反应的结果来决定被测物是否为蛋白质。另 外,颜色反应也可作为一些常用蛋白质定量测定的依据。蛋白质是亲水性胶体,在溶液中的 稳定性与质点大小、电荷、水化作用有关,但其稳定性是有条件的,相对的。如果条件发生 了变化,破坏了蛋白质的稳定性,蛋白质就会从溶液中沉淀出来。 三、实验仪器 1、吸管 2、滴管 3、试管 4、电炉 5、ph试纸 6、水浴锅 7、移液管 四、实验试剂 1、卵清蛋白液:鸡蛋清用蒸馏水稀释10-20倍,3-4层纱布过滤,滤液放在冰箱里冷藏 备用。 2、 0.5%苯酚:1g苯酚加蒸馏水稀释至200ml。 3、millon’s试剂:40g汞溶于60ml浓硝酸(水浴加温助溶)溶解后,冷却,加二倍体 积的蒸馏水,混匀,取上清夜备用。此试剂可长期保存。 4、尿素晶体 5、1%cuso:1g cuso晶体溶于蒸馏水,稀释至100ml 44 6、10%naoh:10g naoh溶于蒸馏水,稀释至100ml 7、浓硝酸 8、0.1%茚三酮溶液:0.1g茚三酮溶于95%的乙醇并稀释至100ml. 9、冰醋酸 10、浓硫酸 11、饱和硫酸铵溶液:100ml蒸馏水中加硫酸铵至饱和。 12、硫酸铵晶体:用研钵研成碎末。 13、95%乙醇。 14、醋酸铅溶液:1g醋酸铅溶于蒸馏水并稀释至100ml 15、氯化钠晶体 16、10%三氯乙酸溶液:10g三氯乙酸溶于蒸馏水中并稀释至100ml 17、饱和苦味酸溶液:100ml蒸馏水中加苦味酸至饱和。 18、1%醋酸溶液。 五、实验步骤 蛋白质的颜色反应 (一)米伦(millon’s)反应 1、苯酚实验:取0.5%苯酚溶液1ml于试管中,加millon’s试剂0.5ml,电炉小心加热 观察颜色变化。 2、蛋白质实验:取2ml蛋白液,加millon’s试剂0.5ml,出现白色的蛋白质沉淀,小 心加热,观察现象。 (二)双缩脲反应 1、取少量尿素晶体放在干燥的试管中,微火加热熔化,至重新结晶时冷却。然后加 10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察现象。 2、取蛋白液1ml,加10%naoh溶液1ml,摇匀,再加2-4滴1% cuso4溶液,混匀,观察 现象。

重氮盐的制备及其应用文献综述

第一章重氮盐的制备及其应用文献综述 1.引言 芳香族伯胺在酸性溶液中和亚硝酸作用,形成重氮盐的反应称为重氮化反应[1]。重氮盐可进行许多反应,转化成许多类型的化合物[2]。它们在有机合成及染料工业中占有极其重要的位置。下面我们就将重氮盐的制备及重氮盐在有机合成中的应用作一个简要的综述。 2.重氮盐的制备 重氮化反应要在强酸中进行,实际上是亚硝酸作用铵离子,如eq(1)所示: R N H2 R N H3 H H N O2 R 因此要进行重氮化,首先把芳香族伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,需要特殊方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行。一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持温度在0o C 附近。由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐,遇热或振动、摩擦,都将发生爆炸,如果需要应用,必须十分小心。 重氮化时所用的酸,从反应速度来说,以盐酸和氢溴酸最快,硫酸和硝酸较慢,但在置换反应中,仍以用硫酸为好。芳环上若有推电子基团,也会使反应加快。氨基的邻位若有取代基团,会产生位阻效应。 重氮盐多半易溶于水,只有少数杂酸盐和复盐不溶。这些不溶于水的重氮盐,往往比较稳定。它们中常见的有,氟硼酸盐、氟磷酸盐、1,5-萘二磺酸盐、氯化锌复盐、氯化汞复盐等。这些重氮盐在有机上合成都有广泛的应用。 重氮盐的稳定性与芳环上取代的基团有关,未取代的或烷基取代的重氮盐很不稳定,与热、摩擦或冲撞,都能引起爆炸,只可用它们的水溶液在0o C左右进行合成。具有吸电子基团的重氮盐,虽然它们比较难于合成但是稳定性较好,重氮化时温度可以较高,使用时也可在室温下进行,但仍使用它们的水溶液进行反应,不用干燥盐类。对于那些杂酸盐和复盐,可制备成固体重氮盐在合成上直接应用。 2.1 一元芳香族伯胺的重氮化反应 2.1.1 含有推电子基团芳胺的重氮化

