常见光学材料简介

常见光学材料简介
常见光学材料简介

常见光学材料简介

透镜是光学实验中的主要元件之一,可采用多种不同的光学材料制成,用于光束的准直、聚焦、成像。Newport提供的各种球面和非球面透镜,主要制作材料有BK7玻璃、紫外级熔融石英(UVFS)、红外级氟化钙(CaF2)、氟化镁(MgF2),以及硒化锌(ZnSe)。在从可见光到近红外小于2.1μm的光谱范围内,BK7玻璃具有良好的性能,且价格适中。在紫外区域一直到195nm,紫外级熔融石英是一种非常好的选择。在可见光到近红外2.1μm范围内,熔融石英具有比BK7玻璃更高的透射率,更好的均匀度以及更低的热膨胀系数。氟化钙和氟化镁则适用于深紫外或红外应用。

本文将对这些常见光学材料的性质和应用进行介绍,并列出了一些基本的材料参数,如折射率、透射率、反射率、Abbe数、热膨胀系数、传导率、热容量、密度、Knoop硬度,及杨氏模量。

BK7是一种常见的硼硅酸盐冕玻璃,广泛用作可见光和近红外区域的光学材料。它的高均匀度,低气泡和杂质含量,以及简单的生产和加工工艺,使它成为制作透射性光学元件的良好选择。BK7的硬度也比较高,可以防止划伤。透射光谱范围380-2100nm。但是它具有较高的热膨胀系数,不适合用在环境温度多变的应用中。

紫外级熔融石英是一种合成的无定型熔融石英材料,具有极高的纯度。这种非晶的石英玻璃具有很低的热膨胀系数,良好的光学性能,以及高紫外透过率,可以透射直到195nm的紫外光。它的透射性和均匀度均优于晶体形态的石英,且没有石英晶体的那些取向性和热不稳定性等问题。由于它的高激光损伤阈值,熔融石英常用于高功率激光的应用中。它的光谱透射范围可以达到2.1μm,且具有良好的折射率均匀性和极低的杂质含量。常见应用包括透射性和折射性的光学元件,尤其是对激光损伤阈值要求较高的应用。

氟化钙是一种具有简单立方晶格结构的晶体材料,采用真空Stockbarger技术生长制备。它在真空紫外波段到红外波段都具有良好的透射性。这种宽光谱透射特性,加上它没有双折射性质,使它成为紫外到红外宽光谱应用理想选择。氟化钙在0.25-7μm内的透射率在90%以上,并具有较高的激光损伤阈值,常用于制作准分子激光的光学元件。红外级氟化钙通常采用自然界中可见的萤石生长而成,成本低廉。但氟化钙具有较大的热膨胀系数,热稳定性很差,要避免使用在高温环境中。氟化钙的折射率比较低,因此通常不需要在表面镀增透膜。

氟化镁是一种具有正双折射性质的晶体,可采用Stockbarger技术生长,同样在真空紫外波段到红外波段具有良好的透射。通常在切割时使它的c轴与光轴方向平行,以降低双折射性质。氟化镁是另一种深紫外到红外的光学材料选择,透射范围0.15-6.5μm。另外,它可用于含氟的环境中,可用作准分子激光器的透镜、窗片、偏振器等。氟化镁具有良好的热稳定性和硬度,并且具有高激光损伤阈值。它的折射率也比较低,通常不需要镀增透膜。氟化镁相比于其他的深紫外到红外的光学材料更经久耐用。这些性质使它成为很多生物学上和军事上采用宽带宽激光脉冲成像的应用的理想选择。

石英是一种单轴正双折射单晶晶体,可采用水热法生长。它在真空紫外到近红外区域具有良好的透射性。因其双折射性质,石英晶体常用作波片材料。

Zerodur?是一种玻璃陶瓷材料,热膨胀系数接近于零,具有极佳的热稳定性。这使得Zerodur?成为制作光学镜片衬底的理想选择。Zerodur?通常含有杂质,不适于制作透射性光学元件。

硒化锌可通过化学气相沉积方法制备,常用于热成像和医疗系统中。硒化锌作为一种应用广泛的红外透镜材料,具有很宽的透射谱域600nm-16μm。它的折射率较高,一般需要在表面镀增透膜,以减少反射。硒化锌材料较软,容易被划伤,因此不适用于比较粗糙的环境。在清洁和安装时也要格外注意。因其高透射率和耐热性能,硒化锌成为高功率二氧化碳激光器的光学元件材料的最佳选择。

