数字控制器的直接设计方法

实现直接数字频率合成器的三种技术方案

实现直接数字频率合成器的三种技术方 案 [日期:2004-12-7] 来源:电子技术应用作者:杭州商学院信息 与电子工程学院姜田华 [字体:大中 小] 摘要:讨论了DDS的工作原理及性能性点,介绍了目前实现DDS常用的三种技术方案,并对各方案的特点作了简单的说明。 关键词:直接数字频率合成器相位累加器信号源现场可编程门限列 1971年,美国学者J.Tierney等人撰写的“A Digital Frequency Synthesizer”-文首次提出了以全数字技术,从相位概念出发直接合成所需波形的一种新给成原理。限于当时的技术和器件产,它的性牟指标尚不能与已有的技术盯比,故未受到重视。近1年间,随着微电子技术的迅速发展,直接数字频率合成器(Direct Digital Frequency Synthesis简称DDS或DDFS)得到了飞速的发展,它以有别于其它频率合成方法的优越性能和特点成为现代频率合成技术中的姣姣者。具体体现在相对带宽宽、频率转换时间短、频率分辨率高、输出相位连续、可产生宽带正交信号及其他多种调制信号、可编程和全数字化、控制灵活方便等方面,并具有极高的性价比。 1 DDS基本原理及性能特点 DDS的基本大批量是利用采样定量,通过查表法产生波形。DDS的结构有很多种,其基本的电路原理可用图1来表示。 相位累加器由N位加法器与N位累加寄存器级联构成。每来一个时钟脉冲fs,加法器将控制字 k与累加寄存器输出的累加相位数据相加,把相加后的结果送到累加寄存器的数据输入端,以使加法器在下一个时钟脉冲的作用下继续与频率控制字相加。这样,相位累加器在时钟作用下,不断对频率控制字进行线性相位加累加。由此可以看出,相位累加器在每一个中输入时,把频率控制字累加一次,相位累加器输出的数据就是合成信号的相位,相位累加器的出频率就是DDS输出的信号频率。 用相位累加器输出的数据作为波形存储器(ROM)的相位取样地址。这样就可把存储在波形存储器内的波形抽样值(二进制编码)经查找表查出,完成相位到幅值转换。波形存储器的输出送到D/A转换器,D/A转换器将数字量形式的波形幅值转换成所要求合成频率的模拟量形式信号。低通滤波器用于滤除不需要的取样分量,以便输出频谱纯净的正弦波信号。

数字波形合成器概论

电子技术课程设计课题名称:数字波形合成器的设计

1.实验目的 1.1 掌握数字波形合成器的基本设计方法和整体电路实现; 1.2 熟悉各功能模块单元电路的具体设计方法和工作原理(脉冲发生器、分频器、 数字模拟转换以及低通滤波器)。 1.3 进一步熟悉电子电路的设计方法。 1.4 进一步熟悉电路设计过程中EDA方法以及各种电子器件的使用方法。 2. 实验要求 2.1 设计一个具有高频率稳定度和高相位稳定度的两相正弦信号源。 2.2 两相正弦信号频率 f=400Hz。 2.3 两相信号 A、 B 之间相位差 90°。 2.4 幅值=5V±0.2V。 3. 实验仪器、主要元器件 3.1 振荡电路:NE555*1;电阻 1kΩ*1,15kΩ电位器*1 ;电容 0.01uF*2 3.2 分频器: CD4013 双 D触发器*3 3.3 两路正弦加权 DAC:电阻 1MΩ*4、 370kΩ*4、 270kΩ*4、 135kΩ*2、 68kΩ*2; uA741*2 3.4两路 LPF: 电阻 91k*4;电容 2200pF*2、 8800pF*2;uA741*2 3.5 其它必要设备或元器件:直流稳压电源;导线若干;示波器;万用表;镊子;剥线钳; 面包板; 4. 课题分析及方案论证 4.1 课题分析 在某些场合对于信号的频率、相位以及失真度要求较高。例如,在精密陀螺测试中,对于 400Hz 三相正弦电源的这些参数要求就很严格。如果这些指标不满足,将会使陀螺角动量变化,电动机升温,产生干扰力矩,从而影响电动机的正常工作和测试。 课题的实现方案有多种,采用石英晶体振荡器、分频器、 D/A 转换器构成的数字波形合成方案,是实现高频率和相位稳定性的一种较好方案,由于采用了具有较高频率稳定性的石英晶体和数字合成技术,因此使系统精度高,功能强,成本低,体积小,容易实现技术指标的要求。 4.2 方案论证 数字波形的合成原理简单,从理论上说,这个方法可以合成任意波形,这里要合成正弦波。假设要合成的正弦波频率为 f、幅值为Vm,首先把它的一个周期分为 N 等分,用具有N 个阶梯的正弦波来逼近所要求的正弦波,N 越大,其逼近程度越好,但同时电路实现也越复杂。所以要综合考虑这两方面的因素。根据技术指标的要求,合理选择N值。 数字波形合成器的首要任务就是合成这种阶梯波,然后通过 LPF 把其中的高次谐波分量滤除,就获得了所需正弦波。脉冲发生器的振荡频率 F 与正弦波的频率 f 的关系为F=Nf。 其中, N 为分频器的分频系数(或称计数器的有效状态)。可见分频器的输出频率与正弦波的频率相等,都是f=F/N 。 分频器的 N 个有效状态与正弦波的N等分对应,也就是与阶梯波的 N 个阶梯对应,