[北科大]无机化学实验:1 酸碱反应和沉淀反应 (实验报告)

无机化学实验报告 【实验名称】实验一:酸碱反应和沉淀反应 【班级】 【日期】 【姓名】 【学号】 一、实验目的 ○1通过实验证实水溶液中的酸碱反应、沉淀反应存在着化学平衡及平衡移动的规则——同离子效应、溶度积规则等。 ○2学习验证性实验的设计方法。 ○3学习对实验现象进行解释,从实验现象得出结论等逻辑手段。 二、实验原理 (1)按质子理论,酸、碱在水溶液中的解离和金属离子、弱酸根离子在水溶液中的水解均为酸碱反应。弱酸、弱碱的解离和金属离子、弱酸根离子的水解均存在着化学平衡。如一元弱酸的解离HA == H + + A -,其平衡常数称弱酸的解离常数,记作K θa ,其表达式为: [c (H +)/c θ][c(Ac -)/ c θ] K θa (HAc) = ————————————— (3-1) [c(HAc)/ c θ] c (H +) c(A -) 解离度 α = ——— ? 100% = ——— ? 100% (3-2) c(HA) c(HA) 从平衡移动的观点,可以了解当溶液增加c(A -)或c(H +),使平衡向左移动,使弱酸的解离度降低,即当增加c(H +),使c(A -)降低,当增加c(A -)则c(H +)降低。 金属离子与水的酸碱反应,即水解反应,就像多元酸的解离是分步进行的。例如Al 3+(aq)的水解: Al 3+(aq) + H 20 === Al(OH)2+(aq) + H +(aq) Al(OH)2+(aq) + H 20 === Al(OH)2+(aq) + H +(aq) Al(OH)2+(aq) + H 20 === Al(OH)3(s) + H +(aq) 值得注意的是有的金属离子的水解,并不是要水解到相应的氢氧化物才生成沉淀,而是水解到某一中间步骤,就生成了碱式盐沉淀。如Sb 3+(aq)的水解: 第一步 Sb 3+(aq) + H 20 === Sb(OH)2+(aq) + H + 第二步 Sb(OH)2+(aq) + Cl -(aq) === SbOH 2+(s) + H + 这类反应同样也存在平衡,当增加溶液中c(H +),则可抑制水解,当减少溶液中c(H +)(pH 增大),则可促进其水解。 一般来说,酸碱反应的反应速率是相当快的,极易到达平衡。所以从平衡角度来考察这类反应就行了。 (2)难溶电解质在水溶液中存在着溶解沉淀平衡。对于难溶的AB 型电解质,有下列平衡: AB(s) ======溶解/沉淀 A n+(aq) + B n-(aq)

实验四 沉淀反应与氧化还原反应.

