5_晶体管特性图示仪测三极管直流参数

5_晶体管特性图示仪测三极管直流参数
5_晶体管特性图示仪测三极管直流参数

实验五 晶体管特性图示仪测量三极管的直流参数

晶体管在电子技术方面具有广泛的应用。在制造晶体管和集成电路以及使用晶体管的过程中,都要检测其性能。晶体管输入、输出及传输特性普遍采用直接显示的方法来获得特性曲线,进而可测量各种直流参数。

一、实验目的

(1)了解YB4812型晶体管特性图示仪原理,掌握其使用方法;

(2)观察三极管的输出特性曲线;

(3)测试四种三极管的反向击穿电压和直流电流增益。

二、实验原理

利用晶体管特性图示仪测试晶体管输出特性曲线的原理如图1所示。图中T 代表被测的晶体管,R B 、E B 构成基极偏流电路。取E B >>V BE ,可使I B =(E B -V BE )/R B 基本保持恒定。在晶体管C-E 之间加入一锯齿波扫描电压,并引入一个小的取样电阻R C ,这样加到示波器上X 轴和Y 轴的电压分别为V X =V CE = V CA -I C ? R C ≈V CA , V Y =-I C ? R C ∞-I C

图5.1 测试输出特性曲线的原理电路

R E

图5.2 基极阶梯电压与集电极扫描电压间关系

当I B恒定时,在示波器的屏幕上可以看到一根I C—V CE的特性曲线,即晶体管共发射极输出特性曲线。为了显示一组在不同I B的特性曲线簇Ici=Φ(I C i, V CE)应该在X轴的锯齿波扫描电压每变化一个周期时,使I B也有一个相应的变化,所以应将图1中的E B改为能随X轴的锯齿波扫描电压变化的阶梯电压。每一个阶梯电压能为被测管的基极提供一定的基极电流,这样不同的阶梯电压V B1、V B2 、V B3 …就可对应地提供不同的恒定基极注入电流I B1、I B2 、I B3…。只要能使每一阶梯电压所维持的时间等于集电极回路的锯齿波扫描电压周期,如图5.2所示,就可以在T0时刻扫描出I C0=Φ(I B0, V CE)曲线,在T1时刻扫描出I C1=Φ(I B1, V CE)曲线。通常阶梯电压有多少级,就可以相应地扫描出有多少根I C=Φ(I B, V CE)输出曲线。YB4812型晶体管特性图示仪是根据上述的基本工作原理而设计的。它由基极正负阶梯信号发生器,集电极正负扫描电压发生器,X轴、Y轴放大器和示波器等部分构成,其组成框图如5.3所示,详细调节情况可参考附录。

图5.3 图示仪的组成框图

三、实验仪器与设备

1、实验设备:YB4812晶体管特性图示仪;

2、实验样品:具体型号规格见表2。

表5.1 测试样品参数表

四、实验内容与步骤

描述晶体管的参数很多,双极型晶体管直流参数的测试主要包括:输出特性曲线、反向特性测试、直流电流增益。

1.三极管输出特性曲线和β值的测量

(1)输出特性曲线

基极电流I B一定时,晶体三极管的I C和U CE之间的关系曲线叫做输出特性曲线。如图4、图5所示。曲线以I C(mA)为纵坐标,以U CE(V)为横坐标给出,I B为参变量。图上的点表示了晶体管工作时I B、U CE、I C三者的关系,即决定了晶体三极管的工作状态。从曲线上可以看出,晶体管的工作状态可分成三个区域。饱和区:U CE很小,I C很大。集电极和发射极饱和导通,好像被短路了一样。这时的U CE称作饱和压降。此时晶体管的发射结、集电结都处于正向偏置。放大区:在此区域中I B的很小变化就可引起I C的较大变化,晶体管工作在这一区域才有放大作用。在此区域I C几乎不受U CE控制,曲线也较为平直,此时管子的发射结处于正向偏置,集电结处于反向偏置。截止区:I B=0,I C极小,集电极和发射极好像断路(称截止),管子的发射结、集电结都处于反向偏置。

图5.4 理论输出特性图5.5 实测输出特性

(2)直流电流增益

共发射极电路直流电流增益的定义如下:β≈ΔI C/ΔI B|VCE=常数

①3DK2:以NPN型3DK2晶体管为例,查表2得知3DK2 β的测试条件为V CE =20V、

I C=10mA。将光点移至荧光屏的左下角作坐标零点。

具体调节方式:

峰值电压范围0~10V,Y轴集电极电流1 mA /度,X轴集电极电压0.5V/度,显示极性“+”,极性“+”,扫描电压“+”,功耗电阻250Ω,幅度/级10μA,管脚:E-B-C(型号正面从左至右)。

逐渐加大峰值电压就能在显示屏上看到一簇特性曲线,读出X轴集电极电压V CE=1V 时最上面一条曲线(每条曲线为10μA,最下面一条I B=0不计在内)I B值和Y轴I C值,可得β的值。为了便于读数,可将X轴的“伏/度”开关由原来的“集电极电压U C”改置“基极电

流I B”,就得到I C~I B曲线,其曲线斜率就是 。所得曲线称为电流传输特性曲线。

PNP型三极管β值的测量方法同上,只需改变扫描电压极性、阶梯信号极性、并把光点移至荧光屏右上角即可。

②3DG6

具体调节方式:

峰值电压范围0~10V,Y轴集电极电流1 mA /度,X轴集电极电压0.5V/度,显示极性“+”,极性“+”,扫描电压“+”,功耗电阻250Ω,幅度/级0.2mA,管脚:E-B-C(型号正面从左至右)。

③2N2907(PNP)

具体调节方式:

峰值电压范围0~10V,Y轴集电极电流2 mA /度,X轴集电极电压1V/度,显示极性“+”,极性“-”,扫描电压“-”,功耗电阻250Ω,幅度/级10μA,管脚:E-B-C(型号正面从左至右)。

④2N222

具体调节方式:

峰值电压范围0~10V,Y轴集电极电流2 mA /度,X轴集电极电压1V/度,显示极性“+”,极性“+”,扫描电压“+”,功耗电阻250Ω,幅度/级10μA,管脚:E-B-C(型号背面从左至右)。

2.三极管击穿电压的测试

以NPN型3DK2晶体管为例,测试时,仪器部件的置位详见表3。

被测管按图3的接法,逐步调高“峰值电压”,X轴的偏移量为对应的BV CEO值、BV CEO 值及BV EBO值。注:扫描电压极性“-”。

PNP型晶体管的测试方法与NPN型晶体管的测试方法相似。

将晶体管按规定的引脚插入之后,逐渐加大反向峰值电压,即可观察到晶体管反向伏-安特性曲线。当反向电压增加到某一数值之后,反向电流迅速增大,这就是击穿现象。通常规定晶体管两级之间加上反向电压,当反向漏电流达到某一规定值时所对应的电压值即为反响击穿电压。

