生物化学考研精解名词解释答案(下)免费版

生物化学考研精解名词解释答案(下)免费版
生物化学考研精解名词解释答案(下)免费版

生化考研精解名词解释答案(下)

温馨提示:部分解释不是采自教材,如有疑问,请参考课本!

第十章糖代谢(P124-125)

1.糖酵解(glycolysis):由10步酶促反应组成的糖分解代谢途径。通过该途径,一分子葡萄糖转化为两分子丙酮酸,同时净生成两分子A TP和两分子NADH。

2.发酵(fermentation):营养分子(Eg葡萄糖)产能的厌氧降解。在乙醇发酵中,丙酮酸转化为乙醇和CO2。

3.巴斯德效应(Pasteur effect):氧存在下,酵解速度放慢的现象。

4.底物/无效循环(substrate/f utile cycle):一对酶催化的循环反应,该循环通过ATP的水解导致热能的释放。Eg葡萄糖+ATP=葡萄糖6-磷酸+ADP与葡萄糖6-磷酸+H2O=葡萄糖+P i反应组成的循环反应,其净反应实际上是ATP+H2O=ADP+Pi。

6.底物水平磷酸化(substrate-level phosphorylation):ADP或某些其它的核苷-5′—二磷酸的磷酸化是通过来自一个非核苷酸底物的磷酰基的转移实现的。这种磷酸化与电子的传递链无关。

7.糖原分解(glycogenolysis/glycogen breakdown):从糖原解聚生成葡萄糖的细胞内分解过程,由糖原磷酸化酶等催化完成。

8.糖原合成(glycogen synthesis):体内由葡萄糖合成糖原的过程。主要合成场所为肝和肌肉。包括UDPG途径和三碳途径。

9.磷酸解作用(phosphorolysis):通过在分子内引入一个无机磷酸,形成磷酸脂键而使原来键断裂的方式。实际上引入了一个磷酰基。

10.糖异生作用(gluconeogenesis):由简单的非糖前体转变为糖的过程。糖异生不是糖酵解的简单逆转。虽然由丙酮酸开始的糖异生利用了糖酵解中的七步近似平衡反应的逆反应,但还必需利用另外四步酵解中不曾出现的酶促反应,绕过酵解过程中不可逆的三个反应。

11.丙酮酸脱氢酶(pyruvate dehydrogenase complex):催化丙酮酸为乙酰CoA的不可逆反应的复合酶。有三种酶和六种辅助因子参于这一反应。它们组成如下系统:(1)丙酮酸脱氢酶(2)二氢硫辛酰胺转乙酰酶(3)二氢硫辛酸脱氢酶。

12.柠檬酸/三羧酸/Krebs循环(citric acid/tricarboxylic acid cycle):是用于乙酰CoA中的乙酰基氧化成CO2的酶促反应的循环系统,该循环的第一步是由乙酰CoA经草酰乙酸缩合形成柠檬酸。

13.回补反应(anaplerotic reaction):酶催化的,补充柠檬酸循环中间代谢物供给的反应,例如由丙酮酸羧化酶生成草酰乙酸的反应。

14.乙醛酸循环(glyoxylate cycle):是某些植物、细菌和酵母中柠檬酸循环的修改形式,通过该循环可以使乙酰CoA经草酰乙酸净生成葡萄糖。乙醛酸循环绕过了柠檬酸循环中生成两个CO2的步骤。

19.Cori/乳酸循环(Cori/lactate cycle):肌肉收缩通过糖酵解生成乳酸。肌肉内糖异生活性低,所以乳酸通过细胞膜弥散进入血液后,再入肝,在肝脏内异生为葡萄糖。葡萄糖释入血液后又被肌肉摄取,这就构成了一个循环(肌肉-肝脏-肌肉),此循环称为乳酸循环。

21.别构调节(allosteric regulation):酶分子的非催化部位与某些化合物可逆地非共价结合后发生构象的改变,进而改变酶活性状态,称为酶的别构调节。

22.共价修饰(covalent modification):酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,这一过程称为酶的共价修饰或者化学修饰。

23.Q酶/分支酶(Q/branching enzyme):催化糖原中1,6-糖苷键的形成,使直链淀粉生成支链淀粉的酶。

24.R酶/脱支酶(R/branching enzyme):催化水解葡聚糖链分支点处1,6-β-D-糖苷键的酶。

25.糊精/极限糊精(dextrin/limit dextrin):淀粉颗粒用酸长时间水解后,剩余的不水解产物,包括聚合度为10多个葡萄糖基的直链组分和聚合度为20~30个葡萄糖基的支链组分。

26.糖原合酶(glycogen synthase):糖原合酶催化的糖原合成反应不能从头开始,需要至少含4个葡萄糖残基的α-1,4-葡聚糖作为引物。糖原合酶是糖原合成过程的限速酶,其活性受共价修饰和变构的调节。

28.α-/β-淀粉酶(α-/β-amylase):能水解淀粉、糖原和有关多糖中的O-葡萄糖键的酶。

第十一章生物氧化(P134)

1.生物氧化(biological oxidation):在生物体内,从代谢物脱下的氢及电子﹐通过一系列酶促反应与氧化合成水﹐并释放能量的过程。

2.P/O比值(P/O ratio):在氧化磷酸化中,每1/2 O2被还原成ADP的摩尔数。电子从NADH 传递给O2时,P/O=3,而电子从FADH2传递给O2时,P/O=2。

3.氧化磷酸化(oxidative phosphorylation):电子从一个底物传递给分子氧的氧化或酶催化的由ADP和Pi生成ATP与磷酸化相偶联的过程。伴随电子从底物到氧的传递,ADP 被磷酸化形成ATP的酶促过程,包括底物水平磷酸化和电子传递链磷酸化。

4.呼吸链(respiratory chain):线粒体内膜上存在多种酶与辅酶组成的电子传递链,可使还原当量中的氢传递到氧生成水。

5.解偶联作用(uncoupling agent):在氧化磷酸化的偶联中,如加入使偶联消除的物质,则氧化仍能进行而不能生成ATP的过程。

6.底物水平磷酸化(substrate level phosphorylation):物质在生物氧化过程中,常生成一些含有高能键的化合物,而这些化合物可直接偶联ATP或GTP的合成,这种产生ATP 等高能分子的方式称为底物水平磷酸化。

第十二章脂代谢(P151)

1.脂肪酸的β-氧化(β-oxidation):脂肪酸氧化降解生成乙酰CoA,同时生成NADH 和FADH2,因此可产生大量的A TP。该途径因脱氢和裂解均发生在β位碳原子而得名。每一轮脂肪酸β氧化都由四步反应组成:氧化、水化、再氧化和硫解。

5.肉碱(Carnitine):作为脂酰载体可将脂酰基转运到线粒体内进行β氧化,或转运到线粒体外参与脂肪合成,是脂酸代谢的重要载体,缺乏时可致脂肪堆积乃至心肌功能障碍。

6.脂蛋白(Lipoprotein):一种与脂质复合的水溶性蛋白质。通常根据其密度分为极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白、极高密度脂蛋白和乳糜微粒。每一种脂蛋白中均含有相应的载脂蛋白。

9.酮体(Ketone body):在肝脏中由乙酰CoA合成的燃料分子(β羟基丁酸,乙酰乙酸和丙酮)。在饥饿期间酮体是包括脑在内的许多组织的燃料,酮体过多会导致中毒。

14.不饱和脂肪酸(Polyunsaturated fatty acid):分子中含有一个或多个双键的脂肪酸。其熔点较饱和脂肪酸低。

15.必需脂肪酸(Essential fatty acid):不能被细胞或机体以相应需要量合成或从其膳食前体合成,而必需由膳食供给的多不饱和脂酸。对哺乳动物而言,亚油酸与亚麻酸皆是营养必需的。