Ag ++Cl - 实验四 沉淀反应与氧化还原反应 一、实验目的 1、掌握沉淀平衡和溶度积规则的运用。 2、了解沉淀的溶解和沉淀转化的原理。 3、学习离心分离操作和电动离心机的使用。 4、加深对氧化还原反应的本质及氧化剂、还原剂具有相对性等基本知识的理解。 5、了解氧化还原反应与浓度、介质酸度的关系。 二、预习提问 1、何为溶度积规则?(以AgCl 为例) 答:当C(Ag +)·C(Cl - )>K sp ,有沉淀析出; C(Ag +)·C(Cl - )=K sp ,溶液达到饱和,但仍无沉淀析出; C(Ag +)·C(Cl - )<K sp ,溶液未饱和,没有沉淀析出。 2、为何H 2O 2即可作为氧化剂又可作为还原剂?在何种情况下作为氧化剂?在何种情况下作为还原剂? 答:H 2O 2中O 的氧化价—1价为中间价态,即可作为氧化剂又可作为还原剂,当遇到更强的氧化剂时,H 2O 2作还原剂,当遇到更强的还原剂时,H 2O 2作氧化剂。 3、怎样判断氧化还原的方向? 答:作为氧化剂的电对的电极电位应大于作为还原剂电对的电极电位。 三、实验原理 1、任何难溶的电解质,在水溶液中总是或多或少地溶解,绝对不溶的物质是不存在的。AgCI 在水中的溶解度虽然很小,但溶液中仍然存在着一个溶解与沉淀间的平衡关系: AgCI(s) ? 当C(Ag + )·C(Cl - )>K sp ,有沉淀析出; C(Ag +)·C(Cl - )=K sp ,溶液达到饱和,但仍无沉淀析出; C(Ag +)·C(Cl - )<K sp ,溶液未饱和,没有沉淀析出。 分步沉淀:如果在溶液中有两种或两种以上的离子都可以与同一种沉淀剂反应生成难溶电解质,所需沉淀剂离子浓度小的先沉淀出来,所需沉淀剂离子浓度大的后沉淀出来。 沉淀转化:如果在沉淀中再加入某种试剂,能使其形成溶度积更小的物质,则沉淀就转化。 氧化还原反应是电子转移的反应。 电极电位(φ)相对大小可用来衡量物质得失电子能力的大小。φ数值愈大,其氧化态的氧化能力愈强,还原态的还原能力愈弱。根据电极电位数值可以判断氧化还原反应的方向。 物质的氧化性和还原性强弱是相对的,中间价态化合物一般既可作氧化剂,又可作还原剂。 例如,H 2O 2常作氧化剂,被还原为H 2O(或OH - ): H 2O 2+2H + +2e ?2H 2O φ0=1.77V 但遇到更强的氧化剂,如高锰酸钾(在酸性介质中)时,过氧化氢作为还原剂,被氧化而放出氧气: 2H + +O 2+2e ?H 2O 2 φ0=0.682V 溶解 沉淀

重氮化和偶合反应

重氮化和偶合反应是重要的有机合成反应,在精细化工中有很重要的地位,该类反应在染料合成中应用很广,是两个主要的工序。可合成酸性、冰染、直接、分散、活性、阳离子等类型的染料,还可合成各类黄色、红色偶氮型有机颜料。 一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。 重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响 酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。 这是一种自偶合反应,是不可逆的。一旦重氮胺基物生成,即使再补加酸液,也无法使重氮胺基物转变为重氮盐,从而使重氮盐的质量变差,产率降低。在酸量不足的情况下,重氮盐还易分解,温度愈高,分解愈快。 酸的浓度的影响主要考虑使芳胺形成铵离子的能力、铵盐水解生成游离的芳胺以及亚硝酸的电离几个方面。 当无机酸的浓度增加时,平衡向胺盐生成的方向移动,游离胺的浓度降低,重氮化的速度变慢。另一方面,反应中还存在着亚硝酸的电离平衡。 酸浓度的增加可抑制亚硝酸的电离而加速重氮化。一般来讲当无机酸浓度较低时,这一影响是主要的,而降低游离胺的浓度的影响是次要的,此时随酸的浓度增加,重氮化速度增加。但随着酸浓度增加,使芳胺形成铵离子的影响逐渐变为主要的,这时继续增加酸的浓度便降低游离胺的浓度,就使反应速度下降。 3.重氮化合物 重氮化合物具有以下性质 (1).水溶性和电离性 重氮盐多半溶于水只有少数杂酸盐和复盐不溶,溶于水的重氮盐电离出ArN=N+正离子和酸根负离子。重氮化后,水溶液是否清亮作为反应正常与否的标志。也有一些重氮盐难溶于水,如氟硼酸盐、氟磷酸盐、1,5-萘二磺酸盐、氯化锌复盐、氯化汞复盐等。重氮盐与氢氧化银作用,生成碱性与苛性碱相当的重氮碱。 (2).稳定性 重氮盐的稳定性与芳环中的取代的基团有关,未取代的或有烷基取代的重氮盐很不稳定,遇热或摩擦、冲撞,都能引起爆炸,只可用它们的水溶液在0℃左右进行合成。具有吸电子基团的重氮盐,虽然它们比较难于形成,但是稳定

重氮化反应

重氮化反应

1.重氮化反应及其特点 (3) 四、重氮化操作技术 (4) 1.直接法 (4) 2.连续操作法 (4) 3.倒加料法 (5) 4.浓酸法 (6) 5.亚硝酸酯法 (7) 五、反应设备及安全生产技术 (7) 1.重氮化反应设备 (7) 2.安全生产技术 (9) 3.芳伯胺重氮化时应注意的共性问题 (13) 5.重氮化工艺 (14) 8.磺化工艺 (16)