光学材料参数性质

光学材料性能比较

光学材料透射率曲线

下面给出的透射率曲线是光学材料的“外部透射”曲线,包含材料表面的反射效应。

(熔融石英和BK7冕玻璃透射曲线(厚度10mm))

(红外光学材料透射曲线)

(紫外-红外材料透射曲线)

推荐企业:深圳晶至新材料科技有限公司

專業供應藍寶石毛坯,采用進口和國產優質原料,可根據客戶要求提供各種規格與超大尺寸的圓片、方片、圓柱體、六面體、異形件等毛坯料。应用于激光、红外、通讯、半导体、电子、医疗美容、精密仪表、军工、航空、汽车配件、及智能手机手表可穿戴設備等诸多尖端高科技领域。業務咨詢:張小姐

光学俄语词汇汇总材料

光学俄语词汇汇总材料 Наноисточник纳米源奈米源 Нанометровый纳米奈米 Нанооптика纳米光学奈米光学 Нанописьмо纳米刻录 Нанопора奈米细孔 Наноструктура纳米结构 Наночастица纳米粒子奈米细粒 Направлениеполяризации极化方向 Нелинейнаяоптика非线性光学 Нелинейныйоптическийматериал非线性光学材料 Нелинейныйэлектрооптическийэффект非线性的光电效应 Неоимовыйлазер钕玻璃激光器 Неонороный非单质的 Нечёткоеизоражение模糊图像 Оластьальнегополя远场区域 Оластьоторажения像区 Оласть,площаь面积 Оразец样品,范例,样本试件 Оратнаясвязь反馈回馈

Оратнаясвязьнаусилисвига剪力回馈 Оратноенапряжение反向电压 Оъектив物镜 Оъективфотоаппарата镜头 Оъёмныйрезонатор空腔谐振器 Ономоовоеволокно单模光纤 Оптик光学传家 Оптик(специалистьпооптическимприорам)光学仪器制造家 Оптика光学 Оптикаатмосферы,fтмосфернаяоптика大气光学 Оптикаволновоов波导光学 Оптикаокеана海洋光学 Оптическаяактивность旋光性 Оптическаямоа光模 Оптическаямышь光学滑鼠 Оптическаянакачка光学泵浦,光泵 Оптическаяораоткаинформации光学信息处理

光学薄膜工艺基础知识

光学薄膜工艺基础知识 工艺因素对薄膜性能的影响机理大致为: 一、基片材料 1、膨胀系数不同热应力的主要原因; 2、化学亲和力不同影响膜层附着力和牢固度; 3.、表面粗糙度和缺陷散射的主要来源。 二.、基片清洁 残留在基片表面的污物和清洁剂将导致: 1、膜层对基片的附着力差; 2、散射吸收增大抗激光损伤能力差; 3、透光性能变差。 三、离子轰击的作用 提高膜层在基片表面的凝聚系数和附着力;提高膜层的聚集密度,氧化物膜层的透过率增加,折射率提高,硬度和抗激光损伤阈值提高。 光学镜片小知识 镜片材料分类 玻璃镜片包括光学玻璃镜片及高折射率镜片(即通常所称的超薄片),其硬度高、耐磨性能好,一般其质量及各项参数不会随时间而改变,但是玻璃镜片的抗冲击性及重量方面要略逊于树脂镜片。 树脂镜片一般要比玻璃镜片轻得多,且抗冲击性能要优于玻璃片,防紫外线能力强,但其表面硬度较低,比较容易被擦伤。树脂镜片及镀膜镜片由于其特性较软,所以平时应注意不要让镜面直接接触硬物,擦洗时最好先用清水(或掺合少量洗洁精)清洗,然后用专用试布或优质棉纸吸干眼镜片上的水滴。此外,在环境条件较差的地方应慎用镀膜镜片,以免沾上污物难以清洗。 宇宙(PC)镜片:折射率高,牢固,但易磨损.多数使用于小孩子的眼镜片,无框架的装配或运动员的护眼罩。 镜片镀膜后有哪些优点? 镀膜镜片可以降低镜片表面的反射光,视物清楚,减少镜面反射光,增加了光线透过率,也解决戴眼镜在强光下照像的难题,增加美感。镀膜眼镜能防止紫外线、红外线、X线对视力的伤害。配戴镀膜眼镜不易疲劳。对荧光屏前工作人员的视力可受到保护。 镀膜树脂镜片除应避免划碰高温外,亦应避免酸类油烟等侵蚀,如在日常生活中最好不要戴镜下厨,尤其是通风不好油烟大时;同时亦不能戴(带)镜进(近)热水淋浴环境,平常临时放置时应将镜片凸面向上,随身携带时应将眼镜放入盒内,不要随便放入口袋中或挂包中,那样极易使膜层擦伤。