16.脂肪动员(Fat mobilization):在病理或饥饿条件下,储存在脂肪细胞中的脂肪,被脂

肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血以供其他组织氧化利用,该过程称为脂肪动员。

19.ω-氧化(ω-oxidation):是在脂肪酸远离羧基的一端(即ω碳)发生氧化,转变为二羧酸的作用。催化此反应的酶,存在于肝和肾细胞的内质网中。第一步反应是使ω位的碳加上一个羟基,羟基中的氧来自分子氧。

20.脂肪酸合酶系统(Fatty acid synthase system):是一个多酶复合体,包括酰基载体蛋白(ACP)和6 种酶,它们分别是:乙酰CoA;丙二酸单酰CoA;β-酮脂酰-ACP 合酶;β-酮脂酰-ACP 还原酶;β-羟脂酰-ACP 脱水酶;烯脂酰-ACP 还原酶,在脂肪酸的从头合成中起催化作用。

21.HGM-CoA还原酶(HGM-CoA Reductase):是合成胆固醇的限速酶,存在于小胞体膜,催化合成甲基二羟戊酸(mevalonicacid),并生成体内多种代谢产物,称之为甲基二羟戊酸途径。(HGM:β-羟-β-甲基戊二酰-CoA)

第十三章氨基酸代谢(P161)

1.尿素循环(Urea cycle):是一个由4步酶促反应组成的,可以将来自氨和天冬氨酸的氮转化为尿素的循环。尿素循环是发生在脊椎动物的肝脏中的一个代谢循环。

2.转氨基作用(aminotransferation):一个α-氨基酸的α-氨基借助转氨酶的催化作用转移到一个α-酮酸的过程。

3.联合脱氨基作用(transdeamination):转氨基与谷氨酸氧化脱氨或是嘌呤核苷酸循环联合脱氨,以满足机体排泄含氮废物的需求。

4.葡萄糖-丙氨酸循环(glucose-alanine cycle):肌肉中有一种氨基转移酶,可把丙酮酸转化为丙氨酸被释放进入血流,传送到肝脏。在肝脏中经过转氨基作用有产生丙酮酸,经葡糖异生作用形成葡萄糖有回到肌肉中,在这里又以糖酵解方式降解为丙酮酸。将以上循环称之为葡萄糖-丙氨酸循环。

5.生酮氨基酸(ketogenic amino acids):降解可生成乙酰CoA或酮体的氨基酸。

6.生糖氨基酸(glucogenic amino acids):降解可生成作为糖异生前体的分子,例如丙酮酸或柠檬酸循环中间代谢物的氨基酸。

7.苯丙酮尿症(phenylketonuria,PKU):是由于苯丙氨酸羟化酶缺乏引起苯丙氨酸堆积的代谢遗传病。缺乏丙酮酸羟化酶,苯丙氨酸只能靠转氨生成苯丙酮酸,病人尿中排出大量苯丙酮酸。苯丙酮酸堆积对神经有毒害,使智力发肓出现障碍。

8.一碳单位(one carbon unit):仅含一个碳原子的基团。如甲基、甲烯基、甲炔基、甲酰基(甲醛基)及亚胺甲基等,通常与四氢叶酸结合在一些化合物之间转移,且可互相转变。

第十四章核苷酸代谢(P170)

1.“痛风”(gout):是尿酸过量生产或尿酸排泄不充分引起的尿酸堆积而造成的,尿酸结晶堆积在软骨、软组织、肾脏以及关节处。在关节处的沉积会造成剧烈的疼痛。

5.别嘌呤醇(allopurinol):是结构上相似于黄嘌呤的化合物(在嘌呤环上第七位是C,第八位是N),对黄嘌呤氧化酶有很强的抑制作用,常用来治疗痛风。

7.核苷酸的“从头合成”途径(De novo synthesis purine nueieotide):生物体内用简单的前体物质合成生物分子的途径,例如核苷酸的从头合成。

8.核苷酸的“补救”途径(salvage pathway of nucleotide synthesis):与从头合成途径不同,生物分子,例如核苷酸,可以由该类分子降解形成的中间代谢物,如碱基等来合成,该途径是一个再循环途径。

第十五章DNA的复制、修复与重组(P182-183)\

1.复制(Replication):DNA或RNA基因组的扩增过程。在这个过程中,以亲代核酸链作为合成的模板,按照碱基配对原则合成子代分子。

2.半保留复制(Semiconservative replication):DNA复制的一种方式。每条链都可用作合成互补链的模板,合成出两分子的双链DNA,每个分子都是由一条亲代链和一条新合成的链组成。

3.半不连续复制(Semidiscontinuous replication):①DNA复制时,一条链(前导链)是连续合成的,而另一条链(后随链)的合成却是不连续的。②双链DNA合成时5'→3'端是连续合成,而3'→5'端则是不连续合成。

6.DNA聚合酶(DNA polymerase):以DNA为模板,催化核苷酸残基加到已存在的聚核苷酸3ˊ末端反应的酶。某些DNA聚合酶具有外切核酸酶的活性,可用来校正新合成的核苷酸的序列。

8.复制叉(Replication fork):Y字型结构,在复制叉处作为模板的双链DNA解旋,同是合成新的DNA链。

9.引发体(Primosome):一种多蛋白复合体,E.coli中的引发体包括催化DNA滞后链不连续DNA合成所必需的,短的RNA引物合成的引发酶,解旋酶。

10.前导链(Leading strand):与复制叉移动的方向一致,通过连续的5ˊ-3ˊ聚合合成新的DNA链。

11.滞后链(lagging strand):与复制叉移动的方向相反,通过不连续的5ˊ-3ˊ聚合合成的新的DNA链。

12.冈崎片段(Okazaki fragment):相对比较短的DNA链(大约1000核苷酸残基),是在DNA的滞后链的不连续合成期间生成的片段,这是Reiji Okazaki在DNA合成实验中添加放射性的脱氧核苷酸前体观察到的。

15.拓扑异构酶(Topoisomerase):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。

16.逆转录酶(Reverse transcriptase):一种催化以RNA为模板合成DNA的DNA聚合酶,具有RNA指导的DNA合成、水解RNA和DNA指导的DNA合成的酶活性。13.互补DNA(cDNA):通过逆转录酶以mRNA为模板合成的双链DNA。

17.错配修复(Mismatch repair):在含有错配碱基的DNA分子中,使正常核苷酸序列恢复的修复方式。这种修复方式的过程是:识别出正确的链,切除掉不正确链的部分,然后通过DNA聚合酶和DNA连接酶的作用,合成正确配对的双链DNA。

18.直接修复(Direct repair):是通过一种可连续扫描DNA,识别出损伤部位的蛋白质,将损伤部位直接修复的方法。该修复方法不用切断DNA或切除碱基。

19.切除修复(Excision repair):通过切除-修复内切酶使DNA损伤消除的修复方法。一般是切除损伤区,然后在DNA聚合酶的作用下,以露出的单链为模板合成新的互补链,最后用连接酶将缺口连接起来。

第十六章RNA的合成与加工(P198)

1.不对称转录(asymmetric transcription):DNA链是有极性的,RNA聚合酶以不对称的方式与启动子结合,使得转录只能沿着一个方向进行。对一个基因而言,互补链中只有一条链被转录成RNA。