信号波形合成

信号波形合成设计报告 一、设计要求: 1、 方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz 、30kHz 和50KHz 的正弦波信号,这三种种信号应具有确定的相位关系 2、 制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz 和 30kHz 正弦波信号,作为基波和3次谐波,合成一个近似方波。 3、 根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的 10kHz 、30kHz 、50KHz 的正弦信号,合成一个近似的三角波形 (具体阐述设计的功能要求和指标要求) 二、方案设计: 傅里叶分析: 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和即:∑∞=++=1 0)sin cos (21)(n n n t n b t n a a t f ωω。 此方波为奇函数,它没有常数项。数学上可以证明此方波可表示为: )7sin 715sin 513sin 31(sin 4)( ++++=t t t t h t f ωωωωπ ∑∞=--=1])12sin[()1 21( 4n t n n h ωπ 同样,对于三角波也可以表示为: )7sin 7 15sin 513sin 31(sin 8)(2222 +-+-=t t t t h t f ωωωωπ ∑∞=----=1212)12sin() 12(1)1(8n n t n n h ωπ。 (写出设计的整体思路构架,画出框图,说明各部分的主要作用.) 三、设计过程 由有源振荡器产生19.2MHz 信号经可编程逻辑器件EPM7128SLC84-7产生一个

300kHz的方波,再经3路分频器,最终输出50kHz、30kHz和10kHz的方波信号。四:测试数据 1、方波产生电路:

基于FPGA的直接数字频率合成器设计

1 JANGSU UNIVERSITY OF TECHNOLOGY FPGA技术实验报告基于FPGA的直接数字频率合成器设计 学院:电气信息工程学院 专业:电子信息工程 班级: 姓名: 学号: 指导教师:戴霞娟、陈海忠 时间: 2015.9.24

1 目录 绪论.......................................................................................... 错误!未定义书签。 一、背景与意义 (2) 二、设计要求与整体设计 (2) 2.1 设计要求 (2) 2.2 数字信号发生器的系统组成 (3) 2.3 DDS技术 (3) 三、硬件电路设计及原理分析 (4) 3.1 硬件电路设计图 (4) 3.2 设计原理 (5) 四、程序模块设计、仿真结果及分析 (5) 4.1顶层模块设计 (6) 4.2分频模块设计 (6) 4.3时钟模块设计 (11) 4.4数据选择模块设计 (12) 4.5正弦波产生模块设计........................................................ 错误!未定义书签。 4.6三角波产生模块设计 (15) 4.7方波产生模块设计............................................................ 错误!未定义书签。 4.8锯齿波模块设计 (18) 五、软硬件调试 (21) 5.1正弦波 (22) 5.2锯齿波 (22) 5.3方波 (23) 5.4三角 (23) 六、调试结果说明及故障分析 (24) 七、心得体会 (24) 八、参考文献 (25) 九、附录 (25)