常见建筑材料及特点介绍

常见建筑材料及特点介绍 引言 从广义上讲,建筑材料是建筑工程中所有材料的总称。不仅包括构成建筑物的材料,而且还包括在建筑施工中应用和消耗的材料。构成建筑物的材料如地面、墙体和屋面使用的混凝土、砂浆、水泥、钢筋、砖、砌块等。在建筑施工中应用和消耗的材料如脚手架、组合钢模板、安全防护网等。通常所指的建筑材料主要是构成建筑物的材料,即狭义的建筑材料。 一、建筑材料是如何分类的 1、建筑材料的分类方法很多,一般按功能分为三大类: 2、结构材料主要指构成建筑物受力构件和结构所用的材料,如梁、板、柱、基础、框架等构件或结构所使用的材料。其主要技术性能要求是具有强度和耐久性。常用的结构材料有混凝土、钢材、石材等。 3、围护材料是用于建筑物围护结构的材料,如墙体、门窗、屋面等部位使用的材料。常用的围护材料有砖、砌块、板材等。围护材料不仅要求具有一定的强度和耐久性,而且更重要的是应具有良好的绝热性,符合节能要求。 4、功能材料主要是指担负某些建筑功能的非承重用材料,如防水材料、装饰材料、绝热材料、吸声材料、密封材料等。 5、建筑工程中,建筑材料费用一般要占建筑总造价的60%左右,有的高达75%。 二、建筑材料的发展方向 1)传统建筑材料的性能向轻质、高强、多功能的方向发展。例如,大规模生产新型干法水泥,研制出轻质高强的混凝土,新型墙体材料等。 2)化学建材将大规模应用于建筑工程中。主要包括建筑塑料、建筑涂料、建筑防水材料、密封材料、绝热材料、隔热材料、隔热材料、特种陶瓷、建筑胶粘剂等。化学建材具有很多优点,可以部分代替钢材、木材,且具有较好的装饰性。3)从使用单体材料向使用复合材料发展。如研究和使用纤维混凝土、聚合物混凝土、轻质混凝土、高强度合金材料等一系列新型高性能复合材料。

14种光学塑料的材料特点

14种光学塑料的材料特点 一、光学塑料分类塑料材料一般分为热塑性和热固性塑料。热塑性塑料指的是可反复加热仍可塑的塑料。光学塑料大部分为热塑性塑料,常用的有:聚甲基丙烯酸甲脂(PMMA)聚苯乙烯(PS)聚碳酸脂(PC)等。热固性塑料:指的是在所用的合成树脂在加热初期软化,具有可塑性,继续加热则随着化学反应燮硬使形状固定不再发生变化。常用的材料有:烯丙基二甘醇碳酸脂(CR-39)环氧光学塑料 二、主要的光学塑料 1.聚甲基丙烯酸甲脂PMMA Polymethylmethacrylate,简称PMMA,也称Acrylic。摩尔量约为50万---100万,(摩尔量对聚合物的性能有很大的影响)nd=1.491,色散系数Vd=57.2,是“王冕”材料,透过率约92%,加速老化后240H透过率仍能达到92%,在室外使用10年后只降到88%,能透过波长270nm以上的紫外光。PMMA能透过X射线和Y射线,其薄片能透过α射线和β射线,但是能吸收中子线。PMMA密度为1.19kg/m3,在20℃*109Pa时的平均吸水率为2%,在所有光学塑料中它的吸水率最高,弹性模量为3.16*109Pa,泊松比为0.32,抗张强度为(462---703) *109Pa。PMMA 的线形膨胀系数为 8.3*10-5 K-1,比K9玻璃大10倍,但PMMA从高温冷却时的光学记忆即组件恢复到它原来尺寸的性能要比玻璃好,它