2.δ因子(δfactor):原核生物中与RNA聚合酶核心酶相结合而特异性识别启动子选择转录起始点的一个蛋白质亚基。

3.启动子(promoter):在DNA分子中,RNA聚合酶能够结合并导致转录起始的序列。

8.核酶(ribozyme):具有像酶那样催化功能的RNA分子。

9.端粒酶(telomerase):○1一种反转录酶,由蛋白质和RNA两部分组成核糖蛋白复合体,其中RNA是一段模板序列,指导合成端粒DNA的重复序列片段。○2一种自身携带模板的逆转录酶,由RNA和蛋白质组成,RNA组分中含有一段短的模板序列与端粒DNA的重复序列互补,而其蛋白质组分具有逆转录酶活性,以RNA为模板催化端粒DNA的合成,将其加到端粒的3′端,以维持端粒长度及功能。

10.剪接(splicing):除去并连接DNA、RNA或多肽链片段,形成新的遗传重组体或改变原有的遗传结构的过程。

12.外显子(exon):既存在于最初的转录产物中,也存在于成熟的RNA分子中的核苷酸序列。术语外显子也指编码相应RNA内含子的DNA中的区域。

13.内含子(intron):在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列。术语内含子也指编码相应RNA外显子的DNA中的区域。

第十七章蛋白质的合成与转运(P213)

1.密码子(codon):mRNA(或DNA)上的三联体核苷酸残基序列,该序列编码着一个指定的氨基酸,tRNA 的反密码子与mRNA的密码子互补。

2.氨酰-tRNA(aminoacyl-tRNA):在氨基酸臂的3ˊ端的腺苷酸残基共价连接了氨基酸的tRNA分子。

3.核蛋白体循环(ribosomal cycle):指多肽链合成过程中肽链延长阶段,它由进位,成肽和转位3个步骤循环进行,直至终止阶段。

4.多核蛋白体(polyribosome):细胞内多个核蛋白体链接在同一条mRNA分子上,进行蛋白质合成。这种聚合体称为多核蛋白体。

16.肽酰转移酶(peptidyl transferase):蛋白质合成期间负责转移肽酰基和催化肽键形成的酶。

24.起始密码子(initiation factor,IF):指定蛋白质合成起始位点的密码子。最常见的起始密码子是蛋氨酸密码:AUG。

25.终止密码子(termination codon):任何tRNA分子都不能正常识别的,但可被特殊的蛋白结合并引起新合成的肽链从翻译机器上释放的密码子。存在三个终止密码子:UAG ,UAA和UGA。

30.密码的简并性(codon degeneracy):是指同一种氨基酸具有两个或更多个密码子的现象。

考研生物化学名词解释

PartI生化名解 1.肽单元(peptideunit):参与肽键的6个原子Ca1、C、O、N、H、Ca2位于同一平面,Ca1和Ca2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Ca是两个肽平面的连接点,两个肽平面可经Ca的单键进行旋转,N—Ca、Ca—C是单键,可自由旋转。 2.结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3.模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4.蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5.蛋白质的等电点(isoelectricpoint,pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6.酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考)

(完整版)食品生物化学名词解释和简答题答案

四、名词解释 1.两性离子(dipolarion) 2.米氏常数(Km值) 3.生物氧化(biological oxidation) 4.糖异生(glycogenolysis) 5.必需脂肪酸(essential fatty acid) 五、问答 1.简述蛋白质变性作用的机制。 2.DNA分子二级结构有哪些特点? 5.简述tRNA在蛋白质的生物合成中是如何起作用的? 四、名词解释 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.米氏常数(Km值):用Km值表示,是酶的一个重要参数。Km值是酶反应速度(V)达到最大反应速度(Vmax)一半时底物的浓度(单位M或mM)。米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响。 3.生物氧化:生物体内有机物质氧化而产生大量能量的过程称为生物氧化。生物氧化在细胞内进行,氧化过程消耗氧放出二氧化碳和水,所以有时也称之为“细胞呼吸”或“细胞氧化”。生物氧化包括:有机碳氧化变成CO2;底物氧化脱氢、氢及电子通过呼吸链传递、分子氧与传递的氢结成水;在有机物被氧化成CO2和H2O的同时,释放的能量使ADP转变成ATP。 4.糖异生:非糖物质(如丙酮酸乳酸甘油生糖氨基酸等)转变为葡萄糖的过程。 5.必需脂肪酸:为人体生长所必需但有不能自身合成,必须从事物中摄取的脂肪酸。在脂肪中有三种脂肪酸是人体所必需的,即亚油酸,亚麻酸,花生四烯酸。 五、问答 1. 答: 维持蛋白质空间构象稳定的作用力是次级键,此外,二硫键也起一定的作用。当某些因素破坏了这些作用力时,蛋白质的空间构象即遭到破坏,引起变性。 2.答: 按Watson-Crick模型,DNA的结构特点有:两条反相平行的多核苷酸链围绕同一中心轴互绕;碱基位于结构的内侧,而亲水的糖磷酸主链位于螺旋的外侧,通过磷酸二酯键相连,形成核酸的骨架;碱基平面与轴垂直,糖环平面则与轴平行。两条链皆为右手螺旋;双螺旋的直径为2nm,碱基堆积距离为0.34nm,两核酸之间的夹角是36°,每对螺旋由10对碱基组成;碱基按A=T,G≡C配对互补,彼此以氢键相连系。维持DNA结构稳定的力量主要是碱基堆积力;双螺旋结构表面有两条螺形凹沟,一大一小。

(完整版)生物化学名词解释大全

第一章蛋白质 1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。 2.必需氨基酸:指人体(和其它哺乳动物)自身不能合成,机体又必需,需要从饮食中获得的氨基酸。 3. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI 表示。 4.稀有氨基酸:指存在于蛋白质中的20 种常见氨基酸以外的其它罕见氨基酸,它们是正常氨基酸的衍生物。 5.非蛋白质氨基酸:指不存在于蛋白质分子中而以游离状态和结合状态存在于生物体的各种组织和细胞的氨基酸。 6.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 7.蛋白质的一级结构:指蛋白质多肽链中氨基酸的排列顺序,以及二硫键的位置。8.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 9.蛋白质的二级结构:指在蛋白质分子中的局部区域内,多肽链沿一定方向盘绕和折叠的方式。 10.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的 近似球形的组装体。 11.蛋白质的三级结构:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子结构的构象。 12.氢键:指蛋白质在二级结构的基础上借助各种次级键卷曲折叠成特定的球状分子 结构的构象。 13.蛋白质的四级结构:指多亚基蛋白质分子中各个具有三级结构的多肽链以适当方式聚合所呈现的三维结构。 14.离子键:带相反电荷的基团之间的静电引力,也称为静电键或盐键。 15.超二级结构:指蛋白质分子中相邻的二级结构单位组合在一起所形成的有规则 的、在空间上能辨认的二级结构组合体。 16.疏水键:非极性分子之间的一种弱的、非共价的相互作用。如蛋白质分子中的疏 水侧链避开水相而相互聚集而形成的作用力。 17.范德华力:中性原子之间通过瞬间静电相互作用产生的一种弱的分子间的力。当 两个原子之间的距离为它们的范德华半径之和时,范德华力最强。 18.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解 度降低并沉淀析出的现象称为盐析。 19.盐溶:在蛋白质溶液中加入少量中性盐使蛋白质溶解度增加的现象。 20.蛋白质的变性作用:蛋白质分子的天然构象遭到破坏导致其生物活性丧失的现象。蛋白质在受到光照、热、有机溶剂以及一些变性剂的作用时,次级键遭到破坏导致天然构象的破坏,但其一级结构不发生改变。 21.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并 恢复生物活性的现象。 22.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所 带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作