1.重氮化反应及其特点 芳伯胺在无机酸存在下低温与亚硝酸作用,生成重氮盐的反应成为重氮化反应。工业上,常用亚硝酸钠作为亚硝酸的来源。反应通式为 Ar NH2+NaNO2 +2HX ArN2+ X- + 2H2O + NaX 式中,X可以是Cl、Br、NO3、HSO3等。工业生产上常采用硫酸、盐酸。 芳胺称作重氮组分,亚硝酸称为重氮化剂。亚硝酸易分解,故工业生产中常用亚硝酸钠与无机酸作用生成亚硝酸,以避免亚硝酸分解。 在重氮化过程中至反应终止时,要始终保持反应介质对刚果红试纸呈强酸性。如果酸量不足,可能导致生成的重氮盐与没有起反应的芳胺生成重氮氨基化合物。 ArN2X +ArNH2ArN NNH Ar + HX 在重氮化反应过程中,亚硝酸要过量或加入亚硝酸钠溶液的速度要适当,不能太慢,否则,也会生成重氮氨基化合物。 重氮化反应是放热反应,必须及时一处反应热。一般在0~10℃进行,温度过高,会使亚硝酸分解,同时加速重氮化合物的分解。重氮化反应结束时,过量的亚硝酸通常加入尿素或氨基磺酸分解掉,加入少量芳胺,使之与过量的亚硝酸作用。

四、重氮化操作技术 在重氮化反应中,由于副反应多,亚硝酸也具有氧化作用,而不同的芳胺所形成盐的溶解度也各有不同。隐藏,根据这些性质以及制备该重氮盐的目的不同,重氮化反应的操作方法基本上可分一下几种。 1.直接法 本法适用于碱性较强的芳胺,即含有给电子基团的芳胺,包括苯胺、甲苯胺、甲氧基苯胺、二甲苯胺、甲基萘胺、联苯胺和联甲氧基苯胺等。这些胺类与无机酸生成易溶于水但难以水解的稳定铵盐。 其操作方法是:将计算量(或稍过量)的亚硝酸钠水溶液在冷却、搅拌下,先快后慢的滴加到预先将芳胺溶于稀的无机酸水溶液并已冷却的稀酸水溶液中,进行重氮化,直到亚硝酸钠稍微过量为止。此法亦称正加法,应用最为普遍。 反应温度一般为0~10℃进行。盐酸用量一般为芳伯胺的3~4mol 为宜。水的用量一般应控制在到反应结束时,反应液总体积为胺量的10~12倍。应控制亚硝酸钠的加料速率,以确保反应正常进行。 2.连续操作法 本法也是适用于碱性较强芳伯胺的重氮化。工业上以重氮盐为合成中间体时多采用这一方法。由于反应过程的连续性。可较大地提

实验一 蛋白质的颜色反应和沉淀反应.DOC附图

实验一蛋白质的颜色反应和沉淀反应 一、实验目的 (1)掌握鉴定蛋白质的原理和方法 (2)熟悉蛋白质的沉淀反应;进一步掌握蛋白质的有关性质 二、实验原理 (1)蛋白质颜色反应原理:蛋白质分子中的某些或某种基团与显色剂作用,可产生特定的颜色反应,是一些常用蛋白质定量测定的依据;但颜色反应不是蛋白质的专一反应; 1、米伦反应原理:米伦试剂是硝酸、亚硝酸、硝酸汞、亚硝酸汞的混合物。他能与苯酚及某些二羟基苯衍生物起颜色反应。组成蛋白质的氨基酸中只有酪氨酸含苯酚基团,因此该反应为蛋白质中酪氨酸存在的依据。 2、双缩脲反应原理:尿素被加热,则两分子的尿素放出一分子氨而形成双缩脲。双缩脲在碱性环境中,能与硫酸铜结合成紫色的化合物,此反应称为双缩脲反应。蛋白质分子中含有肽键与缩脲结构相似,故也能进行此反应。双缩脲反应可作为蛋白质定量测定的依据。 3、黄色反应原理:蛋白质分子中含有苯环结构的氨基酸(如酪氨酸、色氨酸等),于浓硝酸可反应并生成黄色物质,此物质在碱性环境下变为桔黄色的硝基苯衍生物硝醌酸等。 4、茚三酮反应原理:蛋白质与茚三酮共热,产生兰紫色的还原茚三酮、茚三酮和氨的缩合物。此反应为一切蛋白质及a-氨基酸所共有。