直接数字式频率合成器

实验八 直接数字式频率合成器(DDS )程序设计与仿真实验 1 实验目的 (1) 学习利用EDA 技术和FPGA 实现直接数字频率合成器的设计。 (2) 掌握使用Quartus Ⅱ原理图输入设计程序。 2 实验仪器 (1)GW48系列SOPC/EDA 实验开发系统 (2)配套计算机及Quartus II 软件 3 实验原理 直接数字频率合成技术,即DDS 技术,是一种新型的频率合成技术和信号产生方法。其电路系统具有较高的频率分辨率,可以实现快速的频率切换,并且在改变时能够保持相位的连续,很容易实现频率、相位和幅度的数控调制。 传统的生成正弦波的数字是利用—片ROM 和一片DAC ,再加上地址发生计数器和寄存器即可。在ROM 中,每个地址对应的单元中的内容(数据)都相应于正弦波的离散采样值,ROM 中必须包含完整的正弦波采样值,而且还要注意避免在按地址读取ROM 内容时可能引起的不连续点,避免量化噪音集中于基频的谐波上。时钟频率f clk 输入地址发生计数器和寄存器,地址计数器所选中的ROM 地址的内容被锁入寄存器,寄存器的输出经DAC 恢复成连续信号,即由各个台阶重构的正弦波,若相位精度n 比较大,则重构的正弦波经适当平滑后失真很小。当f clk 发生改变,则DAC 输出的正弦波频率就随之改变,但输出频率的改变仅决定于f clk 的改变。 为了控制输出频率更加方便,可以采用相位累加器,使输出频率正比于时钟频率和相位增量之积。图1所示为采用了相位累加方法的直接数字合成系统,把正弦波在相位上的精度定为n 位,于是分辨率相当于1/2n 。用时钟频率f P 依次读取数字相位圆周上各点,这里数字值作为地址,读出相应的ROM 中的值(正弦波的幅度),然后经DAC 重构正弦波。这里多了一个相位累加器,它的作用是在读取数字相位圆周上各点时可以每隔M 个点读一个数值,M 即力图1中的频率字。这样,DAC 输出的正弦波频率f sin 就等于“基频” f clk 1/2n 的M 倍,即DAC 输出的正弦波的频率满足下式: )2(sin n clk f M f (1) 这里,f clk 是DDS 系统的工作时钟,式(6-1-1)中的n 通常取值在24~32之间,由图1可知,

基于FPGA的数字示波器波形合成器研究

基于FPGA的数字示波器波形合成器研究 引言波形刷新率是评判数字示波器性能优劣的重要指标之一,它直接体现了示波器抓取波形细节的能力,刷新率越高意味着捕获异常的能力越强。目前国内示波器的最高波形刷新率在200000wfms/s左右,而高于200000wfms/s的基本上依赖进口。国内示波器刷新率做不高的主要原因有2个: ①波形合成技术和国际先进水平相比,差距还比较大; ②波形存储采用外部存储器。 本文通过对示波器波形合成技术的深入研究,提出一种基于FPGA的高刷新率的波形合成器,刷新率可达到400000wfms/s,该波形合成器已经成功应用在高刷新率示波器中。 1、波形三维映射模型波形数据的三维信息包括:时间,幅度和幅度命中次数。在现代DSO 中,可将多次触发后采集到的多帧数据展现在屏幕上,并通过三维映射灰度图来体现时间,幅度以及波形数据在每一个幅度上的命中次数。例如进行10次采样每次采样700个样点,那么进行三维映射时,会将这10次采样的波形进行叠加,然后将叠加后的波形数据映射到三维数据库中。 如图1所示,三维波形数据库可以看作是一个mk的二维矩阵,m表示DSO屏幕的垂直分辨率(幅度),k表示DSO的水平分辨率(时间),而矩阵中元素amk表示幅度命中次数(概率),如图所示。 为了将三维波形数据库中的信息转换为方便用户观察的显示画面,需要将幅度命中次数转换为波形灰度或颜色等级,所以波形三维映射模型实质上是一种三维波形成像技术。它直接将每次采集到得数据映射到三维数据库(灰度图),然后将灰度图以人眼可以接受的速率传送到屏幕上显示。对于图2这个mk矩阵,若其元素用c位存储,则灰度图需要的存储空间为:mk2c/8字节,国内示波器一般将这个三维数据库(灰度图)存放在外部存储器中例如SRAM,SSRAM。很明显,频繁的访问外部存储器将会大大的减小数据映射速度,降低了波形刷新率。

信号波形合成

信号波形合成实验电路 摘要:本作品主要用于非正弦信号的分解与合成实验验证,包括电源电路模块,方波信号产生模块,放大、移相、波形合成模块、测量显示模块等。通过1MHz晶振电路产生1MHz 方波信号,经计数、分频得到10kHz方波信号,利用LC并联谐振(滤波器)分离出10kHz、30kHz、50kHz正弦波信号,然后对三个正弦波信号进行放大、移相加到加法器中合成方波信号。把10kHz和30kHz正弦波信号送到减法器中合成三角波信号。三个正弦波信号的幅度通过单片机采样,由液晶屏显示出来。 关键词:方波信号,滤波器,正弦波信号,分解,合成 Signal waveform synthesis experiment circuit Abstract:This work is mainly used in the sine signal decomposition and synthetic experiment, including power circuit module, pulse signal generated module, amplification, phase and waveform synthesis module, measuring display module, etc. Through 1MHz crystals 1MHz circuit, signal by counting, pulse frequency, pulse signal 10kHz get by LC parallel resonant filter (10kHz isolated, 30kHz, 50kHz sine signals, then the three sine signals, adding to amplify the adder synthetic square-wave signal. The 10kHz and 30kHz sine signals to reduce time-multiplier synthetic triangular signal. Three sine signals by MCU, the amplitude of LCD display samples. Key words:Pulse signal,Filter,Sine signals,decomposition,Synthesis