运动生物化学(2.1.2)--磷酸原系统供能能力的评定

第九章 训练效果的生化评定 习 题 作 业 1、名词解释 1、尿肌酐系数 2、磷酸原商 3、乳酸能商 4、乳酸阈 二、填空题 5、尿肌酐是▁▁▁的代谢产物,测定尿肌酐可评定▁▁▁▁▁▁▁▁▁的供能能力。 6、通常采用尿肌酐系数来评定运动员的▁▁▁与▁▁▁素质,男性的正常值为▁▁▁▁▁▁mg/Kg.BW,女性的正常值为▁▁▁▁▁▁mg/Kg.BW。 7、运动员从事短时间激烈运动,乳酸少成绩好,说明其▁▁▁▁▁▁能力强。 8、在测定AQ时,AQ值越高,说明▁▁▁生成少,功率输出▁▁▁,▁▁▁▁▁▁能力好。 9、在测定LQ时,LQ值越高,说明▁▁▁▁▁▁素质好。 10、运动员全力跑400米后,血乳酸仍为原来水平,而运动成绩提高,这说明运动员的水平▁▁▁。 11、乳酸阈是评定▁▁▁▁▁▁供能能力的重要指标,通常认为是▁▁▁mmol/L。但 不同个体之间存在较大的个体差异,故在评定时一般都要测定▁▁▁▁▁▁来进行评定。在测定时,常采用▁▁▁负荷法。 三、A型选择题(单选题) 12、尿肌酐是( )的代谢产物。 A、血红蛋白 B、肌红蛋白 C、磷酸肌酸 D、蛋白质 13、尿肌酐系数主要是评定( )的供能能力。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 14、尿肌酐系数主要是评定机体的( )素质。 A、力量 B、速度 C、耐力 D、力量、速度 15、正常成年男性的尿肌酐系数值是( )mg/Kg.BW。

A、10-25 B、18-32 C、15-35 D、12-16 16、正常成年女性的尿肌酐系数值是( )mg/Kg.BW。 A、10-25 B、18-32 C、15-35 D、12-16 17、10秒的极大强度运动,乳酸生成量少,而所做的总功率增加,这是( )能力提高的表现。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 18、经过一段时期的训练,血乳酸最大浓度提高了,说明其( )能力提高了。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、A+B 19、在自行车功率计上运动45秒,所做的总功率高,而血乳酸的增加值不高,说明其速度耐力素质( )。 A、较差 B、一般 C、较好 D、无法评定 20、全力跑400米后3-9分钟所测得的血乳酸值在10mmol/L左右,说明其糖酵解供能能力( )。 A、较差 B、一般 C、较好 D、无法评定 21、100米游泳的供能能力训练时,主要是发展( )供能能力。 A、磷酸原供能系统 B、糖酵解供能系统 C、有氧代谢供能系统 D、B+C 22、乳酸阈是评定( )能力的重要指标。 A、磷酸原供能 B、糖酵解供能 C、有氧代谢供能 D、A+B 23、经过一段时期的训练乳酸阈跑速提高了,说明( )能力提高。 A、磷酸原供能 B、糖酵解供能 C、有氧代谢供能 D、A+B 24、发展有氧代谢供能能力时,可采用( )训练。 A、乳酸 B、磷酸原 C、无氧阈 D、最大强度 25、发展糖酵解供能能力时,可采用( )训练。 A、低乳酸 B、磷酸原 C、无氧阈 D、最大乳酸 四、B型选择题(多选题) 26、评定磷酸原供能供能能力的常用方法有( )。 A、LQ评定法 B、AQ评定法 C、尿肌酐评定法 D、30米冲刺法 E、10秒内快速运动评定法

生物化学名词解释

生物化学:在分子水平研究生命体的化学本质及其生命活动过程中化学变化规律 自由能:自发过程中能用于作功的能量。 两性离子:在同一氨基酸分子中既有氨基正离子又有羧基负离子。 必需氨基酸:机体内不能合成,必需从外界摄取的氨基酸. 等电点:氨基酸氨基和羧基的解离度相等,氨基酸分子所带净电荷为零时溶液的pH值。 蛋白质的一级结构:蛋白质多肽链中氨基酸的排列顺序。 蛋白质的二级结构:多肽链沿着肽链主链规则或周期性折叠。 结构域:蛋白质多肽链在超二级结构基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 超二级结构:蛋白质分子中相邻的二级结构构象单元组合在一起成的有规则的在空间能辨认的二级结构组合体。 蛋白质的三级结构:在二级结构的基础上进一步以不规则的方式卷曲折叠形成的空间结构。 蛋白质的四级结构:由两条或两条以上的多肽链组成,多肽链之间以次级建相互作用形成的特定空间结构。 蛋白质的变性:在某些理化因素的作用下,维持蛋白质空间结构的次级键被破坏,空间结构发生改变而一级结构不变,使生物学活性丧失。 蛋白质的复性:变性了的蛋白质在一定条件下可以重建其天然构象,恢复生物学活性。 蛋白质的沉淀作用:蛋白质分子表面水膜被破坏,电荷被中和,蛋白质溶解度降低而沉淀。电泳:蛋白质分子在电场中泳动的现象。 沉降系数:一种蛋白质分子在单位离心力场里的沉降速度为恒定值,被称为沉降系数。 核酸的一级结构:四种核苷酸沿多核苷酸链的排列顺序。核酸的变性:高温、酸、碱等破坏核酸的氢键,使有规律的双螺旋变成无规律的“线团”。 核酸的复性:变性DNA经退火重新恢复双螺旋结构。 增色效应:变性核酸紫外吸收值增加。 减色效应:复性核酸紫外吸收值恢复原有水平。 Tm值:核酸热变性的温度,即紫外吸收值增加达最大增加量一半时的温度。