晶体管的反向漏电流和反向击穿电压有三种情况:

(1)BV CBO:E极开路时C-B之间的反向击穿电压;

(2)BV EBO:C级开路时E-B之间的反向击穿电压;

(3)BV CEO:B级开路时C-E之间的反向击穿电压。

根据这些参数的定义,测试时分别将晶体管C、B级,E、B级和C、E级插入图示仪上的插孔C、E,然后加上反向电压,就可进行测量。测试V(BR)CEO时,也可将晶体管E、B、C同时和图示仪连接,将基极阶梯信号选用“零电流”,在C、E级同时和图示仪连接,将基极阶梯信号选用“零电流”,在C、E极之间加上反向电压进行测量。

表5.2 三极管反向击穿测试管脚接法

3、实验步骤

(1)开启电源,预热5分钟,调节仪器“辉度” 、“聚焦” 、“辅助聚焦”等旋纽使荧光屏上的线条明亮清晰,然后调整图示仪(具体调整方法见附录);

(2)根据待测管的类型(NPN或PNP)及参数测试条件,调整好光点坐标,将待测管的C、B、E按规定进行连接插入相应的位置。根据集电极基极的极性将测试选择开关置于NPN(此时集电极电压,基极电压均为正)或(PNP此时集电极电压,基极电压均为负)并将测试状态开关置于常态;

(3)将Y电流/度置于I C合适档级,X电压/度置于U C合适档级;

(4)选择合适的阶梯幅度/级开关旋至电流/级较小档级,再逐渐加大至要求值;

(5)选择合适的功耗限制电阻,电阻值的确定可接负载的要求或保护被测管的要求进行选择;

(6)参考表5.1所示的测试条件进行测试。

(7)根据曲线水平和垂直坐标的刻度,从曲线上读取数据。为了减少测试误差,同一个数据要多读几次,取其平均值。对所显示的I B-I C曲线(波形)进行观察记录,读取数据,

并计算β值:

β≈ΔI C/ΔI B数(1.1)

?I C=示波管刻度×档次读数(1.2)

?I B=幅度/级×级数(1.3)(8)试验结束后,应将“峰值电压”调回零值,再关掉电源。

五、使用前的注意事项

1.特别要了解被测晶体管的集电极最大允许耗散功率P CM,集电极对其它极的最大反向击穿电压如V(BR)CEO、V(BR)CBO、V(BR)CER,集电极最大允许电流I CM等主要指标;

2.在测试前首先要将极性与被测管所需的极性相同即可选择PNP或NPN的开关置于规定位置;

3.将集电极电压输出按至其输出电压不应超过被测管允许的集电极电压,同时将峰值电压旋至零,输出电压按至合适的档级并将功耗限制电阻置于一定的阻值,同时将X、Y偏转开关置于合适的档级,此档级以不超过上述几个主要直流参数为原则;

4.对被测管进行必要的结算,以选择合格的X阶梯电流或电压,此结逄的原则以不超过被测管的集电极最大允许耗损功率;

5.在进行I CM的测试时一般采用单次阶梯为宜,以免被测管的电流击穿;

6.在进行I C或I CM测试中应根据集电极电压的实际情况,不应超过本仪器规定的最大电流,具体数据列表1如下:

表5.3 电压档位对照表

在进行50A(10A)档级时当实际测试电流超过20A时以脉冲阶梯为宜。

六、思考题

1.“功耗电阻”在测试中起什么作用?应根据什么来选取?

2.为保证测试管的安全,在测试中应注意哪些事项?

3.从晶体管结构、材料、器件原理及工艺方面试对各种三极管测试结果的差异性进行分析。

七、附录:图示仪的调整方法

1.集电极电源极性按钮,极性可按面板指示选择。

2.集电极峰值电压保险丝:1.5A。

3.峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之间连续可调,面板上的标称值是近似值,参考用。

4.功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。

5.峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。

当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。

6.电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。

7.辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。

8.电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。

9.电源指示:接通电源时灯亮。

10.聚焦旋钮:调节旋钮可使光迹最清晰。

11.荧光屏幕:示波管屏幕,外有座标刻度片。

12.辅助聚焦:与聚焦旋钮配合使用。

13.Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。

14.电流/度×0.1倍率指示灯:灯亮时,仪器进入电流/度×0.1倍工作状态。

15.垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡IC标值×0.1,同时指示灯14亮.

16.Y轴增益:校正Y轴增益。

17.X轴增益:校正X轴增益。

18.显示开关:分转换、接地、校准三挡,其作用是:

⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。

⑵接地:放大器输入接地,表示输入为零的基准点。

⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。

19.X轴移位:调节光迹在水平方向的移位。

20.X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。

21.“级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。

22.调零旋钮:测试前,应首先调整阶梯信号的起始级零电平的位置。当荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键“零电压”,观察光点停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。

23.阶梯信号选择开关:可以调节每级电流大小注入被测管的基极,作为测试各种特性曲线的基极信号源,共22挡。一般选用基极电流/级,当测试场效应管时选用基极源电压/级。

24.串联电阻开关:当阶梯信号选择开关置于电压/级的位置时,串联电阻将串联在被测管的输入电路中。

25、重复--关按键:弹出为重复,阶梯信号重复出现;按下为关,阶梯信号处于待触发状态。

26、阶梯信号待触发指示灯:重复按键按下时灯亮,阶梯信号进入待触发状态。

27、单簇按键开关:单簇的按动其作用是使预先调整好的电压(电流)/级,出现一次阶梯信号后回到等待触发位置,因此可利用它瞬间作用的特性来观察被测管的各种极限特性。

28.极性按键:极性的选择取决于被测管的特性。

29.测试选择按键:

⑴“左”、“右”、“二簇”:可以在测试时任选左右两个被测管的特性,当置于“二簇”时,即通过电子开关自动地交替显示左右二簇特性曲线,此时“级/簇”应置适当位置,以利于观察。二簇特性曲线比较时,请不要误按单簇按键。

⑵“零电压”键:按下此键用于调整阶梯信号的起始级在零电平的位置,见(22)项。

⑶“零电流”键:按下此键时被测管的基极处于开路状态,即能测量ICEO特性。30.二簇移位旋钮:在二簇显示时,可改变右簇曲线的位置,更方便于配对晶体管各种参数的比较。