直接数字频率合成器DDS研究设计毕业论文

直接数字频率合成器DDS研究设计毕业论文 目录 1. 引言 (1) 1.1 频率合成器的研究背景 (1) 1.2频率合成器的研究现状 (1) 2. 频率合成技术 (3) 2.1频率合成技术概述 (3) 2.2频率合成器的主要指标 (3) 2.3频率合成的基本方法 (5) 2.4 频率合成器的长期频率稳定度和相位噪声 (5) 2.4.1长期频率稳定度 (5) 2.4.2 相位噪声 (6) 2.4.3噪声来源 (7) 3. 直接频率合成(DS)技术 (8) 3.1 直接频率合成器的基本原理和组成 (8) 3.2直接频率合成器的几个主要组成电路 (9) 3.2.1混频器 (9) 3.2.2倍频器 (11) 3.2.3分频器 (12) 3.2.5石英晶体振荡器 (14) 4. 直接数字频率合成(DDS)技术 (17) 4.1 直接数字频率合成的组成及其特点 (17) 4.2 直接数字频率合成的基本原理 (19) 4.3 直接数字频率合成的相位噪声和杂散 (20) 4.3.1 直接数字频率合成的相位噪声 (20) 4.3.2 直接数字频率合成的杂散分析 (21) 4.3.3 降低杂散电平的方法 (21) 4.4 集成直接数字频率合成器的芯片介绍 (23) 5. 直接数字频率合成器的设计 (26) 5.1 DDS芯片在跳频系统中应用的总体框图 (26)

5.2 控制模块 (26) 5.2.1 AT89C51引脚说明 (26) 5.2.2 单片机外围电路设计 (28) 5.3 频率合成模块 (29) 5.3.1 AD9852的引脚说明 (29) 5.4电平转换模块 (32) 5.5低通滤波模块 (33) 5.6 放大电路 (35) 结束语 (36) 致谢 (37) 参考文献 (38)

信号波形合成实验电路(C题)

信号波形合成实验电路(C 题) 摘要:该系统由方波振荡电路产生300k 方波,经三分频和十分频,同时得到10K,30K,50K 的方波。使用TI 公司的四阶开关电容低通滤波器TLC041D ,可同时产生几路正弦信号,再经移相和加法器合成方波信号或三角波,由单片机采样峰值进行液晶显示.整个系统简易实现,性价比高。 关键字:方波振荡器 开关电容滤波器TLC041D 移相器 峰值检测 液晶显示 1. 方案设计 1.1 总体方案与系统框图 题目要求从方波中提取基波和三次谐波,五次谐波,再合成方波,为实现题目要求,本系统的各个模块如图1所示。由施密特触发器构成方波振荡电路,由简单的门电路和触发器构成分频电路,使用通用运放组成滤波,放大,移相电路合成方波或三角波。 图1 1.2 理论分析及TI 芯片选用依据 任何具有周期为T 的波函数f(t)都可以表示为三角函数所构成的级数之和,如式(1-1): ) (公式1) sin cos (21 )(1 0∑∞ =++=n n n t n b t n a a t f ωω 对于方波和三角波分别可以通过傅立叶展开,如式1-2,1-3所示: )(公式2)7sin 71 5sin 513sin 31(sin 4)( ++++= t t t t h t f ωωωωπ )(公式3)7sin 7 1 5sin 513sin 31(sin 8)(2222 +-+- = t t t t h t f ωωωωπ 结合题目要求,本系统主要需要以下器件: (1) 信号源施密特触发器CD40106产生300K 方波; (2) 300K 方波分别经分频器 得到50K ,30K ,10K 方波; (3) 滤波芯片TLC041,通用运算放大器OP 系列,以及电流监测芯片))

外文翻译---关于直接数字频率合成器

All About Direct Digital Synthesis What is Direct Digital Synthesis? Direct digital synthesis (DDS) is a method of producing an analog waveform —usually a sine wave —by generating a time-varying signal in digital form and then performing a digital-to-analog conversion. Because operations within a DDS device are primarily digital, it can offer fast switching between output frequencies, fine frequency resolution, and operation over a broad spectrum of frequencies. With advances in design and process technology, today’s DDS devices are very compact and draw little power. Why would one use a direct digital synthesizer (DDS)? Aren’t there other methods for easily generating frequencies? The ability to accurately produce and control waveforms of various frequencies and profiles has become a key requirement common to a number of industries. Whether providing agile sources of low-phase-noise variable-frequencies with good spurious performance for communications, or simply generating a frequency stimulus in industrial or biomedical test equipment applications, convenience, compactness, and low cost are important design considerations. Many possibilities for frequency generation are open to a designer, ranging from phase-locked-loop (PLL)-based techniques for very high-frequency synthesis, to dynamic programming of digital-to-analog converter (DAC) outputs to generate arbitrary waveforms at lower frequencies. But the DDS technique is rapidly gaining acceptance for solving frequency- (or waveform) generation requirements in both communications and industrial applications because single-chip IC devices can generate programmable analog output waveforms simply and with high resolution and accuracy. Furthermore, the continual improvements in both process technolog y and design have resulted in cost and power consumption levels that were previously unthinkably low. For example, the AD9833, a DDS-based programmable waveform generator (Figure 1), operating Figure 1. The AD9833-a one-chip waveform generator.