dw 生物化学名词解释

动物生物化学名词解释 氨基酸:含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳上。 必需氨基酸:指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸。 非必需氨基酸指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。 等电点:使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。 茚三酮反应: 在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。 肽键:一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。 肽:两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 蛋白质一级结构:指蛋白质中共价连接的氨基酸残基的排列顺序。层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 离子交换层析:使用带有固定的带电基团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。 透析:过小分子经半透膜扩散到水(或缓冲液)的原理将小分子与生物大分子分开的一种分离纯化技术。 凝胶过滤层析:也叫做分子排阻层析,一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。 亲和层析:利用共价连接有特异配体的层析介质分离蛋白质混合物中能特异结合配体的目的蛋白或其它分子的层析技术。 高压液相层析:使用颗粒极细的介质,在高压下分离蛋白质或其它分子混合物的层析技术。 凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。 SDS-聚丙烯酰胺凝胶电泳:在有去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAGE只是按照分子大小分离的,而不是根据分子所带的电荷和大小分离的。 等电聚焦电泳:利用特殊的一种缓冲液(两性电解质)在聚丙烯酰胺凝胶内制造一个pH梯度,电泳时每种蛋白质就将迁移到它的等电点(pI)处,即梯度中的某一pH时,就不再带有净的正或负电荷了。双向电泳:是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。 Edman降解: 从多肽链游离的N末端测定氨基酸残基的序列的过程。N末端氨基酸残基被苯异硫氰酸酯修,然后从多肽链上切下修饰的残基,再经层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 同源蛋白质: 来自不同种类生物、而序列和功能类似的蛋白质。例如血红蛋白。构型:一个有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断裂和重新形成是不会改变的。构型的改变往往使分子的光学活性发生变化。 构象:指一个分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不要求共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 肽单位:又称之肽基(peptide group),是肽链主链上的重复结构。是由参与肽键形成的氮原子和碳原子和它们的4个取代成分:羰基氧原子、酰胺氢原子和两个相邻的α-碳原子组成的一个平面单位。蛋白质二级结构: 在蛋白质分子中的局部区域内氨基酸残基的有规则的排列,常见的二级结构有α-螺旋和β-折叠。二级结构是通过骨架上的羰基和酰胺基团之间形成的氢键维持的。 蛋白质三级结构: 蛋白质分子处于它的天然折叠状态的三维构象。三级结构是在二级结构的基础上进一步盘绕、折叠形成的。三级结构主要是靠氨基酸侧链之间的疏水相互作用、氢键范德华力和盐键(静电作用力)维持的。 蛋白质四级结构: 多亚基蛋白质的三维结构。实际上是具有三级结构的多肽链(亚基)以适当方式聚合所呈现出的三维结构。 α-螺旋(α-helix):蛋白质中常见的一种二级结构,肽链主链绕假想的中心轴盘绕成螺旋状,一般都是右手螺旋结构,螺旋是靠链内氢键维持的。每个氨基酸残基(第n个)的羰基氧与多肽链C端方向的第4个残基(第n+4个)的酰胺氮形成氢键。在典型的右手α-螺旋结构中,螺距为0.54nm,每一圈含有3.6个氨基酸残基,每个残基沿着螺旋的长轴上升0.15nm。 β-折叠(β-sheet):是蛋白质中的常见的二级结构,是由伸展的多肽链组成的。折叠片的构象是通过一个肽键的羰基氧和位于同一个肽链或相邻肽链的另一个酰胺氢之间形成的氢键维持的。氢键几乎都垂直伸展的肽链,这些肽链可以是平行排列(走向都是由N到C方向);或者是反平行排列(肽链反向排列)。 β-转角: 也是多肽链中常见的二级结构,连接蛋白质分子中的二级结构(α-螺旋和β-折叠),使肽链走向改变

生物化学 名词解释问答题整理

名词解释 【肽键】 一个氨基酸的α-羧基与另一氨基酸的α-氨基发生缩合反应脱水成肽时形成的酰胺键。 【等电点(pI)】 蛋白质或两性电解质(如氨基酸)所带净电荷为零时溶液的pH, 此时蛋白质或两性电解质解离成阴/阳离子的趋势和程度相等,呈电中性,在电场中的迁移率为零。符号为pI。 【融解温度(Tm)】又称解链温度, DNA变性是在一个相当窄的温度范围内完成的,在这一范围内,紫外光吸收值到达最大值的50%时的温度称为DNA的融解温度。(最大值是完全变性,最大值的50%则是双螺旋结构失去一半)融解温度依DNA种类而定,核苷酸链越长,GC含量越高则越增高。 【增色效应】 由于DNA变性引起的光吸收增加称为增色效应,也就是变性后,DNA溶液的紫外吸收作用增强的效应。 【必需基团】 酶分子整体构象中对于酶发挥活性所必需的基团。(教材) 酶分子中氨基酸残基侧链的化学基团中,一些与酶活性密切相关的化学基团。 【活性中心】 或称“活性部位”,是指必需基团(上述)在空间结构上彼此靠近,组成具有特定空间结构的,能与底物发生特异性结合并将底物转化为产物的区域。 【米氏常数(Km)】 在酶促反应中,某一给定底物的动力学常数(由反应中每一步反应的速度常数所合成的)。根据米氏方程,其值是当酶促反应速度达到最大反应速度一半时的底物浓度。符号Km 。 【糖异生】 生物体将多种非糖物质(如氨基酸、丙酮酸、甘油)转变成糖(如葡萄糖,糖原)的过程,对维持血糖水平有重要意义。在哺乳动物中,肝与肾是糖异生的主要器官。 【糖酵解】 是指在氧气不足的条件下,葡萄糖或糖原分解为乳酸并产生少量能量的过程(生成少量ATP) 【酮体】

生物化学名词解释集锦

生物化学名词解释集锦 第一章蛋白质 1.两性离子(dipolarion) 2.必需氨基酸(essential amino acid) 3.等电点(isoelectric point,pI) 4.稀有氨基酸(rare amino acid) 5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration) 7.蛋白质的一级结构(protein primary structure) 8.构象(conformation) 9.蛋白质的二级结构(protein secondary structure) 10.结构域(domain) 11.蛋白质的三级结构(protein tertiary structure) 12.氢键(hydrogen bond) 13.蛋白质的四级结构(protein quaternary structure) 14.离子键(ionic bond) 15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond) 17.范德华力( van der Waals force) 18.盐析(salting out) 19.盐溶(salting in) 20.蛋白质的变性(denaturation) 21.蛋白质的复性(renaturation) 22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis) 24.层析(chromatography) 第二章核酸 1.单核苷酸(mononucleotide) 2.磷酸二酯键(phosphodiester bonds) 3.不对称比率(dissymmetry ratio) 4.碱基互补规律(complementary base pairing) 5.反密码子(anticodon) 6.顺反子(cistron) 7.核酸的变性与复性(denaturation、renaturation) 8.退火(annealing) 9.增色效应(hyper chromic effect) 10.减色效应(hypo chromic effect) 11.噬菌体(phage) 12.发夹结构(hairpin structure) 13.DNA 的熔解温度(melting temperature T m) 14.分子杂交(molecular hybridization) 15.环化核苷酸(cyclic nucleotide) 第三章酶与辅酶 1.米氏常数(K m 值) 2.底物专一性(substrate specificity) 3.辅基(prosthetic group) 4.单体酶(monomeric enzyme) 5.寡聚酶(oligomeric enzyme) 6.多酶体系(multienzyme system) 7.激活剂(activator) 8.抑制剂(inhibitor inhibiton) 9.变构酶(allosteric enzyme) 10.同工酶(isozyme) 11.诱导酶(induced enzyme) 12.酶原(zymogen) 13.酶的比活力(enzymatic compare energy) 14.活性中心(active center) 第四章生物氧化与氧化磷酸化 1. 生物氧化(biological oxidation) 2. 呼吸链(respiratory chain) 3. 氧化磷酸化(oxidative phosphorylation) 4. 磷氧比P/O(P/O) 5. 底物水平磷酸化(substrate level phosphorylation) 6. 能荷(energy charg 第五章糖代谢 1.糖异生(glycogenolysis) 2.Q 酶(Q-enzyme) 3.乳酸循环(lactate cycle) 4.发酵(fermentation) 5.变构调节(allosteric regulation) 6.糖酵解途径(glycolytic pathway) 7.糖的有氧氧化(aerobic oxidation) 8.肝糖原分解(glycogenolysis) 9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme) 11.糖核苷酸(sugar-nucleotide) 第六章脂类代谢