31.Y轴信号输入:Y轴选择开关置外接时,Y轴信号由此插座输入。

32.X轴信号输入:X轴选择开关置外接时,X轴信号由此插座输入。

XJ4810型半导体管特性图示仪测试使用说明

晶体管特性图示仪的使用 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 7.1 XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特

性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。 9. 电源指示:接通电源时灯亮。 10. 聚焦旋钮:调节旋钮可使光迹最清晰。 11. 荧光屏幕:示波管屏幕,外有座标刻度片。 12. 辅助聚焦:与聚焦旋钮配合使用。 13. Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。 14. 电流/度×0.1倍率指示灯:灯亮时,仪器进入电流/度×0.1倍工作状态。 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡IC标值×0.1,同时指示灯14亮. 16. Y轴增益:校正Y轴增益。 17. X轴增益:校正X轴增益。 18.显示开关:分转换、接地、校准三挡,其作用是: ⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。 ⑵接地:放大器输入接地,表示输入为零的基准点。 ⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。 19. X轴移位:调节光迹在水平方向的移位。 20. X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。 21. “级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。 22. 调零旋钮:测试前,应首先调整阶梯信号的起始级零电平的位置。当荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键“零电压”,观察光点停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。

XJ4810晶体管特性图示仪 说明书

XJ4810晶体管特性图示仪说明书 晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。 图A-23 XJ4810型半导体管特性图示仪 7.1 XJ4810型晶体管特性图示仪面板功能介绍 XJ4810型晶体管特性图示仪面板如图A-23所示: 1. 集电极电源极性按钮,极性可按面板指示选择。 2. 集电极峰值电压保险丝:1.5A。 3. 峰值电压%:峰值电压可在0~10V、0~50V、0~100V、0~500V之连续可调,面板上的标称值是近似值,参考用。 4. 功耗限制电阻:它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。 AC挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。 6. 电容平衡:由于集电极电流输出端对地存在各种杂散电容,都将形成电容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。 7. 辅助电容平衡:是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。 8. 电源开关及辉度调节:旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。 9. 电源指示:接通电源时灯亮。 10. 聚焦旋钮:调节旋钮可使光迹最清晰。 11. 荧光屏幕:示波管屏幕,外有座标刻度片。 12. 辅助聚焦:与聚焦旋钮配合使用。 13. Y轴选择(电流/度)开关:具有22挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。 14. 电流/度×0.1倍率指示灯:灯亮时,仪器进入电流/度×0.1倍工作状态。 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大10倍,电流/度各挡I C标值×0.1,同时指示灯14亮. 16. Y轴增益:校正Y轴增益。 17. X轴增益:校正X轴增益。 18.显示开关:分转换、接地、校准三挡,其作用是: ⑴转换:使图像在Ⅰ、Ⅲ象限内相互转换,便于由NPN管转测PNP管时简化测试操作。 ⑵接地:放大器输入接地,表示输入为零的基准点。 ⑶校准:按下校准键,光点在X、Y轴方向移动的距离刚好为10度,以达到10度校正目的。 19. X轴移位:调节光迹在水平方向的移位。 20. X轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共17挡。 21. “级/簇”调节:在0~10的范围内可连续调节阶梯信号的级数。 22. 调零旋钮:测试前,应首先调整阶梯信号的起始级零电平的位置。当荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键“零电压”,观察光点停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。 23. 阶梯信号选择开关:可以调节每级电流大小注入被测管的基极,作为测试各种特性曲线的基极信号源,共22挡。一般选用基极电流/级,当测试场效应管时选用基极源电压/级。 24. 串联电阻开关:当阶梯信号选择开关置于电压/级的位置时,串联电阻将串联在被测管的输入电路中。 25. 重复--关按键:弹出为重复,阶梯信号重复出现;按下为关,阶梯信号处于待触发状态。 26. 阶梯信号待触发指示灯:重复按键按下时灯亮,阶梯信号进入待触发状态。 27. 单簇按键开关:单簇的按动其作用是使预先调整好的电压(电流)/级,出现一次阶梯信号后回到等待触发位置,因此可利用它瞬间作用的特性来观察被

常见大中功率管三极管参数(精)

常见大中功率管三极管参数 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1402 1500V 5A 120W * * NPN 2SD1399 1500V 6A 60W * * NPN 2SD1344 1500V 6A 50W * * NPN 2SD1343 1500V 6A 50W * * NPN 2SD1342 1500V 5A 50W * * NPN 2SD1941 1500V 6A 50W * * NPN 2SD1911 1500V 5A 50W * * NPN 2SD1341 1500V 5A 50W * * NPN 2SD1219 1500V 3A 65W * * NPN 2SD1290 1500V 3A 50W * * NPN 2SD1175 1500V 5A 100W * * NPN 2SD1174 1500V 5A 85W * * NPN 2SD1173 1500V 5A 70W * * NPN 2SD1172 1500V 5A 65W * * NPN 2SD1143 1500V 5A 65W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD1142 1500V 3.5A 50W * * NPN 2SD1016 1500V 7A 50W * * NPN 2SD995 2500V 3A 50W * * NPN 2SD994 1500V 8A 50W * * NPN 2SD957A 1500V 6A 50W * * NPN 2SD954 1500V 5A 95W * * NPN 2SD952 1500V 3A 70W * * NPN 2SD904 1500V 7A 60W * * NPN 2SD903 1500V 7A 50W * * NPN 2SD871 1500V 6A 50W * * NPN 2SD870 1500V 5A 50W * * NPN 2SD869 1500V 3.5A 50W * * NPN 2SD838 2500V 3A 50W * * NPN 2SD822 1500V 7A 50W * * NPN 2SD821 1500V 6A 50W * * NPN 晶体管型号反压Vbe0 电流Icm 功率Pcm 放大系数特征频率管子类型2SD348 1500V 7A 50W * * NPN 2SC4303A 1500V 6A 80W * * NPN 2SC4292 1500V 6A 100W * * NPN 2SC4291 1500V 5A 100W * * NPN 2SC4199A 1500V 10A 100W * * NPN 2SC3883 1500V 5A 50W * * NPN 2SC3729 1500V 5A 50W * * NPN 2SC3688 1500V 10A 150W * * NPN

晶体管的特性曲线

晶体管的特性曲线 晶体管特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线: (1) 直观地分析管子的工作状态 (2) 合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线 1.测量晶体管特性的实验线路 图1 共发射极电路 共发射极电路:发射极是输入回路、输出回路的公共端。如图1所示。 2.输入特性曲线 输入特性曲线是指当集-射极电压U CE为常数时,输入电路( 基极电路)中基极电流I B与基-射极电压U BE之间的关系曲线I B = f (U BE),如图2所示。 图2 3DG100晶体管的输入特性曲线 U CE=0V时,B、E间加正向电压,这时发射结和集电结均为正偏,相当于两个二极管正向并联的特性。 U CE≥1V时,这时集电结反偏,从发射区注入基区的电子绝大部分都漂移到