DDS 直接数字频率合成器 实验报告(DOC)

直接数字频率合成器(DDS) 实验报告 课程名称电类综合实验 实验名称直接数字频率合成器设计 实验日期2015.6.1—2013.6.4 学生专业测试计量技术及仪器 学生学号114101002268 学生姓名陈静 实验室名称基础实验楼237 教师姓名花汉兵 成绩

摘要 直接数字频率合成器(Direct Digital Frequency Synthesizer 简称DDFS 或DDS)是一种基于全数字技术,从相位概念出发直接合成所需波形的一种频率合成技术。本篇报告主要介绍设计完成直接数字频率合成器DDS的过程。其输出频率及相位均可控制,且能输出正弦波、余弦波、方波、锯齿波等五种波形,经过转换后在示波器上显示。经控制能够实现保持、清零功能。除此之外,还能同时显示出频率控制字、相位控制字和输出频率的值。实验要求分析整个电路的工作原理,并分别说明了各子模块的设计原理,依据各模块之间的逻辑关系,将各电路整合到一块,形成一个总体电路。本实验在Quartus Ⅱ环境下进行设计,并下载到SmartSOPC实验系统中进行硬件测试。最终对实验结果进行分析并总结出在实验过程中出现的问题以及提出解决方案。 关键词:Quartus Ⅱ直接数字频率合成器波形频率相位调节 Abstract The Direct Digital Frequency Synthesizer is a technology based on fully digital technique, a frequency combination technique syntheses a required waveform from concept of phase. This report introduces the design to the completion of the process of direct digital frequency synthesizer DDS. The output frequency and phase can be controlled, and can output sine, cosine, triangle wave, square wave, sawtooth wave, which are displayed on the oscilloscope after conversation. Can be achieved by the control to maintain clear function. Further can simultaneously display the value of the frequency, the phase control word and the output frequency. The experimental design in the Quartus Ⅱenvironment, the last hardware test download to SmartSOPC experimental system. The final results will be analyzed, the matter will be put forward and the settling plan can be given at last. Key words:Quartus ⅡDirect Digital Frequency Synthesizer waveform Frequency and phase adjustment

信号波形发生与合成实验

摘要 本系统主要以TL081A运放为核心,由方波发生器、滤波分频电路、移相电路、加法器电路模块组成。实现了产生多个不同频率的正弦信号与基于多个正弦波合成方波信号的电路功能。系统基本工作过程为:1kHz方波信号通过低通滤波器和带通滤波器得到按傅里叶级数展开的1kHz基波正弦波信号和3kHz三次谐波正弦波信号。而后将基波信号通过移相电路使其相位调整到与三次谐波相同,然后通过加法电路将信号合成近似的方波信号。输出波形结果表明,系统合成波形符合理论傅里叶分析结果,比较准确。正弦波及合成波的幅值测试误差小于5%,符合题目要求。 关键词:方波发生器;傅里叶级数;分频;滤波;移相 一.总体方案设计及论证 1.1题目设计任务 设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波信号。系统框图如下图所示: 具体要求: 1.2方案论证比较 方波发生电路产生1kHz方波,对其中的基波和三次谐波分量进行提取,1kHz基波可用截止频率为1kHz的巴特沃斯低通滤波器滤波得到,3kHz谐波可用中心频率设为3kHz的高Q值带通滤波器滤波得到。最后再经相位调整重新合成近似方波。 本系统中的方波发生电路是实现后续各级电路功能的基础,对频率准确度和稳定度的要求较高。方案一:555定时器组成的多谐振荡器,直接调节至1KHz左右的对称方波。此方案成本低廉,实现方便,但其稳定性容易受到外部元件的影响,在振荡频率较高时频率稳定度不够。 方案二:使用石英晶振组成高稳定度的频率参考源,并使用计数器和集成锁相环芯片构成分频/倍频环,以产生1KHz的方波。该方法产生的信号稳定度高,但需要搭建石英晶体振荡电路,并进行锁相环分频、倍频,电路较复杂。 方案三:采用基于反相输入的滞回比较器和RC电路的方波产生电路。该电路结构简单,性能稳定,主要的限制因素在于比较器的速度。结合适当的RC参数,可达到1KHZ的振荡频率。 方案选择:本系统采用方案三,此电路结构简单,产生的方波稳定性较好。 1.2.3滤波电路的选择 本系统中所需正弦波均来自于方波信号,需使用低通滤波器和带通滤波器。 方案一:使用由LC网络组成的无源高阶巴特沃斯滤波器。其通带内相应最为平坦,衰减特性和相位特性都很好,对器件的要求也不高。但其在低频范围内有体积重量大、价格昂贵和衰减大等缺点。方案二:采用实时DSP数字滤波技术,数字信号灵活性大,可以在不增加硬件成本的基础上对信号进行有效的滤波,但要进行滤波,需要A/D、D/A既有较高的转换速率,处理器具有较高的运算速度,成本高。 方案三:以集成运放为核心的有源滤波电路,结构简单,所需元件少,成本低,且电路输入阻抗高、输出阻抗低,并有专门的设计软件。 方案选择:选择方案三作为系统的基波和三次谐波滤波方案。用集成运放TL081A和RC网络组成的二阶有源滤波电路器的滤波器结构清晰,幅频响应更接近理想特性,截止频率和增益可以进行充分调节,具有较好的滤波效果,可以产生非常理想的正弦波效果。 1.2.4移相电路的选择 移相电路对分频滤波后的基波正弦信号进行移相,使基波与三次谐波相位关系满足信号合成的需要。 方案一:采用无源RC移相网络。该方案电路简单,可以完成移相,但是通过移相网络后信号有衰