的折射率随温度的变化dn/dt为-8.5*10-5,比K9玻璃大出约30倍,但是它是负值。热导率为0.192W/(m*k),比热容为1465J/(kg*k),它的玻璃化温度为105℃,熔化温度为180℃。PMMA耐稀无机酸去污液,油脂和弱碱的性能优良,耐浓无机酸中等,不耐醇,酮,溶于芳烃,氯化烃有机溶剂,为强碱及温热的NaOH,KOH所侵蚀,与显影液不起反应。PMMA有优良的耐气候性,在热带气候下曝晒多年,它的透明度和色泽变化小。PMMA目前于广泛被用于制造照相机,摄录一体机,投影机,光盘读出头以及军用火控和制导系统中的非球面透镜和反射镜,还用来制造菲涅尔透镜,微透镜数组,隐形眼镜,光纤,光盘基板等零件。 2.聚苯乙烯PS Polystyrene,简称PS,也称Styrene。这是一种火石类热塑性光学塑料,尽管它的抗紫外辐射性能,抗划伤性能都不如PMMA,但它折射率高,nd=1.59—1.660,阿贝系数小Vd=30.8,所以当它和PMMA组合时可以成为对F和C谱线进行校正的消色差透镜,二级光谱的校正一般比玻璃的消色差透镜还要更好一些。它的透过率为88%,它的双折射率较大,在阳光作用下聚苯乙烯容易变黄。PS能自由着色,无嗅无味无毒,不致产生霉菌,吸湿性小吸只有0.02%。PS热变形温度为70--98℃,与配方及后处理有关,它的最高连续使用温度为60--80℃,成型收缩率为0.45%,其零件经退火处理可减少内应力还可提高机械强度,无前因

光学膜简介

光学膜会议纪要 一、冰箱面板膜IMD膜 该膜为三层结构,将薄膜放入注射成型模腔内,使薄膜紧贴注射的塑料外面热熔合,形成光洁漂亮的面板。 二、隔热膜 对基膜的要求是高透光率和低雾度,涂布后绝对不能有划痕。在PET上涂布隔热涂层后贴在汽车窗和建筑玻璃上用于吸收、反射近红外线(波长600~2300纳米),起隔热防爆作用。 结构是36μm隔热膜和23μm离型膜,揭去离型膜后直接贴在玻璃上。 目前主要有两种技术路线: ⑴、干法:以美国3M为代表,先在PET薄膜表层涂防刮伤层,再真空溅射吸收、反射近红外线材料(共7种材料) ⑵、湿法:以美国龙膜为代表,将纳米分散的材料一次性涂在PET 薄膜上。主要成分氧化锆、氧化铟锡。 湿法是DOCRIV推销的技术。 DOCRIV在中恒合作生产了隔热膜PET基膜,雾度0.8%,在保定乐凯进行涂布,据DOCRIV介绍说隔热效果和美国龙膜效果相当。但存在的问题是①采用的是微凹版涂布,不能保证无划痕;②空气净化程度达不到要求。 热隔膜结构:

隔热防雾膜——既隔热又防雾 三、光学膜 1、IMO膜触摸屏膜 在PET薄膜表面涂布上抗划伤、抗静电(106~108Ω)涂层,背面真空溅射导电膜(共三层,且透明),再在导电层上印刷电路,再蚀出多余的导电层。 目前IMO只用日本生产,技术封锁。对基膜的要求非常高,雾度≤1%,透光率≥92%,厚度平整性非常高,175μm,宽度125cm。 在基膜达不到要求下,可以用作液晶屏保护膜(不加导电层)。2、光扩散膜 主要功能是提升光线亮度,并将导光板射出之光线柔散化,提供均匀的面光源;通常做法是在PET基材上,涂布光学粒子颗粒/玻璃微珠。扩散膜是通过在光学膜片材料上的微细颗粒(beads)实现光的扩散。 扩散膜要求颗粒涂布均匀,颗粒不能脱落,目前合肥乐凯生产光扩散膜,但在颗粒脱落上还未很好解决。

常见金属材料的介绍

常用金属材料 1、钢的分类 钢的分类方法很多,常用的分类方法有以下几种: 1)按化学成分碳素钢可以分为:低碳钢(含碳量<0.25%)、中碳钢(含碳量0.25%?0.6%)、高碳钢(含碳量>0.6%);合金钢可以分为:低合金钢(合金元素总含量<5% )、中合金钢(合金元素总含量5%?10%)、高合金钢(合金元素总含量>10%); 2)按用途分结构钢(主要用于制造各种机械零件和工程构件)、工具钢(主要用于制造各种刀具、量具和模具等)、特殊性能钢(具有特殊的物理、化学性能的钢,可分为不锈钢、耐热钢、耐磨钢等) 3)按品质分普通碳素钢(P W 0.045% S<0.05% )、优质碳素钢(P W 0.035% S <0.035% )、高级优质碳素钢(P W 0.025% S <0.025%) 2、碳素钢的牌号、性能及用途 常见碳素结构钢的牌号用“Q+数字”表示,其中“Q”为屈服点的“屈”字的汉语拼音字首, 数字表示屈服强度的数值。若牌号后标注字母,则表示钢材质量等级不同。 优质碳素结构钢的牌号用两位数字表示钢的平均含碳量的质量分数的万分数,例如,20钢 的平均碳质量分数为0.2%。 表1 —1常见碳素结构钢的牌号、机械性能及其用途 3、合金钢的牌号、性能及用途 为了提高钢的性能,在碳素钢基础上特意加入合金元素所获得的钢种称为合金钢。