集电极,只有小部分与空穴复合形成I B。U CE>1V以后,I C增加很少,因此I B 的变化量也很少,可以忽略U CE对I B的影响,即输入特性曲线都重合。 由输入特性曲线可知,和二极管的伏安特性一样,晶体管的输入特性也有一段死区。只有在发射结外接电压大于死区电压时,晶体管才会导通,有电流I B。 晶体管死区电压:硅管0.5V,锗管0.1V。晶体管正常工作时发射结电压:NPN型硅管U BE0.6 ~ 0.7) V PNP型锗管U BE0.2 ~ 0.3) V 3.输出特性曲线 输出特性曲线是指当基极电流I B为常数时,输出电路(集电极电路)中集电极电流I C与集-射极电压U CE之间的关系曲线I C = f (U CE),如图3所示。 变化曲线,所以晶体管的输出特性曲在不同的I B下,可得出不同的I C随U CE 线是一族曲线。下面结合图4共发射极电路来进行分析。 图3 3DG100晶体管的输出特性曲线图4 共发射极电路 晶体管有三种工作状态,因而输出特性曲线分为三个工作区 (1) 放大区 在放大区I C=βI B,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。 对NPN 型管而言, 应使U BE> 0, U BC< 0,此时,U CE> U BE。 (2) 截止区I B = 0 的曲线以下的区域称为截止区。 I B = 0 时, I C = I CEO(很小)。(I CEO<0.001mA)。对NPN型硅管,当U BE<0.5V 时, 即已开始截止, 为使晶体管可靠截止, 常使U BE≤0。截止时, 集电结也处于反向偏置(U BC≤ 0),此时, I C≈0, U CE≈U CC。 (3) 饱和区当U CE< U BE时,集电结处于正向偏置(U BC> 0),晶体管工作于饱和状态。

半导体管特性图示仪的使用和晶体管参数测量

半导体管特性图示仪的使用和晶体管参数测量 一、实验目的 1、了解半导体特性图示仪的基本原理 2、学习使用半导体特性图示仪测量晶体管的特性曲线和参数。 二、预习要求 1、阅读本实验的实验原理,了解半导体图示仪的工作原理以及XJ4810 型半导体管图示仪的各旋钮作用。 2、复习晶体二极管、三极管主要参数的定义。 三、实验原理 (一)半导体特性图示仪的基本工作原理 任何一个半导体器件,使用前均应了解其性能,对于晶体三极管,只要知道其输入、输出特性曲线,就不难由曲线求出它的一系列参数,如输入、输出电阻、电流放大倍、漏电流、饱和电压、反向击穿电压等。但如何得到这两组曲线呢?最早是利用图4-1 的伏安法对晶体管进行逐点测试,而后描出曲线,逐点测试法不仅既费时又费力,而而且所得数据不能全面反映被测管的特性,在实际中,广泛采用半导体特性图示仪测量的晶体管输入、输出特性曲线。 图4-1 逐点法测试共射特性曲线的原理线路用半导体特性图示仪测量晶体管的特性曲线和各种直流参量的基本原理是用图4-2(a)中幅度随时间周期性连续变化的扫描电压UCS代替逐点法中的可调电压EC,用图4-2(b)所示的和扫描电压UCS的周期想对应的阶梯电流iB来代替逐点法中可以逐点改变基极电流的可变电压EB,将晶体管的特性曲线直接显示在示波管的荧光屏上,这样一来,荧光屏上光点位置的坐标便代替了逐点法中电压表和电流表的读数。

1、共射输出特性曲线的显示原理 当显示如图4-3 所示的NPN 型晶体管共发射极输出特性曲线时,图示仪内部和被测晶体管之间的连接方式如图4-4 所示. T是被测晶体管,基极接的是阶梯波信号源,由它产生基极阶梯电流ib 集电极扫描电压UCS直接加到示波器(图示仪中相当于示波器的部分,以下同)的X轴输入端,,经X轴放大器放大到示波管水平偏转板上集电极电流ic经取样电阻R得到与ic成正比的电压,UR=ic,R加到示波器的Y轴输入端,经Y轴放大器放大加到垂直偏转板上.子束的偏转角与偏转板上所加电压的大小成正比,所以荧光屏光点水平方向移动距离代表ic的大小,也就是说,荧光屏平面被模拟成了uce-ic 平面. 图4-4 输出特性曲线显示电路输出特性曲线的显示过程如图4-5 所示 当t=0 时, iB =0 ic=0 UCE =0 两对偏转板上的电压均为零,设此时荧光屏上光点的位置为坐标原点。在0-t1,这段时间内,集电极扫描电压UCS 处于第一个正弦半波周期。

半导体器件--用晶体管特性图示仪测量晶体管的特性参数

用晶体管特性图示仪测量晶体管的特性参数 一、 引言 晶体管在半导体器件中占有重要的地位,也是组成集成电路的基本元件。晶体管的各种特性参数可以通过专用仪器--晶体管特性图示仪进行直接测量。了解和测量实际的晶体管的各种性能参数不仅有助于掌握晶体管的工作机理,而且还可以分析造成各种器件失败的原因,晶体管特性图示仪是半导体工艺生产线上最常用的一种工艺质量检测工具。 本实验的目的是:了解晶体管特性图示仪的工作原理;学会正确使用晶体管特性图示仪;测量共发射极晶体管的输入特性、输出特性、反向击穿特性和饱和压降等直流特性。 二、晶体管特性图示仪的工作原理和基本结构 晶体管的输出特性曲线如图1所示,这是一组曲线族,对于其中任一条曲线,相当于I b =常数(即基极电流I b 不变)。曲线显示出集电极与发射极之间的电压V cc 增加时,集电极电流I c 的变化。因此,为了显示一条特性曲线,可以采用如图2所示的方法,既固定基极电流I b 为: b be b b E V I R -= (1) 图1共射晶体管输出特性曲线 图2共射晶体管接法 在集电极到发射极的回路中,接入一个锯齿波电压发生器E c 和一个小的电阻R c ,晶体管发射极接地。由于电阻R 很小,锯齿波电压实际上可以看成是加