数字PID控制器设计

数字PID控制器设计 实验报告 学院电子信息学院 专业电气工程及其自动化学号 姓名 指导教师杨奕飞

数字PID控制器设计报告 一.设计目的 采用增量算法实现该PID控制器。 二.设计要求 掌握PID设计方法及MATLAB设计仿真。 三.设计任务 设单位反馈系统的开环传递函数为: 设计数字PID控制器,使系统的稳态误差不大于,超调量不大于20%,调节时间不大于。采用增量算法实现该PID控制器。 四.设计原理 数字PID原理结构图 PID控制器的数学描述为:

式中,Kp为比例系数;T1为积分时间常数;T D为微分时间常数。 设u(k)为第K次采样时刻控制器的输出值,可得离散的PID表达式为:? 使用模拟控制器离散化的方法,将理想模拟PID控制器D(s)转化为响应的理想数字PID控制器D(z).采用后向差分法,得到数字控制器的脉冲传递函数。

2.增量式PID控制算法 u(k)=u(k-1)+Δu(k) 增量式PID控制系统框图 五.Matlab仿真选择数字PID参数 利用扩充临界比例带法选择数字PID参数,扩充临界比例带法是以模拟PID调节器中使用的临界比例带法为基础的一种数字PID参数

的整定方法。其整定步骤如下 1)选择合适的采样周期T:,因为Tmin<1/10 T,选择采样周期为; 2)在纯比例的作用下,给定输入阶跃变化时,逐渐加大比例作用 Kp(即减小比例带δ),直至系统出现等幅震荡,记录比例增益 Kr,及振荡周期Tr 。Kr成为临界振荡比例增益(对应的临界比 例带δ),Tr成为临界振荡周期。 在Matlab中输入如下程序? G=tf(1,[1/150,36/150,185/150,1]); p=[35:2:45]; for i=1:length(p) Gc=feedback(p(i)*G,1); step(Gc),hold on end; axis([0,3,0,]) 得到如下所示图形: 改变其中的参数P=[35:2:45]为p=[40:1:45]得到下图曲线,得Kr约为43,Tr

信号波形合成

2010年全国大学生电子设计与创新大赛 ——信号波形合成实验电路 (C题) 参赛学校:武汉理工大学华夏学院 院系:信息工程系 专业班级:电信 07 级 参赛队员: 赛前指导教师: 2010年8月

摘要: 基于电路设计的要求,信号波形合成器的电路主要由方波振荡电路、分频和滤波电路、移相电路、加法器电路模块等电路模块组成。本次信号波形合成器是基于傅里叶变换的原理设计的,选择了MAX038集成函数信号发生器,实现基准信号的产生,电路结构简单,效率快、精度高;采用TI公司的MSP430F149单片机的定时计数器完成分频功能,搭建有源RC移相电路实现移相功能,最后利用运算加法器完成信号的合成。该系统电路简单,目的明确,具有很好的实用性。 关键词:方波振荡电路 MSP430F149 移相电路加法器电路 Abstract: Based on the circuit design requirements, signal waveform synthesis of circuit consists mainly of pulse oscillator circuit, frequency and phase filter circuits, circuit and adder circuits module circuit signal waveform synthesis is based on Fourier transform principle of design, chose MAX038 integrated function signal generator, realize the benchmark signals, such as simple structure, high precision and efficiency, The company adopts the MSP430F149 TI single-chip function complete timing counter frequency, phase shifting active RC circuit implementation phase function, and finally the computational adder complete synthesis of signal. The simple circuit system, purpose, have very good practicability.