亚氨基酸(脯氨酸和羟脯氨酸)与茚三酮反应呈黄色,含有氨基的其他物质亦呈此反应。 (2)蛋白质沉淀反应原理:多数蛋白质是亲水胶体,当其稳定因素被破坏或与某些试剂结合成不溶解的盐后,即产生沉淀。 1、蛋白质的盐析作用原理:向蛋白质中加入大量的中性盐(硫酸铵、硫酸钠或氯化钠等),使蛋白质胶体颗粒脱水,破坏其水化层,同时它所带有的电荷亦被中性盐上所带的相反电荷的离子所中和。于是稳定因素被破坏,蛋白质聚集沉淀。盐析作用一般不使蛋白质变性。 2、有机溶剂沉淀蛋白质原理:某些有机溶剂(如乙醇、甲醇、丙醇等),因引起蛋白质脱去水化层以及降低介电常数而增加带电质点间的相互作用,致使蛋白质颗粒容易凝聚而沉淀 3、重金属盐与某些有机酸沉淀蛋白质原理:重金属离子(如Pb2+、Cu2+等)与蛋白质的羧基等结合生成不溶性的金属盐类而沉淀,同时蛋白质发生变性。某些有机酸的酸根则与蛋白质的自由氨基结合而沉淀。 4、生物碱试剂沉淀蛋白质原理:植物体内具有显著生理作用的含氮碱性化合物成为生物碱。能沉淀生物碱或与其产生颜色反应的物质称为生物碱试剂,如鞣酸等。当溶液PH小于等电点时,蛋白质颗粒带正电荷,容易与生物碱试剂的负离子发生反应而沉淀。 三、实验器材 1、吸管1.0(×3)、0.50ml(×1)、2.0ml(×2)、5.0ml(×2) 2、试管1.5㎝×15㎝(×7)

重氮化和偶合反应

重氮化 重氮化和偶合反应是重要的有机合成反应,在精细化工中有很重要的地位,该类反应在染料合成中应用很广,是两个主要的工序。可合成酸性、冰染、直接、分散、活性、阳离子等类型的染料,还可合成各类黄色、红色偶氮型有机颜料。 一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。 重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响 酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。 这是一种自偶合反应,是不可逆的。一旦重氮胺基物生成,即使再补加酸液,也无法使重氮胺基物转变为重氮盐,从而使重氮盐的质量变差,产率降低。在酸量不足的情况下,重氮盐还易分解,温度愈高,分解愈快。 酸的浓度的影响主要考虑使芳胺形成铵离子的能力、铵盐水解生成游离的芳胺以及亚硝酸的电离几个方面。 当无机酸的浓度增加时,平衡向胺盐生成的方向移动,游离胺的浓度降低,重氮化的速度变慢。另一方面,反应中还存在着亚硝酸的电离平衡。 酸浓度的增加可抑制亚硝酸的电离而加速重氮化。一般来讲当无机酸浓度较低时,这一影响是主要的,而降低游离胺的浓度的影响是次要的,此时随酸的浓度增加,重氮化速度增加。但随着酸浓度增加,使芳胺形成铵离子的影响逐渐变为主要的,这时继续增加酸的浓度便降低游离胺的浓度,就使反应速度下降。 (2).不同的反应物及浓度的影响

重氮化和重氮盐的反应综述

重氮化和重氮盐的反应综述 一、重氮化 芳香族伯胺和亚硝酸作用生成重氮盐的反应标为重氮化,芳伯胺常称重氮组分,亚硝酸为重氮化剂,因为亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸使反应时生成的亚硝酸立即与芳伯胺反应,避免亚硝酸的分解,重氮化反应后生成重氮盐。 重氮化反应可用反应式表示为: Ar-NH2 + 2HX + NaNO2--—Ar-N2X + NaX + 2H20 重氮化反应进行时要考虑下列三个因素: 1、酸的用量 从反应式可知酸的理论用量为2mol,在反应中无机酸的作用是,首先使芳胺溶解,其次与亚硝酸钠生成亚硝酸,最后生成重氮盐。重氮盐一般是容易分解的,只有在过量的酸液中才比较稳定,所以重氮化时实际上用酸量过量很多,常达3mol,反应完毕时介质应呈强酸性(pH值为3),对刚果红试纸呈蓝色.重氮过程中经常检查介质的pH 值是十分必要的。反应时若酸用量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮氨基化合物: Ar-N2Cl + ArNH2——Ar-N=N—NHAr + HCl