在晶体管的集电极和发射极之间。晶体管的集电极电流从电阻R c上流过,电阻R c上的电压降就正比于I c。如果把晶体管的c、e两点接到示波管的x偏转板上,把电阻R c两端接到示波管的y偏转板上,示波器便显示出晶体管的I c随V cc变化的曲线。(为了保证测量的准确性,电阻R c应该很小)。用这种方法只能显示出一条特性曲线,因为此时晶体管的基极电流I b是固定不变的。 如果要测量整个特性曲线族,则要求基极电流I b改变。基极电流I b的改变采用阶梯变化,每一个阶梯维持的时间正好等于作用在集电极的锯齿波电压的周期,如图3所示。阶梯电压每跳一级,电流I b便增加一级。(每一级阶梯的增幅可根据不同的晶体管的做相应的调整)。 晶体管特性图示仪便是按照上述原理设计的,它包括阶梯电压发生器(供基极或发射极阶梯波)、锯齿波电压发生器(供集电极扫描电压)、x轴放大器、y 轴放大器、示波管系统等组成,其单元作用如图4所示。作用在垂直偏转板上的除I c(实际上是I c R c)外,还可以是基极电压、基极电流、外接或校正电压。由于x轴和y轴作用选择的不同,在示波器荧光屏上显示出的特性就完全不同。例如:若x轴作用为集电极电压,y轴作用选择集电极电流,得到晶体管的输出特性曲线;若x轴作用为基极电流,y轴作用选择集电极电流,得到晶体管的电流增益特性(即β特性);若y轴作用为基极电流,x轴作用是基极电流,得到晶体管的输入特性曲线。 图3 阶梯波和锯齿波信号图4 图示仪的原理方框图 三、晶体管特性图示仪的使用方法 为了不使被测晶体管和仪器损坏,在测试前必须充分了解仪器的使用方法和晶体管的规格,测试中,在调整仪器的各个选择开关和转换量时,必须注意使加于被测晶体管的电压、电流(并配合功耗电阻)从低量程漫漫提高,直到满足测量要求。

QT2晶体管图示仪使用操作方法

QT2晶体管图示仪使用操作方法 [说明书] QT2型晶体管图示仪作业指导书本文来自: 中国计量论坛作者: yilihe 查看3098 次QT2型晶体管图示仪作业指导书特别提示:由于本仪器输出扦孔可输出高压或本身带有高压,本仪器在使用前必须良好接地以及将电压级按至最小档,峰值电压逆时针旋至零。一、使用前的注意事项:1、严格按照BOM上的直流参数进行,本机可输出5KV的高压档位设定;特别要了解被测晶体管的集电极最大允许耗散功率PCM,集电极对其它极的最大反向击穿电压如BVCEO、BVCBO、BVCER,集电极最大允许电流ICM等主要指标;2、在测试前首先要将极性与被测管所需的极性相同即可选择PNP或NPN的开关置于规定位置;3、将集电极电压输出按至其输出电压不应超过被测管允许的集电极电压,同时将峰值电压旋至零,输出电压按至合适的档级并将功耗限制电阻置于一定的阻值,同时将X、Y偏转开关置于合适的档级,此档级以不超过上述几个主要直流参数为原则;4、对被测管进行必要的结算,以选择合格的X阶梯电流或电压,此结逄的原则以不超过被测管的集电极最大允许耗损功率;5、在进行ICM的测试时一般采用单次阶梯为宜,以免被测管的电流击穿;6、在进行IC或ICM测试中应根据集电极电压的实际情况,不应超过本仪器规定的最大电流,具体数据列表如下;电压档次10V 50V 100V 500V 5KV 允许最大电流50A 10A 5A 0.5A 5MA 在进行50A(10A)档级时当实际测试电流超过20A时以脉冲阶梯为宜。二、测试前的开机与调节:1、开启电源:将电源开关向右方向按动,此时白色指示灯亮,待预热十分钟后立即进行正常测试;2、调节光度聚焦、辅助聚焦及标尺亮度:将示波管会聚成一清晰的小光点,标尺亮度以能清晰满足测量要求为原则;3、Y、X移位:对Y、X档位旋钮置于中心位置,此时光点应根据PNP、NPN开关的选择处于左下方(NPN)或右上方(PNP)。再调节移位旋钮使其在左下方或右止方实线部份的零点;4、对Y、X校准:将Y、X灵敏度分别进行10度校准,其方法将Y(或X)方式开关自“I”至“校准”,此时光点或基线应有10度偏转,如超过或不到时应进行增益调节(调节W );5、阶梯调零:阶梯调零的依据即将阶梯先在示波管上显示,然后根据方放大器输入端接地所显示的位置,再调节调零电位器使其与放大器接时时重合即完成调零;调节方式前先将Y偏转放大器置于基级电流或基极源电压(即“”)档级,X偏转放大器置于UC的位置任意标级,将测试选择置于“NPN”,置于“常态”,阶梯幅度/级置于电压/级的任何档级,集电极电压置于任意档级使示波管显示电压值,此时即能调零使第一根基线与Y偏转放大器“”的重合即完成了调零步骤;6、电容性电流平衡:在要求较高电流灵敏度档级进行测量时,可对电容性电流进行平衡,平衡方式将Y偏转放大器置于较高灵敏度档级使示波管显示一电容性电流,调节电容平衡旋钮使其达到最小值即可;7、集电极电压检查:在进行测量前应检查集电极电压的输出范围,检查时将VC置于相对应档次,当发现将峰值电压顺时针方向最大时,其输出在规定值与大于10%之间即正常(用普通电压表测量结果比规定值少10%左右)。三、测试:1 ⑴、若发射极VCE-IC特性(基极信号为变量)。①根据集电极基级的极性将测试选择开关置于NPN(此时集电极电压,基极电压均为正)或(PNP(此时集电极电压,基极电压均为负)并将“”开关置于常态,如基极需要反担时可置于“侄置”;②被测管的;③将Y电流/度置于IC合适档级,X电压/度置于UC合适档级;④测试A与测试B搬向被测管连接的一边;⑤集电极电压按照要求值进行调节并使在左下方(NPN)或右上方(PNP)的零点与零刻度线重合; ⑥选择合适的阶梯幅度/级开关旋至电流/级较小档级,再逐渐加大至要求值;⑦选择合适的功耗限制电阻,电阻值的确定可接负载的要求或保护被测管的要求进行选择;⑧观察显示的曲线(波形),并进行读数记录;(2)、其发射极IB-IC特性:①根据集电极基极的极性将测试选择开关置于NPN或PNP档级,并将“”开关置于常态,如基极需要反向可置于侄置;②被测管的CBE按规定进行连接;③将Y电流/度置于IC合适档级,W电压/度置于“”的档级;④测试A与测试B搬向被测管连接的一边;⑤集电极电压按要求值与功耗限制电阻进行调节(必要时将X电压/度置于UC档级进行较精确的调节);⑥将Y。Y方式开关““调节零点位置;⑦选择合格的阶梯幅度/级开关一般置于较小档级再逐渐加大至要求值;⑧对所显示的IB-IC曲线(波形)进行观察记录,读取数据,并计算NFE 值:NFE=IC/IB IC=示波管刻度×档次读数IB=幅度/级×级数⑵、①反压特性测试及二极管特性测试:本②仪器可进行下列各种反向击穿电压测试,测试定义见有关半导体测试标准,测试接线请参见下表:VCBO集电极基极间电压(发射极开路)VEBO发射极与基极间电压(集电极开路)VCEO集电极与发射间电压(基极开路)VCER集电极与发射极间电压(基极与发射极间电阻连接)VCES集电极与发射间电压(基极与发射极短)①根据被测管的极性选择PNP、NPN的位置,是显示“PNP”位置时,集电极电压为(-)极性,当置于“NPN”位置时,集电极电压为(=)极性;②被测管的CBE接上表的连接方法进行连接;③Y偏转放大器的电流/度开关置于较灵敏档级(一般100/UA 度档级);④Q偏转放大器的电压/度置于UC合适的档级(视被测管的特性及集电极的电压输出值而定);⑤将功