生化名词解释

生化名词解释1 1.氨基酸的等电点:当溶液在某一特定的pH值时,氨基酸以两性离子的形式存在,正电荷数与负电荷数相等,净电荷为零,在直流电场中既不向正极移动也不向负极移动,这时溶液的pH值称为该氨基酸的等电点,用pI表示。 2.肽键:是指键,是一个氨基酸的α–COOH基和另一个氨基酸的α–NH2基所形成的酰胺键。 3.多肽链:由许多氨基酸残基通过肽键彼此连接而成的链状多肽,称为多肽链。 4.肽平面:肽链主链的肽键具有双键的性质,因而不能自由旋转,使连接在肽键上的六个原子共处于一个平面上,此平面称为肽平面。 5.蛋白质的一级结构:多肽链上各种氨基酸残基的排列顺序,即氨基酸序列。 6.肽单位:多肽链上的重复结构,如Cα–CO–NH–Cα称为肽单位,每一个肽单位实际上就是一个肽平面。 7.多肽:含有三个以上的氨基酸的肽统称为多肽。 8.氨基酸残基:多肽链上的每个氨基酸,由于形成肽键而失去了一分子水,成为不完整的分子形式,这种不完整的氨基酸被称为氨基酸残基。 9.蛋白质二级结构:多肽链主链骨架中,某些肽段可以借助氢键形成有规律的构象,如α–螺旋、β–折叠和β–转角;另一些肽段则形成不规则的构象,如无规卷曲。这些多肽链主链骨架中局部的构象,就是二级结构。 10.超二级结构:在球状蛋白质分子的一级结构顺序上,相邻的二级结构常常在三维折叠中相互靠近,彼此作用,从而形成有规则的二级结构的聚合体,就是超二级结构。 11.结构域:在较大的蛋白质分子里,多肽链的三维折叠常常形成两个或多个松散连接的近似球状的三维实体,即是结构域。它是球蛋白分子三级结构的折叠单位。 12.蛋白质三级结构:指一条多肽链在二级结构(超二级结构及结构域)的基础上,进一步的盘绕、折叠,从而产生特定的空间结构。或者说三级结构是指多肽链中所有原子的空间排布。维系三级结构的力有疏水作用力、氢键、范德华力、盐键(静电引力)。另外二硫键在某些蛋白质中也起着非常重要的作用。 13.蛋白质四级结构:由相同或不同的亚基(或分子)按照一定的排布方式聚合而成的聚合体结构。它包括亚基(或分子)的种类、数目、空间排布以及相互作用。 14.二硫键:指两个硫原子之间的共价键,在蛋白质分子中二硫键对稳定蛋白质分子构象起重要作用。 15.二面角:在多肽链中,Cα碳原子刚好位于互相连接的两个肽平面的交线上。Cα碳原子上的Cα–N和Cα–C都是单键,可以绕键轴旋转,其中以

细胞生物学 名词解释

膜内在蛋白(整合蛋白):部分或全部镶嵌在细胞膜中或内外两侧的蛋白质(两性分子,水不溶性蛋白,其跨膜结构域与脂双层分子的疏水核心的相互作用,与膜结合紧密)。2010 外周膜蛋白(外在蛋白):为水溶性;靠离子键或其它弱键与膜内外表面的蛋白质分子或脂分子极性头部非共价结合,连接较松散。只要改变溶液的离子强度甚至提高温度就可以将周边蛋白分离下来。 通道蛋白:是一种带有中央水相通道的内在膜蛋白,通道蛋白所介导的被动运输不需要与溶质分子结合,横跨膜形成亲水通道,允许适宜大小的分子和带电荷的离子通过。 被动运输:物质顺浓度梯度,从高浓度一侧通过细胞膜转运到低浓度一侧,转运的动力来自于膜两侧的浓度梯度,因此不需要消耗能量。包括简单扩散和协助扩散。 主动运输active transport:物质逆浓度梯度从低浓度一侧转运到高浓度一侧的运输方式,需要载体蛋白的帮助及能量的供应。2008、2011 2017 简单扩散(自由扩散):物质顺浓度梯度自由穿越脂双层的运输方式,既不耗能也不需要膜蛋白的协助。2013 协助扩散(易化扩散):非脂溶性或亲水性分子借助细胞膜上特殊膜蛋白介导,顺浓度梯度进行的、不消耗能量的运输方式。 胞吞作用:当细胞摄取大分子或颗粒物时,首先附着于细胞表面,然后质膜内陷,从胞膜上分离下来形成细胞内小泡,其中含有被摄入物质的过程。2009 受体介导的胞吞作用:细胞通过膜上的受体介导摄入特定大分子的过程。2004 配体:即胞外信号分子,能与细胞表面受体进行特异性结合,然后经过信号转导机制变为胞内信号,从而引起一系列生物学效应。这些信号分子有化学的、物理的还有生物大分子。 受体:指位于细胞表面或细胞亚结构中一种糖蛋白或糖脂分子,能够与配体结合,从而激活一系列生化反应,产生特定的生物学效应。2004、2008、2011 受体病:由于膜受体数量增减或结构上的缺陷所引起的疾病。2005 细胞表面抗原:是镶嵌在细胞膜中的糖蛋白或糖脂,具有特定的抗原性。细胞免疫是细胞表面抗原与抗体相互识别并产生免疫应答的过程。机体通过免疫作用达到排除异己,保护自己以维持正常的生命活动。2010 细胞连接和细胞外基质 细胞连接:各种组织的细胞之间按一定的排列方式彼此接触,在相邻细胞表面形成各种连接装置,以加强细胞间的机械联系和组织牢固性,同时协调细胞间的代谢活动,这种连接结构称为细胞连接。2011 紧密连接:是一种封闭连接,主要存在于上皮细胞和内皮细胞间。主要功能是封闭上皮细胞的间隙,形成一道与外界隔离的封闭带。防止胞外物质无选择的通过间隙进入组织,或组织中物质回流到腔中,维持内环境的稳定性。 锚定连接:主要存在于上皮细胞,也存在于非上皮细胞连接处,如:皮肤、心肌等细胞之间。是一个细胞中的骨架系统成分与另一个细胞中的骨架系统成分相互连接或与胞外基质连接,根据连接的骨架成分不同可分为黏着连接和桥粒连接。14 桥粒连接:桥粒连接主要存在于上皮细胞中,也存在于心肌和脑表面的一些细胞中,形成细胞间一种坚实的连接结构,有较强抗张抗压作用。 半桥粒:是上皮细胞和基膜的连接装置,因其结构为桥粒的一半而得名。 通讯连接:是一种在相邻细胞间形成连接通道的细胞连接,能实现胞间在电信号和化学信号的通讯联系,从而完成群体细胞的合作协调。广泛存在于胚胎和成体的多种细胞之间。根据结构和功能可分为间隙连接和化学突触。 细胞外基质:是机体发育过程中,有细胞分泌到细胞外的蛋白质和多糖。他们组装形成高度水合的凝胶和纤维状网络结构。是动态对细胞产生全方位影响和控制的成分。主要包括:胶原蛋白、弹性蛋白、纤黏连蛋白、层黏连蛋白、氨基聚糖、蛋白聚糖等。2010 2017 核糖体 多聚核糖体polyribosome:当进行蛋白质生物合成时,数个单核糖体被一条mRNA分子串联在一起,成为合成蛋白质的功能团,称为多聚核糖体。2008、2013 游离核糖体:游离在细胞质中的核糖体,游离的多聚核糖体为螺旋状和花簇状的集合体,主要合成结构蛋白。 反密码子anticodon:tRNA分子反密码环上的三联体核苷酸残基序列,在翻译过程中与mRNA相应密码子互补结合。