DDS数字频率合成器实验报告

DDS数字频率合成器 实验报告

摘要 直接数字频率合成器是一种基于全数字技术,从相位出发直接合成所需波形的一种频率合成技术,具有低成本、低功耗、高分辨率和快速转换时间等优点,广泛使用在电信与电子仪器领域,本次实验中,利用QuartusII软件设计一个可控制频率,相位的可输出正弦和余弦的直接数字频率合成器,要求分析整个电路的工作原理,并分别说明各子模块的设计原理,整合各电路,形成总体电路。完成调试、仿真、编程下载后,分析最终结果,总结问题并寻求解决方法 关键词:直接数字频率合成器累加控制频率相位波形 Abstract Direct digital frequency synthesizer is a full digital technology based on afrequency synthesis technology, the required waveform from the phase of thedirect synthesis, has the advantages of low cost, low power consumption, high resolution and fast switching time and other advantages, is widely used in thefield of electrical and electronic equipment, In this experiment, a design can control the frequency by using QuartusII software, the direct digital frequency synthesizer phase can output sine and cosine, the working principle of the whole circuit requirements analysis, and explains the design principle of each module, integration of the circuit, the formation of the overall circuit. Finished debugging, simulation, programming,analysis result, summarizes the problems and seek solutions Key word: Direct Digital Frequency Synthesizer accumulation control frequent phase position waveform

信号波形合成实验

信号波形合成实验电路 实验报告 组员:于兴家、俞宝智、黄艳霞指导教师:赵娟老师 目录 一、系统设计................................................................ . (2) 1、设计任务 (2) 2、基本要求 (2) 3、发挥部分 (2) 二、方案论证 (3) 1、信号发生器电路 (4) 2、分频电路 (4) 3、滤波电路 (4) 4、移相电路.............. . (4) 5、加法电路 (5) 三、整体设计 (5) 原理图:整体方案设计 (5) 1、方波发生器的设计与实现 (5) 2、分频电路的设计与实现 (5) 3、电压跟随器 (6) 4、滤波电路的设计与实现 (7) 5、移向电路的设计与实现 (7) 6、合成电路的设计与实现 (8) 7、合成电路的设计与实现 (9) 四. 实验测试与结果分析 (10) 1、测试仪器与设备 (10) 2、整机标准 (10) 3、系统试验结果与分析 (10) 五、实物图片 (10)

一、系统设计 1、任务 设计制作一个电路,能够产生多个不同频率的正弦信号,并将这些信号再合成为近似方波和其他信号。电路示意图如图1所示: 图1 电路示意图 2、要求 1.基本要求 (1)方波振荡器的信号经分频与滤波处理,同时产生频率为10kHz和30kHz的正弦波信号,这两种信号应具有确定的相位关系; (2)产生的信号波形无明显失真,幅度峰峰值分别为6V和2V; (3)制作一个由移相器和加法器构成的信号合成电路,将产生的10kHz和30kHz正弦波信号,作为基波和3次谐波,合成一个近似方波,波形幅度为5V,合成波形的形状如图2所示。 图2 利用基波和3次谐波合成的近似方波 2.发挥部分 (1)再产生50kHz的正弦信号作为5次谐波,参与信号合成,使合成的波形更接近于方波;(2)根据三角波谐波的组成关系,设计一个新的信号合成电路,将产生的10kHz、30kHz等各个正弦信号,合成一个近似的三角波形; (3)设计制作一个能对各个正弦信号的幅度进行测量和数字显示的电路,测量误差不大于±5%; (4)其他。