(整理)常用晶体管参数表

常用晶体管参数表 索引晶体管型号反压Vbeo 电流Icm 功率Pcm 放大系数特征频率管子类型9011 50V 0.03A 0.4W * 150MHZ NPN 9012 50V 0.5A 0.6W * * PNP 9013 50V 0.5A 0.6W * * NPN 9014 50V 0.1A 0.4W * 150MHZ NPN 9015 50V 0.1A 0.4W * 150MHZ PNP 9018 30V 0.05A 0.4W * 1GHZ NPN 2N2222 60V 0.8A 0.5W 45 * NPN 2N2369 40V 0.5A 0.3W * 800MHZ NPN 2N2907 60V 0.6A 0.4W 200 * NPN 2N3055 100V 15A 115W * * NPN2N 2N3440 450V 1A 1W * * NPN 2N3773 160V 16A 150W * * NPN 2N5401 160V 0.6A 0.6W * 100MHZ PNP 2N5551 160V 0.6A 0.6W * 100MHZ NPN 2N5685 60V 50A 300W * * NPN 2N6277 180V 50A 300W * * NPN 2N6678 650V 15A 175W * * NPN 2SA 2SA1009 350V 2A 15W ** PNP 2SA1012Y 60V 5A 25W ** PNP 2SA1013R 160V 1A 0.9W * * PNP 2SA1015R 50V 0.15A 0.4W * * PNP 2SA1018 150V 0.07A 0.75W * * PNP 2SA1020 50V 2A 0.9W * * PNP 2SA1123 150V 0.05A 0.75W * * PNP 2SA1162 50V 0.15A 0.15W * * PNP 2SA1175H 50V 0.1A 0.3W * * PNP 2SA1216 180V 17A 200W * * PNP 2SA1265 140V 10A 30W ** PNP 2SA1266Y 50V 0.15A 0.4W * * PNP 2SA1295 230V 17A 200W * * PNP 2SA1299 50V 0.5A 0.3W * * PNP 2SA1300 20V 2A 0.7W * * PNP 2SA1301 200V 10A 100W * * PNP 2SA1302 200V 15A 150W * * PNP 2SA1304 150V 1.5A 25W ** PNP 2SA1309A 25V 0.1A 0.3W * * PNP 2SA1358 120V 1A 10W *120MHZ PNP 2SA1390 35V 0.5A 0.3W * * PNP 2SA1444 100V 1.5A 2W * 80MHZ PNP 2SA1494 200V 17A 200W * 20MHZ PNP 2SA1516 180V 12A 130W * 25MHZ PNP

常用场效应管和晶体管参数大全

常用场效应管和晶体管参数大全 常用场效应管和晶体管参数大全 IRFU020 50V 15A 42W * * NMOS场效应IRFPG42 1000V 4A 150W * * NMOS场效应IRFPF40 900V 4.7A 150W * * NMOS场效应IRFP9240 200V 12A 150W * * PMOS场效应IRFP9140 100V 19A 150W * * PMOS场效应IRFP460 500V 20A 250W * * NMOS场效应IRFP450 500V 14A 180W * * NMOS场效应IRFP440 500V 8A 150W * * NMOS场效应IRFP353 350V 14A 180W * * NMOS场效应IRFP350 400V 16A 180W * * NMOS场效应IRFP340 400V 10A 150W * * NMOS场效应IRFP250 200V 33A 180W * * NMOS场效应IRFP240 200V 19A 150W * * NMOS场效应IRFP150 100V 40A 180W * * NMOS场效应IRFP140 100V 30A 150W * * NMOS场效应IRFP054 60V 65A 180W * * NMOS场效应IRFI744 400V 4A 32W * * NMOS场效应IRFI730 400V 4A 32W * * NMOS场效应IRFD9120 100V 1A 1W * * NMOS场效应IRFD123 80V 1.1A 1W * * NMOS场效应IRFD120 100V 1.3A 1W * * NMOS场效应IRFD113 60V 0.8A 1W * * NMOS场效应IRFBE30 800V 2.8A 75W * * NMOS场效应IRFBC40 600V 6.2A 125W * * NMOS场效应IRFBC30 600V 3.6A 74W * * NMOS场效应IRFBC20 600V 2.5A 50W * * NMOS场效应IRFS9630 200V 6.5A 75W * * PMOS场效应IRF9630 200V 6.5A 75W * * PMOS场效应IRF9610 200V 1A 20W * * PMOS场效应IRF9541 60V 19A 125W * * PMOS场效应IRF9531 60V 12A 75W * * PMOS场效应IRF9530 100V 12A 75W * * PMOS场效应IRF840 500V 8A 125W * * NMOS场效应IRF830 500V 4.5A 75W * * NMOS场效应IRF740 400V 10A 125W * * NMOS场效应IRF730 400V 5.5A 75W * * NMOS场效应IRF720 400V 3.3A 50W * * NMOS场效应IRF640 200V 18A 125W * * NMOS场效应IRF630 200V 9A 75W * * NMOS场效应IRF610 200V 3.3A 43W * * NMOS场效应IRF541 80V 28A 150W * * NMOS场效应