运动生物化学 名词解释

运动生物化学:运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法,研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 1、新陈代谢:新陈代谢是生物体生命活动的基本特征之一,是生物体内物质不断地进行着的化学变化,同时伴有能量的释放和利用。包括合成代谢和分解代谢或分为物质代谢和能量代谢。 2、酶:酶是由生物细胞产生的、具有催化功能和高度专一性的蛋白质。酶具有蛋白质的所有属性,但蛋白质不都具有催化功能。 3、限速酶:限速酶是指在物质代谢过程中,某一代谢体系常需要一系列酶共同催化完成,其中某一个或几个酶活性较低,又易受某些特殊因素如激素、底物、代谢产物等调控,造成整个代谢系统受影响,因此把这些酶称为限速酶。 4、同工酶:同工酶是指催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。 5、维生素:维生素是维持人体生长发育和代谢所必需的一类小分子有机物,人体不能自身合成,必须由食物供给。 6、生物氧化:生物氧化是指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,又称为细胞呼吸。 7、氧化磷酸化:将代谢物脱下的氢,经呼吸链传递最终生成水,同时伴有ADP磷酸化合成ATP的过程。 8、底物水平磷酸化:将代谢物分子高能磷酸基团直接转移给ADP生成ATP的方式。 9、呼吸链:线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成一个连续反应的生物氧化体系结构,称为呼吸链 。1、糖酵解:糖在氧气供应不足的情况下,经细胞液中一系列酶催化作用,最后生成乳酸的过程称为糖酵解。 2、糖的有氧氧化:葡萄糖或糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量,该过程称为糖的有氧氧化。 3、三羧酸循环:在线粒体中,乙酰辅酶A与草酰乙酸缩合成柠檬酸,再经过一系列酶促反应,最后生成草酰乙酸;接着再重复上述过程,形成一个连续、不可逆的循环反应,消耗的是乙酰辅酶A,最终生成二氧化碳和水。因此循环首先生成的是具3个羧基的柠檬酸,故称为三羧酸循环。 4、糖异生作用:人体中丙酮酸、乳酸、甘油和生糖氨基酸等非糖物质在肝脏中能生成葡萄糖或糖原,这种由非糖物质转变为葡萄糖或糖原的过程称为糖异生。 1、脂肪:脂肪是由3分子脂肪酸和1分子甘油缩合形成的化合物。 2、必需脂肪酸:人体不能自身合成,必须从外界摄取以完成营养需要的脂肪酸。如亚麻酸、亚油酸等。 3、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶的催化水解释放出脂肪酸,并进入血液循环供给全身各组织摄取利用的过程,称为脂肪动员。 4、β-氧化:脂肪酸在一系列酶的催化作用下,β-碳原子被氧化成羧基,生成含2个碳原子的乙酰辅酶A和比原来少2个碳原子的脂肪酸的过程。 5、酮体:在肝脏中,脂肪酸氧化不完全,生成的乙酰辅酶A有一部分生成乙酰乙酸、β-羟丁酸、丙酮,这三种产物统称酮体。 1、氧化脱氨基作用:通过氧化脱氨酶的作用,氨基酸转变为亚氨基酸,再水解为α-酮酸和氨的过程。

生物化学名词解释

名词解释 1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示。2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布。构型的转变伴随着共价键的断裂和重新形成。 3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布。一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成。构象改变不会改变分子的光学活性。 4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体。 5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐(如硫酸氨),使蛋白质溶解度降低并沉淀析出的现象称为盐析。 6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象。 7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用。 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术。9.层析:按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。 10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在G.C(或C.G)和A.T(或T.A)之间进行,这种碱基配对的规律就称为碱基配对规律。 11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子。反密码子与密码子的方向相反。 12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因。 13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性。在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋。这个DNA 螺旋的重组过程称为“复性”。14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”。 15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收

生物化学名词解释

生物化学名解解释 1、肽单元(peptide unit):参与肽键的6个原子Cα1、C、O、N、H、Cα2位于同一平面,Cα1和Cα2在平面上所处的位置为反式构型,此同一平面上的6个原子构成了肽单元,它是蛋白质分子构象的结构单元。Cα是两个肽平面的连接点,两个肽平面可经Cα的单键进行旋转,N—Cα、Cα—C是单键,可自由旋转。 2、结构域(domain):分子量大的蛋白质三级结构常可分割成1个和数个球状或纤维状的区域,折叠得较为紧密,具有独立的生物学功能,大多数结构域含有序列上连续的100—200个氨基酸残基,若用限制性蛋白酶水解,含多个结构域的蛋白质常分成数个结构域,但各结构域的构象基本不变。 3、模体(motif):在许多蛋白质分子中,二个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象。一个模序总有其特征性的氨基酸序列,并发挥特殊功能,如锌指结构。 4、蛋白质变性(denaturation):在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质的改变和生物活性的丧失。主要发生二硫键与非共价键的破坏,不涉及一级结构中氨基酸序列的改变,变性的蛋白质易沉淀,沉淀的蛋白质不一定变性。 5、蛋白质的等电点( isoelectric point, pI):当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,蛋白质所带的正负电荷相等,净电荷为零,此时溶液的pH称为蛋白质的等电点。 6、酶(enzyme):酶是一类对其特异底物具有高效催化作用的蛋白质或核酸,通过降低反应的活化能催化反应进行。酶的不同形式有单体酶,寡聚酶,多酶体系和多功能酶,酶的分子组成可分为单纯酶和结合酶。酶不改变反应的平衡,只是通过降低活化能加快反应的速度。(不考) 7、酶的活性中心 (active center of enzymes):酶分子中与酶活性密切相关的基团在空间结构上彼此靠近,组成具有特定空间结构的区域,能与底物特异结合并将底物转化为产物。参与酶活性中心的必需基团有结合底物,使底物与酶形成一定构象复合物的结合基团和影响底物中某些化学键稳定性,催化底物发生化学反应并将其转化为产物的催化基团。活性中心外还有维持酶活性中心应有的空间构象的必需基团。 8、酶的变构调节 (allosteric regulation of enzymes):一些代谢物可与某些酶分子活性中心外的某部分可逆地结合,使酶构象改变,从而改变酶的催化活性,此种调节方式称酶的变构调节。被调节的酶称为变构酶或别构酶,使酶发生变构效应的物质,称为变构效应剂,包括变构激活剂和变构抑制剂。 9、酶的共价修饰(covalent modification of enzymes):在其他酶的催化作用下,某些酶蛋白肽链上的一些基团可与某种化学基团发生可逆的共价结合,从而改变酶的活性,此过程称为共价修饰。主要包括:磷酸化—去磷酸化;乙酰化—脱乙酰化;甲基化—去甲基化;腺苷化—脱腺苷化;—SH与—S—S—互变等;磷酸化与脱磷酸是最常见的方式。 10、酶原和酶原激活(zymogen and zymogen activation):有些酶在细胞内合成或初分泌时只是酶的无活性前体,必须在一定的条件下水解开一个或几个特定的肽键,使构象发生改变,表现出酶的活性,此前体物质称为酶原。由无活性的酶原向有活性酶转化的过程称为酶原激活。酶原的激活,实际是酶的活性中心形成或暴露的过程。 11、同工酶(isoenzyme isozyme):催化同一化学反应而酶蛋白的分子结构,理化性质,以及免疫学性质都不同的一组酶。它们彼此在氨基酸序列,底物的亲和性等方面都存在着差异。由同一基因或不同基因编码,同工酶存在于同一种属或同一个体的不同组织或同一细胞的不同亚细胞结构中,它使不同的组织、器官和不同的亚细胞结构具有不同的代谢特征。 12、糖酵解(glycolysis):在机体缺氧条件下,葡萄糖经一系列酶促反应生成丙酮酸进而还原生成乳酸的过程称为糖酵解(糖的无氧氧化)。糖酵解的反应部位在胞浆。主要包括由葡萄糖分解成丙酮酸的糖酵解途径和由丙酮酸转变成乳酸两个阶段,1分子葡萄糖经历4次底物水平磷酸化,净生成2分子ATP。关键酶主要有己糖激酶,6-磷酸果糖激酶-1和丙酮酸激酶。它的意义是机体在缺氧情况下获取能量的有效方式;某些细胞在氧供应正常情况下的重要供能途径。 13、糖异生(gluconeogenesis):是指从非糖化合物(乳酸、甘油、生糖氨基酸等)转变为葡萄糖或糖