这是一种自我偶合反应,是不可逆的,一旦重氮氨基物生成,即使补加酸液也无法使重氮氨基物转变为重氮盐,因此使重氮盐的质量变坏,产率降低。在酸量不足的情况下,重氮盐容易分解,温度越高,分解越快。 2、亚硝酸的用量 重氮化反应进行时自始至终必须保持亚硝酸稍过量,否则也会引起自我偶合反应。重氮化反应速度是由加入亚硝酸钠溶液加速度来控制的,必须保持一定的加料速度,过慢则来不及作用的芳胺会和重氮盐作用生成自我偶合反应。亚硝酸钠溶液常配成30%的浓度使用.因为在这种浓度下即使在-15℃也不会结冰。反应时检定亚硝酸过量的方法是用碘化钾淀粉试纸试验,一滴过量亚硝酸液的存在可使碘化钾淀粉试纸变蓝色。由于空气在酸性条件下也可位碘化钾淀粉试纸氧化变色,所以试验的时间以0.5-2s内显色为准。亚硝酸过量对下一步偶合反应不利,所以过量的亚硝酸常加入尿素或氨基磺酸以消耗过量亚硝酸。亚硝酸过量时,也可以加入少量原料芳伯胺,使和过量的亚础酸作用而除去。 3、反应温度 重氯化反应一般在0-5℃进行,这是因为大部分重氮盐在低温下较稳定,在较高温度下重氮盐分解速度加快的结果。另外亚硝酸在较高温度下也容易分解。重氮化反应温度常取决于重氮盐的稳定性,对-氨

重氮化和偶合反应讲解学习

重氮化和偶合反应

重氮化 重氮化和偶合反应是重要的有机合成反应,在精细化工中有很重要的地位,该类反应在染料合成中应用很广,是两个主要的工序。可合成酸性、冰染、直接、分散、活性、阳离子等类型的染料,还可合成各类黄色、红色偶氮型有机颜料。 一.重氮化和重氮化合物 1.重氮化反应及影响因素 芳香族伯胺和亚硝酸作用生成重氮盐的反应称为重氮化。 重氮化反应要在强酸中进行,实际上是亚硝酸作用于铵离子。由于亚硝酸不稳定,通常使用亚硝酸钠和盐酸或硫酸,使反应生成的亚硝酸立刻与芳伯胺反应,避免亚硝酸的分解。为了使反应能顺利进行,必须首先把芳伯胺转化为铵正离子。芳胺的碱性较弱,因此重氮化要在较强的酸中进行。有些芳胺碱性非常弱,要用特殊的方法才能进行重氮化。 重氮化是放热反应,重氮盐对热不稳定,因此要在冷却的情况下进行,一般都用冰盐浴冷却,并调节亚硝酸钠的加入速度,维持反应温度在0℃附近,由于重氮盐不稳定,一般就用它们的溶液,随做随用。固体重氮盐遇热或震动、摩擦,都将发生爆炸,必需应用某些稳定性好的固体重氮盐时,也需谨慎小心。 自重氮化反应发现以来,人们为了弄清楚其反应的影响因素,对重氮化反应的机理进行了反复研究,已普遍接受了重氮化反应的亚硝化学说即重氮化反应是由亚硝酸产生的亲电质点对游离芳伯胺基进行亲电取代反应的机理,其反应的主要影响因素如下。 (1).酸的影响

酸的影响主要考虑酸的种类、用量及浓度的影响。 重氮化所用的酸,从反应速度来说,以盐酸或氢溴酸等最快,硫酸与硝酸较次。由反应式可以看出酸的理论用量为2摩尔,在反应中无机酸的作用是:首先是使芳胺溶解,其次可和亚硝酸钠生成亚硝酸,最后是生成稳定的重氮盐。重氮盐一般来讲是容易分解的,只有在过量的酸液中才稳定,所以重氮化时实际上酸用量过量很多,常达 3~4摩尔。反应完毕时介质应呈强酸性,PH值为3,对刚果红试剂呈蓝色,重氮化过程经常检查介质的PH值是十分重要的。反应时若酸量不足,生成的重氮盐容易和未反应的芳胺偶合,生成重氮胺基化合物。 这是一种自偶合反应,是不可逆的。一旦重氮胺基物生成,即使再补加酸液,也无法使重氮胺基物转变为重氮盐,从而使重氮盐的质量变差,产率降低。在酸量不足的情况下,重氮盐还易分解,温度愈高,分解愈快。 酸的浓度的影响主要考虑使芳胺形成铵离子的能力、铵盐水解生成游离的芳胺以及亚硝酸的电离几个方面。 当无机酸的浓度增加时,平衡向胺盐生成的方向移动,游离胺的浓度降低,重氮化的速度变慢。另一方面,反应中还存在着亚硝酸的电离平衡。 酸浓度的增加可抑制亚硝酸的电离而加速重氮化。一般来讲当无机酸浓度较低时,这一影响是主要的,而降低游离胺的浓度的影响是次要的,此时随酸的浓度增加,重氮化速度增加。但随着酸浓度增加,使芳胺形成铵离子的影响逐渐变为主要的,这时继续增加酸的浓度便降低游离胺的浓度,就使反应速度下降。 (2).不同的反应物及浓度的影响