QT2晶体管图示仪操作技巧

QT2晶体管图示仪操作指引 一、晶体管图示仪测三极管的调试方法: 耐压测试:500V以上的用高压档“5000V”.三极管C极接二极管测试座“+”极,E极接二极管测试座“—”极,注意:用高压档测试必须按住“测试”键不放才可以调节峰值电压..测试没有固定的档位,所有的档位都能测只是低档位测试相对准确。高档位测试误差大。 测试HFE值,以IB电流来定IC电流(即调节级族或档位,使IC电流达到规定值.)然后再计算。β=I C/IB,即:(Y轴格数×档位读数)/(级族×级族档位数值)。 1、13005 测条件:晶体管图示仪设定。 C—E极间耐压VCEO:≥400V.Y=10MA. X=100V, 功耗电阻:10K 以上,输出电压:5000V. 零电流 E—B极间耐压VEBO:≥9V .Y=1MA. X=5V, 功耗电阻:10K以上, 输出电压50V. 零电流 饱和压降VCES≥0.5V,Y=200MA ,X=200MV, 幅度/级200MA, 输出电压10V , 功耗电阻:2Ω以下. 放大陪数HFE: Y=200MA ,X=1V 幅度/级=10MA , 级/族=5 , 功耗电阻:2Ω以下. 2、13007 测条件:晶体管图示仪设定。 C—E极间耐压VCEO:≥400V. Y=10MA. X=100V, 功耗电阻:100K , 输出电压:5000V. 零电流E—B极间耐压VEBO:≥9V .Y=1MA. X=2V, 功耗电阻:10K以上, 输出电压50V. 零电流 饱和压降VCES≥0.5V,Y=500MA ,X=200MV, 幅度/级50MA, 输出电压10V , 功耗电阻:2Ω以下. 放大陪数HFE: Y=200MA ,X=1V 幅度/级=10MA , 级/族=10, 功耗电阻:2Ω以下.

JT-1型晶体管特性图示仪

3.6 JT-1型晶体管特性图示仪 JT-1型晶体管特性图示仪是一种可直接在示波管荧光屏上观察各种晶体管的特性曲线的专用仪器。通过仪器的标尺刻度可直接读被测晶体管的各项参数;它可用来测定晶体管的共集电极、共基极、共发射极的输入特性、输出特性、转换特性、α、β参数特性;可测定各种反向饱和电流I CBO、I CEO、I EB0和各种击穿电压BU CBO、BU CEO、BU EBO等;还可以测定二极管、稳压管、可控硅、隧道二极管、场效应管及数字集成电路的特性,用途广泛。 一、主要技术指标 (l)Y轴编转因数: 集电极电流范围:0.01~1000毫安/度,分十六档,误差≤±3%; 集电极电流倍率:分×2、×1、×0.l三档,误差≤±3%; 基极电压范围:0.01~0.5V/度,分六档,误差≤±3%; 基极电流或基极源电压:0.05V/度,误差≤±3%; 外接输入:0.1V/度,误差≤±3%; (2)X轴偏转因数: 集电极电压范围:0.01~20V/度,分十一档,误差≤±3%; 基极电压范围:0.01~0.5V/度,分六档,误差≤±3%; 基极电流或基极源电压:0.5V/度,误差≤±3%; 外接输入:0.1V/度,误差≤±3%。 (3)基极阶梯信号: 阶梯电流范围:0.001~200mA/度,分十七档; 阶梯电压范围:0.01~0.2V/级,分五档; 串联电阻:10Ω~22KΩ,分24档; 每族级数:4~12连续可变; 每秒级数:100或200,共3档; 阶梯作用:重复、关、单族,共三档; 极性:正、负两档; 误差≤±5%. (4)集电极扫描信号: 峰值电压:0~20V、0~200V两档,正、负连续可调; 电流容量:0~20V时为10A(平均值),0~200V时为1A(平均值); 功耗限制电阻:0~100KΩ,分17档,误差≤±5%; (5)电源:交流220V ±10%,50Hz±20Hz。 功耗:260V A. 环境温度:-10 ℃~+40℃ 相对湿度:≤80%

最新常用晶体管参数查询

常用晶体管参数查询

常用晶体管参数查询 Daten ohne Gewahr 2N109 GE-P 35V 0.15A 0.165W | 2N1304 GE-N 25V 0.3A 0.15W 10MHz 2N1305 GE-P 30V 0.3A 0.15W 5MHz | 2N1307 GE-P 30V 0.3A 0.15W B>60 2N1613 SI-N 75V 1A 0.8W 60MHz | 2N1711 SI-N 75V 1A 0.8W 70MHz 2N1893 SI-N 120V 0.5A 0.8W | 2N2102 SI-N 120V 1A 1W <120MHz 2N2148 GE-P 60V 5A 12.5W | 2N2165 SI-P 30V 50mA 0.15W 18MHz 2N2166 SI-P 15V 50mA 0.15W 10MHz | 2N2219A SI-N 40V 0.8A 0.8W 250MHz 2N2222A SI-N 40V 0.8A 0.5W 300MHz | 2N2223 2xSI-N 100V 0.5A 0.6W >50 2N2223A 2xSI-N 100V 0.5A 0.6W >50 | 2N2243A SI-N 120V 1A 0.8W 50MHz 2N2369A SI-N 40V 0.2A .36W 12/18ns | 2N2857 SI-N 30V 40mA 0.2W >1GHz 2N2894 SI-P 12V 0.2A 1.2W 60/90ns | 2N2905A SI-P 60V 0.6A 0.6W 45/100 2N2906A SI-P 60V 0.6A 0.4W 45/100 | 2N2907A SI-P 60V 0.6A 0.4W 45/100 2N2917 SI-N 45V 0.03A >60Mz | 2N2926 SI-N 25V 0.1A 0.2W 300MHz 2N2955 GE-P 40V 0.1A 0.15W 200MHz | 2N3019 SI-N 140V 1A 0.8W 100MHz 2N3053 SI-N 60V 0.7A 5W 100MHz | 2N3054 SI-N 90V 4A 25W 3MHz 2N3055 SI-N 100V 15A 115W 800kHz | 2N3055 SI-N 100V 15A 115W 800kHz 2N3055H SI-N 100V 15A 115W 800kHz | 2N3251 SI-P 50V 0.2A 0.36W 2N3375 SI-N 40V 0.5A 11.6W 500MHz | 2N3439 SI-N 450V 1A 10W 15MHz 2N3440 SI-N 300V 1A 10W 15MHz | 2N3441 SI-N 160V 3A 25W POWER

晶体管的输入输出特性曲线详解.