生物化学实验A 名词解释

生物化学实验A----名词解释 1.电泳带电颗粒在作用下,向着与其电性相反的电极移动 2.聚酰胺薄膜层析各种被分离化合物在展层剂中的溶解速度及其与聚酰胺形成氢键能力的大小不同,决定他们在展层过程当中迁移的速度差异,从而分离(聚酰胺对极性物质的吸附作用是由于它能和被分离物之间形成氢键。这种氢键的强弱就决定了被分离物与聚酰胺薄膜之间吸附能力的大小) 3.浓缩效应在进行SDS-PAGE(SDS-)中由于凝胶孔径的不连续性(2种孔径)、缓冲液离子成分的不连续性(2种缓冲体系)、PH值(3种PH)和电位梯度的不连续性使得分子在浓缩胶和分离胶的界面处浓缩成一条狭小的缝带,成为浓缩效应 4.酶的专一性酶对所作用的底物有严格的选择性。一种酶仅能作用于一种物质,或一类分子结构相似的物质,促其进行一定的化学反应,产生一定的反应产物,这种选择性作用称为酶的专一性 5.酶的高效性在常温常压及中性pH条件下,酶比一般催化剂的催化效率高107 ~1013 倍。 6.限制性内切酶生物体内能识别并切割特异的双链DNA序列的一种 7.Benedict反应Benedict试剂是碱性硫酸铜溶液,具有一定的氧化性,与还原性糖的半缩醛羟基发生氧化还原反应,生成Cu2O转红色沉淀(Fehling试剂的改良,利用柠檬酸作为Cu2+的络合剂。常用于糖的检验。) 8.比活力用每毫克蛋白所含的酶活力单位数(u/mg) 9.增色反应核酸在变性过程中摩尔吸光系数增加的现象(分子由具有一定刚性变为无规则线团,DNA溶液的黏度降低,沉降速度加快;藏在内部的碱基全部暴露出来,DNA的 A260增大) 10.等点聚焦是一种高分辨率的蛋白质分离技术,可用于测定蛋白质的等电点(在电泳槽中放入载体两性电解质,当通以直流电时,两性电解质即形成一个由阳极到阴极逐步增加的pH梯度,当蛋白质放进此体系时,不同的蛋白质即移动到或聚焦于与其等电点相当的pH 位置上) 11.分子筛效应一个含有各种分子的样品溶液缓慢地流经凝胶色谱柱时,各分子在柱内同时进行着两种不同的运动:垂直向下的移动和无定向的扩散运动。如此不断地进入和扩散,小分子物质的下移速度落后于大分子物质,从而使样品中大的分子先流出色谱柱,中等的分子后流出,小分子最后流出 12.PEGE连续系统和不连续系统PAGE根据其有无浓缩效应,分为连续系统和不连续系统两大类,连续系统电泳体系中缓冲液pH值及凝胶浓度相同,带电颗粒在电场作用下,主要靠电荷和。不连续系统中由于离子成分,pH,凝胶浓度及电位梯度的,带电颗粒在中泳动不仅有效应,分子筛效应,还具有浓缩效应,因而其分离条带清晰度及分辨率均较前者佳13.Western免疫印迹将到膜上,然后利用抗体进行检测(采用的是聚丙烯酰胺凝胶,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗) 14.PCR 聚合酶链式反应,在模板DNA,引物和4中脱氧核苷酸存在的条件下,依赖于DNA聚合酶的酶促和反应 15.两性电解质载体造成环境由酸至碱逐渐变化的物质,具有一次递变相差不大的等电点有足够的电解能力,不与被分离物质反应或使之变性,分子变小(就是既能当酸又能当碱用的电解质。两性电解质通常为两性元素的氧化物的水合物、氨基酸等。) 16.电荷效应分离胶中,被分离物中各组分所带电荷不同,而又不同的迁移率。故被分离物按电荷多少,分子量及形状,以及顺序排列

名词解释及答案生物化学

1. 氨基酸(ami no acid ):是含有一个碱性氨基(-NH )和一个酸性羧基(-COOH)的有机化合物,氨基一般连在a -碳上。氨基酸是蛋白质的构件分子。 2. 必需氨基酸( essential amino acid ):指人(或其它脊椎动物)自己不能合成,需要从食物中获得的氨基酸。 3. 非必需氨基酸( nonessential amino acid ):指人(或其它脊椎动物)自己能由简单的前体合成,不需要从食物中获得的氨基酸。 4. 等电点( pI, isoelectric point ):使氨基酸处于兼性离子状态,分子的静电荷为零, 在电场中不迁移的pH值。 5. 肽键( peptide bond ) : 一个氨基酸的羧基与另一个的氨基酸的氨基缩合,除去一分子水形成的酰氨键。 6. 肽( peptide ) : 两个或两个以上氨基酸通过肽键共价连接形成的聚合物。 7. 茚三酮反应( ninhydrin reaction ):在加热条件下,a -氨基酸或肽与茚三酮反应生成紫色(与脯氨酸及羟脯氨酸反应生成黄色)化合物的反应。 8. 层析( chromatography ) : 按照在移动相和固定相 (可以是气体或液体)之间的分配比例将混合成分分开的技术。 9. 离子交换层析( ion-exchange column ):使用带有固定的带电基团的聚合树脂或凝胶层析柱。一种用离子交换树脂作支持剂的层析技术。 10. 透析( dialysis ):利用蛋白质分子不能通过半透膜的性质,使蛋白质和其他小分子物质如无机盐、单糖等分开的一种分离纯化技术。 11. 凝胶过滤层析(gel filtration chromatography , GPC:也叫做分子排阻层析/凝胶渗 透层析。一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技 术。 12. 亲合层析( affinity chromatograph ):利用共价连接有特异配体的层析介质,分离蛋白质混合物中能特异结合配体的目的蛋白质或其它分子的层析技术。 13. 高压液相层析( HPLC):使用颗粒极细的介质,在高压下分离蛋白质或其他分子混合物的层析技术。 14. 凝胶电泳( gel electrophoresis ):以凝胶为介质,在电场作用下分离蛋白质或核酸的分离纯化技术。 15.SDS-聚丙烯酰胺凝胶电泳(SDS-PAG):在去污剂十二烷基硫酸钠存在下的聚丙烯酰胺凝胶电泳。SDS-PAG唄跟分子的大小有关,跟分子所带的电荷大小、多少无关。 16. 等电聚焦电泳( IEF):利用一种特殊的缓冲液(两性电解质)在聚丙烯酰胺凝胶制造一 个pH梯度,电泳时,每种蛋白质迁移到它的等电点( pI )处,即梯度中为某一pH时,就不再带有净的正或负电荷了。 17. 双向电泳(two-dimensional electrophoresis ):等电聚焦电泳和SDS-PAGE的组合,即在同一块胶上先进行等电聚焦电泳(按照pl )分离,然后再进行SDS-PAGE(按照分子大小分离)。经染色得到的电泳图是二维分布的蛋白质图。 18. Edman 降解( Edman degradation ):从多肽链游离的N 末端测定氨基酸残基的序列的过 程。N末端氨基酸残基被苯异硫氰酸酯(PITC)修饰,然后从多肽链上切下修饰的残基,再经 层析鉴定,余下的多肽链(少了一个残基)被回收再进行下一轮降解循环。 19. 同源蛋白质( homologous protein ):在不同生物体内行使相同或相似功能的蛋白质,例如血红蛋白。 20. 构型( configuration ) : 有机分子中各个原子特有的固定的空间排列。这种排列不经过共价键的断

相关文档
最新文档