实验九 重氮盐的制备及其反应

实验九 重氮盐的制备及其反应 一、实验目的 1.掌握重氮化反应的原理和重氮盐的制备方法 2.掌握放氮反应的原理和操作方法 3.掌握偶合反应的原理及偶氮化合物的制备方法 二、实验原理 重氮盐通常是伯芳胺在过量无机酸(常用盐酸和硫酸)的水溶液中与亚硝酸钠在低温作用而制得: ArNH 2NaNO 2HX ArN 2+X -H 2O NaX 低温过量的HX ++2+2+ 在制备重氮盐时,应注意以下几个问题: ⑴ 严格控制在低温。重氮化反应是一个放热反应,同时大多数重氮盐极不稳定,在室温时易分解,所以重氮化反应一般都保持在0~5℃进行。但芳环上有强的间位取代基的伯芳胺,如对硝基苯胺,其重氮盐比较稳定,往往可以在较高的温度下进行重氮化反应。 ⑵ 反应介质要有足够的酸度。重氮盐在强酸性溶液重比较不活泼;过量的酸能避免副产物重氮化合物等的生成。通常使用的酸量要比理论量多25%左右。 ⑶ 避免过量的亚硝酸。过量的亚硝酸会促进重氮盐的分解,会很容易和进行下一步反应所加入的化合物(例如叔芳胺)起作用,还会使反应终点难于检验。加入适量的亚硝酸钠溶液后,要及时用碘化钾淀粉试纸检验反应终点。过量的亚硝酸可以加入尿素来除去。 ⑷ 反应时应不断搅拌。反应要均匀地进行,避免局部过热,以减少副产物。 制得的重氮盐水溶液不易放置过久,要及时地用于下一步的合成中。 最常见的重氮盐的化学反应有下列两种类型: ⑴ 作用时放出氮气的反应。在不同的条件下,重氮基能被氢原子、羟基、氰基、卤原子等所置换,同时放出氮气。例如,桑德迈耳(Sandmeyer )反应: ArN 2+Cl - CuCl 过量浓盐酸ArCl +N 2 在实际操作中,往往将先制备的、冷的重氮盐溶液慢慢地加到冷的氯化亚铜的浓氢卤酸溶液 中去,先生成深红色悬浮的复盐。然后,缓缓加热,使复盐分解,放出氮气,生成卤代芳烃。 ⑵ 作用时保留氮的反应,其中最重要的是偶合反应。例如重氮盐与酚或叔芳胺在低温时作用,生成具有Ar —N=N —Ar '结构的稳定的有色偶氮化合物。重氮盐与酚的偶合,一般在碱性溶液中进行,而重氮盐与叔芳胺的偶合,一般在中性或弱酸性溶液中进行。 偶合反应也要控制在较低的温度下进行,要不断地搅拌,还要控制反应介质的酸碱度。 1.重氮化反应 ArNH 2NaNO 2HCl(或H 2SO 4) ArN 2+X -NaX H 2O ++++低温 重氮盐的制备方法有两种:反法和正法。 反法:

重氮盐

重氮盐的化学性质及其应用 基本概念: 偶合反应:偶合反应是指重氮盐与酚或芳胺进行缩合,使两个芳环通过-N=N- 连接起来的反应。 重氮盐具有一般盐的性质,易溶于水,不溶于有机溶剂,水溶液能导电。 重氮盐的化学性质非常活泼,其化学反应一般可以分为两大类,即放氮反应及留氮反应。 一、放氮反应 1.取代反应 (1)被卤素或氰基取代 重氮盐溶液与氯化亚铜、溴化亚铜或氰化亚铜等的酸性溶液作用,加热分解为卤代物或氰化物及氮气: 这个反应称为桑德迈耳(Sandmeyer)反应。这是在芳环上引入氰基等的常用方法。 关于桑德迈耳反应机理,通常认为是重氮盐首先和亚铜盐形成络合物,然且电子转移生成芳香自由基,此自由基再夺取铜盐中的卤原子得产物。例如: 因此卤化亚铜的用量需要相当于重氮盐的量。 CuX 易分解,需新鲜制备,盖特曼(Gatterman)改用铜粉作催化剂,称为盖特曼反应。铜粉的用量为催化量,但收率较低。

碘化物容易生成,不需要CuI,只要KI 和重氮盐共热,就直接得到良好收率的产物。例如: 将氟硼酸加到重氮盐溶液中,即生成氟硼酸重氮盐沉淀,干燥后,小心加热,即分解得芳香氟化物。例如: 后-反应又称为希曼(Schiemann)反应。 上述取代反应可以用来制取不易直接由芳烃亲电取代反应而制备的氰化物,碘化物及氟化物。 (2)被羟基取代 被羟基取代时,应注意下列问题: 1)该反应在酸性条件下进行,其目的在于防止生成的酚与未反应的重氮盐发生偶合反应。 2)该反应使用重氮硫酸氢盐,而不使用重氮盐酸盐,是因为使用重氮盐酸盐除生成酚外,会有副产物氯苯类化合物生成: (3)被硝基取代

巨噬细胞吞噬实验&沉淀实验实验报告

实验二 一巨噬细胞吞噬功能实验 【原理】巨噬细胞是单核吞噬细胞系统的主要细胞,局域活跃的吞噬功能。吞噬细胞受抗原刺激后活化,可使吞噬功能明显增强。 在小鼠体内诱导腹腔巨噬细胞产生后,再给小鼠腹腔注射鸡血红细胞,30min后处死小鼠,取出腹腔液,以冷亚甲蓝染色,显微镜下计数吞噬红细胞的百分数,及观察吞噬细胞内鸡红细胞的数目,以判断吞噬细胞的杀伤能力,由此间接地测定机体的非特异性免疫水平。【方法】体内法: (1)实验前3小时,小鼠腹腔注射6%无菌淀粉液1ml,诱导巨噬细胞渗出至腹腔中。(2)实验时,每只小鼠注射鸡红细胞1ml,轻柔腹部,使其在腹腔中分布均匀,利于吞噬。(3)30min后,将小鼠拉颈处死,固定,打开腹腔暴露肠管,用载玻片轻擦腹腔,使腹腔液均匀涂于载玻片过,再滴一滴0.03%冷亚甲蓝溶液,盖上盖玻片。 (4)高倍镜下进行观察,计数。 【结果】 【分析】 在小鼠体内诱导腹腔巨噬细胞产生后,再给小鼠注射鸡红细胞后镜检腹腔液,可观察到巨噬细胞吞噬鸡红细胞的现象,并且可看到部分鸡红细胞聚集到吞噬细胞附近。 二沉淀反应双向琼脂扩散实验

【原理】将可溶性抗原与相应抗体分别加入琼脂板上的孔内,二者均可发生扩散,并且随扩散距离的增大浓度降低,在抗原抗体比例适宜处形成可见的沉淀线。本实验是定性实验,常用于分析抗原抗体的纯度关系以及相互关系。 【方法】 (1)制板:将熔化的1%琼脂加在载玻片上约5ml (2)打孔:待琼脂凝固后,将载玻片置于打孔样板上,用打孔器打孔 (3)加样:在中央孔内加抗体,上下两孔加抗原1,左右加抗原二,每孔加10μl (4)结果观察:将琼脂板置于湿盒,37℃一天后观察结果。 【结果】 在中央孔与添加抗原1的孔之间出现沉淀线,有抗原抗体反应,为阳性反应,说明抗原1与抗体相对应。中央孔与添加抗原2的孔之间没有沉淀线,说明抗原2与抗体之间不相对应。【分析】抗体与抗原发生扩散时,随扩散距离的增大浓度降低,在抗原抗体比例适宜处形成可见的沉淀线。当有沉淀线出现时,说明有抗原抗体反应。 琼脂铺板时要一次铺成,并且铺设均匀。 打孔时要注意垂直打孔,注意不要有裂隙产生。

相关文档
最新文档