晶体管的输入输出特性曲线详解 届别 系别 专业 班级 姓名 指导老师 二零一二年十月

晶体管的输入输出特性曲线详解 学生姓名:指导老师: 摘要:晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。 根据晶体管的结构进行分类,晶体管可以分为:NPN型晶体管和PNP 型晶体管。依据晶体管两个PN结的偏置情况,晶体管的工作状态有放大、饱和、截止和倒置四种。晶体管的性能可以有三个电极之间的电压和电流关系来反映,通常称为伏安特性。 生产厂家还给出了各种管子型号的参数也能表示晶体管的性能。利用晶体管制成的放大电路的可以是把微弱的信号放大到负载所需的数值 晶体管是一种半导体器件,放大器或电控开关常用。晶体管是规范操作电脑,手机,和所有其他现代电子电路的基本构建块。由于其响应速度快,准确性,晶体管可用于各种各样的数字和模拟功能,包括放大,开关,稳压,信号调制和振荡器。晶体管可独立包装或在一个非常小的的区域,可容纳一亿或更多的晶体管集成电路的一部分。

关键字:晶体管、输入输出曲线、放大电路的静态分析和动态分析。 【Keywords】The transistor, the input/output curve, amplifying circuit static analysis and dynamic analysis. 一、晶体管的基本结构 晶体三极管,是半导体基本元器件之一,具有电流放大作用,是电子电路的核心元件。三极管是在一块半导体基片上制作两个相距很近的PN结,两个PN结把正块半导体分成三部分,中间部分是基区,两侧部分是发射区和集电区,排列方式有PNP和NPN两种,如图 1-1(a)、(b)所示。从三个区引出相应的电极,发射极,基极,集电极,各用“E”(或“e”)、“B”(或“b”)、“C”(或“c”)表示。 发射区和基区之间的PN结叫发射结,集电区和基区之间的PN结叫集电极。基区很薄,而发射区较厚,杂质浓度大,PNP型三极管发射区"发射"的是空穴,其移动方向与电流方向一致,故发射极箭头向里;NPN型三极管发射区"发射"的是自由电子,其移动方向与电流方向相反,故发射极箭头向外。发射极箭头向外。发射极箭头指向也是PN结在正向电压下的导通方向。硅晶体三极管和锗晶体三极管都有PNP型和NPN型两种类型。当前国内生产的锗管多为PNP型(3A 系列),硅管多为NPN型(3D系列)。

用晶体管特性图示仪测试晶体管主要参数

用晶体管特性图示仪测试晶体管主要参数 一.实验目的 掌握晶体管特性图示仪测试晶体管的特性和参数的方法。 二.实验设备 (1)XJ4810晶体管特性图示仪 (2)QT 2晶体管图示仪 (3)3DG6A 3DJ7B 3DG4 三.实验原理 1.双极型晶体(以3DG4NPN 管为例)输入特性和输出特性的测试原理 (1)输入特性曲线和输入电阻i R ,在共射晶体管电路中,输出交流短路时,输入电压和输入电流之比为i R ,即 =常数CE V B BE i I V R ??= (1.1) 它是共射晶体管输入特性曲线斜率的倒数。例如需测3DG 4在V CE =10时某一作点Q 的R 值,晶体管接法如图1.1所示。各旋扭位置为 峰值电压% 80% 峰值电压范围 0~10V 功耗电阻 50Ω X 轴作用 基极电压1V/度 Y 轴作用 阶梯选择 μ20A/极 级/簇 10 串联电阻 10K 集电极极性 正(+) 把X 轴集电极电压置于1V/度,调峰值电压为10V ,然后X 轴作用扳回基极电压0.1V/度,即得CE V =10V 时的输入特性曲线。这样可测得图1.2:

V CE V B BE i I V R 10=??= (1.2) 根据测得的值计算出i R 的值 图1.1晶体管接法 图1.2输入特性曲线 (2)输出特性曲线、转移特性曲线和β、FE h 在共射电路中,输出交流短路时,输出电流和输入电流增量之比为共射晶体管交流电流放大系数β。在共射电路中,输出端短路时,输出电流和输入电流之比为共射晶体管直流电流放大系数FE h 。晶体管接法如图1.1所示。旋扭位置如下: 峰值电压范围 10V 峰值电压% 80% 功耗电阻 250Ω X 轴 集电极电压1V/度 Y 轴 集电极电流2mA/度 阶梯选择 μ20A/度 集电极极性 正(+) 得到图1.3所示共射晶体管输出特性曲线,由输出特性曲线上读出V V CE 5=时第2、4、6三根曲线对应的C I ,B I 计算出交流放大系数B C I I ??=β (1.3) FE h >β主要是因为基区表面复合等原因导致小电流β较小造成的,β、FE h 也可用共射晶体管的转移特性(图1.4)进行测量只要将上述的X 轴作用开关拨到“基极电流或基极源电压”即得到共射晶体管的转移特性。这种曲线可直接观察β的线性好坏。 C B E

三极管特性曲线分析

目录 一、三极管特性曲线分析 (1) 1.1三极管结构 (1) 1.2 三极管输入特性曲线 (2) 1.3 三极管输出特性曲线 (2) 二、三极管应用举例 (3) 2.1 三极管在放大状态下的应用 (3) 2.2 三极管在开关状态下的应用 (3) 三、线性电路和非线性电路 (4) 3.1线性电路理论 (4) 3.2 非线性电路理论 (5) 3.3 线性电路的分析应用举例 (6) 3.4 非线性电路的分析应用举例 (7) 四、数字电路和模拟电路 (8) 4.1 数字电路 (8) 4.2 模拟电路 (8) 4.3数字电路和模拟电路区别与联系 (9) 五、总结与体会 (9) 六、参考文献 (10)

三极管输入输出曲线分析 ——谈线性电路与非线性电路 摘要:三极管是电路分析中非常重要的一个元器件。本文主要分析了三极管输入输出特性曲线,介绍了线性电路和非线性电路的理论在分析工具的不同之处。同时,线性电路和非线性电路在分析电路时各有着不同的用处。最后,介绍了数字电路及模拟电路区别与联系。 关键词:三极管;数字电子技术;模拟电子技术 一、三极管特性曲线分析 1.1三极管结构 双极结型三极管是由两个PN结背靠背构成。三极管按结构不同一般可分为PNP和NPN 两种。 图1-1 三极管示意图及符号 PNP型三极管和NPN型三极管具有几乎等同的电流放大特性,以下讨论主要介绍NPN 型三极管工作原理。NPN型三极管其两边各位一块N型半导体,中间为一块很薄的P型半导体。这三个区域分别为发射区、集电区和基区,从三极管的三个区各引出一个电极,相应的称为发射极(E)、集电极(C)和基极(B)。虽然发射区和集电区都是N型半导体,但是发射区的掺杂浓度比集电区的掺杂浓度要高得多。另外在几何尺寸上,集电区的面积比发射区的面积要大。由此可见,发射区和集电区是不对称的。 双极型三极管有三个电极:发射极(E)、集电极(C)、基极(B),其中两个可以作为输入,两个可以作为输出,这样就有一个电极是公共电极。三种接法就有三种组态:共发射极接法(CE)、共基极接法(CC)、共集电极接法(CB)。这里只以共射接法为例分析其输入

相关文档
最新文档