第4章 数字频率合成器的设计分析

第4章数字频率合成器的设计 随着通信、雷达、宇航和遥控遥测技术的不断发展,对频率源的频率稳定度、频谱纯度、频率范围和输出频率的个数提出越来越高的要求。为了提高频率稳定度,经常采用晶体振荡器等方法来解决,但它不能满足频率个数多的要求,因此,目前大量采用频率合成技术。 频率合成是通信、测量系统中常用的一种技术,它是将一个或若干个高稳定度和高准确度的参考频率经过各种处理技术生成具有同样稳定度和准确度的大量离散频率的技术。频率合成的方法很多,可分为直接式频率合成器、间接式频率合成器、直接式数字频率合成器( DDS)。直接合成法是通过倍频器、分频器、混频器对频率进行加、减、乘、除运算,得到各种所需频率。该方法频率转换时间快(小于100ns),但是体积大、功耗大,目前已基本不被采用。 锁相式频率合成器是利用锁相环(PLL)的窄带跟踪特性来得到不同的频率。该方法结构简化、便于集成,且频谱纯度高,目前使用比较广泛。 直接数字频率合成器(Direct Digital Frequency Synthesis简称:DDS)是一种全数字化的频率合成器,由相位累加器、波形ROM,D/A转换器和低通滤波器构成,DDS技术是一种新的频率合成方法,它具有频率分辨率高、频率切换速度快、频率切换时相位连续、输出相位噪声低和可以产生任意波形等优点。但合成信号频率较低、频谱不纯、输出杂散等。 这里将重点研究锁相式频率合成器。本章采用锁相环,进行频率

合成器的设计与制作。 4.1 设计任务与要求 1.设计任务:利用锁相环,进行频率合成器的设计与制作 2.设计指标: (1)要求频率合成器输出的频率范围f0为1kHz~99kHz; (2)频率间隔 f 为1kHz; (3)基准频率采用晶体振荡频率,要求用数字电路设计,频率稳定度应优于10-4; (4)数字显示频率; (5)频率调节采用计数方式。 3.设计要求: (1)要求设计出数字锁相式频率合成器的完整电路。 (2)数字锁相式频率合成器的各部分参数计算和器件选择。 (3)画出锁相式数字频率合成器的原理方框图、电路图 (4)数字锁相式频率合成器的仿真与调试。 4.制作要求: 自行装配和调试,并能发现问题解决问题。测试主要参数:包括晶体振荡器输出频率;1/M分频器输出频率;1/N可编程分频器的测试;锁相环的捕捉带和同步带测试。 5.课程设计报告要求。 写出设计与制作的全过程,附上有关资料和图纸,有心得体会。 6.答辩要求

直接数字合成器通信原理课程设计

课程设计 课程名称:通信原理课程设计 设计名称:基于400MSPS 14-Bit,1.8VCMOS直接 数字合成器AD9951 专业:班级: 姓名:学号:

400 MSPS 14-Bit, 1.8 V CMOS 直接数字合成器AD9951 Abstract: The AD9951 is a direct digital synthesizer (DDS) featuring a 14-bit DAC operating up to 400 MSPS. The AD9951 uses advanced DDS technology, coupled with an internal high speed, high performance DAC to form a digitally programmable, complete high frequency synthesizer capable of generating a frequency-agile analog output sinusoidal waveform at up to 200 MHz. The AD9951 is designed to provide fast frequency hopping and fine tuning resolution (32-bit frequency tuning word). The frequency tuning and control words are loaded into the AD9951 via a serial I/O port. The AD9951 is specified to operate over the extended industrial temperature range of –40°C to +105°C.Synchronizing Multiple AD9951s , The AD9951 product allows easy synchronization of multiple AD9951s. There are three modes of synchronization available to the user: an automatic synchronization mode, a software controlled manual synchronization mode, and a hardware controlled manual synchronization mode. Applications, Agile LO frequency synthesis, Programmable clock generators, Test and measurement equipment ,Acousto-optic device drivers. T he AD9951 supports various clock methodologies. Support for differential or single-ended input clocks and enabling of an on-chip oscillator and/or a phase-locked loop (PLL) multiplier are all controlled via user programmable bits. 摘要: AD9951是一个直接数字频率合成器(DDS),其特色是有一个工作在400MSPS的14位数/模转换器(14-bit DAC). AD9951采用了先进的DDS技术,芯片内部有一个高速的,高性能的DAC,能够形成一个数位可编程的,完整的高频合成器DDS系统,有能力产生频率达200 MHz 的模拟正弦波。AD9951可提供快速频率跳变和高精度分辩率(32位频率控制字)。频率调谐和控制字经并行口或串行口输入到AD9951。 在工业应用中,AD9951的工作温度为–40°C到+105°C。同时并联发生AD9951,存在三种可能得到的同步方式电路∶自动同步方式,软件控制手控同步方式,硬件控制手控同步方式。AD9951可以应用于本机振荡频率合成,可编程时钟发生器,测试和测量装置,声光器件驱动装置。AD9951在不同的时钟脉冲下有不同的操作方法。适合于差动或单端输入时钟脉冲并启动芯片内部振荡器及锁相环路(锁相环)放大器全部控制经由用户可编程序的位。 Key words: automatic synchronization mode software controlled manual synchronization mode a hardware controlled manual synchronization mode Support for differential input clocks Common-mode noise increased signal-to-noise ratio 关键字:自动同步方式软件控制手控同步方式 硬件控制手控同步方式差动输入时钟脉冲 共模噪声信噪比

相关文档
最新文档