合金结构钢的牌号用“两位数(平均碳质量分数的万分之几) +元素符号+数字(该合金元 素质量分数,小于 1.5%不标出;1.5%?2.5%标2; 2.5%?3.5%标3,依次类推)”表示。 对合金工具钢的牌号而言,当碳的质量分数小于 1%,用“一位数(表示碳质量分数的千分 之几)+元素符号+数字”表示;当碳的质量分数大于1%时,用“元素符号+数字”表示。(注: 高速钢碳的质量分数小于 1%,其含碳量也不标出) 表1 — 2常见合金钢的牌号、机械性能及其用途 4、铸钢的牌号、性能及用途 铸钢主要用于制造形状复杂,具有一定强度、塑性和韧性的零件。碳是影响铸钢性能的主要 元素,随着碳质量分数的增加, 屈服强度和抗拉强度均增加, 而且抗拉强度比屈服强度增加 得更快,但当碳的质量分数大于 0.45%时,屈服强度很少增加,而塑性、韧性却显著下降。 所以,在生产中使用最多的是 ZG230-450、ZG270-500、ZG310-570三种。 表1 — 35、铸铁的牌号、性能及用途 铸铁是碳质量分数大于 2.11%,并含有较多Si 、Mn 、S 、P 等元素的铁碳合金。铸铁的生产 工艺和生产设备简单,价格便宜,具有许多优良的使用性能和工艺性能, 所以应用非常广泛, 是工程上最常用的金属材料之一。 铸铁按照碳存在的形式可以分为:白口铸铁、 灰口铸铁、麻口铸铁;按铸铁中石墨的形态可 以分为:灰铸铁、可锻铸铁、球墨铸铁、蠕墨铸铁。

光学材料大全

有色玻璃牌号 无色光学玻璃类型

光学晶体主要性能参数

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5%

常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5%

2019年光学镜头行业分析报告

2019年光学镜头行业 分析报告 2019年4月

目录 一、行业主管部门、监管体制及主要政策法规 (5) 1、行业主管部门及监管体制 (5) 2、行业主要法律法规及重要产业政策 (5) 二、行业发展概况 (8) 1、光学镜头上游概况 (8) 2、光学镜头行业概况 (9) (1)光学镜头产品分类 (9) (2)光学镜头行业发展特点 (10) ①下游应用领域不断扩展 (10) ②技术革新加快产业升级 (11) ③光学镜头产业逐渐向中国转移 (11) 3、光学镜头下游概况 (12) (1)安防视频监控 (13) ①全球安防视频监控设备市场概况 (13) ②安防视频监控领域光学镜头市场概况 (15) (2)车载成像系统(载镜头) (19) ①从ADAS到自动驾驶,市场持续增长 (19) ②车载镜头市场 (22) (3)新兴消费类电子 (25) ①智能家居 (25) ②视讯会议 (27) ③无人机 (28) ④VR/AR设备 (29) (4)机器视觉 (30) 三、行业竞争格局和市场化程度 (32)

四、行业内的主要企业和主要企业的市场份额 (33) 1、国外企业 (34) (1)腾龙株式会社 (34) (2)富士能株式会社 (34) (3)CBC株式会社 (35) (4)日本电产株式会社 (35) 2、国内企业 (35) (1)福建福光股份有限公司 (35) (2)东莞市宇瞳光学科技股份有限公司 (35) (3)中山联合光电科技股份有限公司 (35) (4)舜宇光学科技(集团)有限公司 (36) (5)联创电子科技股份有限公司 (36) (6)厦门力鼎光电股份有限公司 (36) 五、进入行业的主要障碍 (37) 1、技术壁垒 (37) 2、资金壁垒 (37) 3、客户壁垒 (37) 4、系统管理壁垒 (38) 5、人才壁垒 (39) 六、行业利润水平 (39) 七、影响行业发展的因素 (40) 1、有利因素 (40) (1)下游应用领域的广度和深度不断扩展,市场需求持续增长 (40) (2)良好的政策环境促进了光学镜头行业持续发展 (40) (3)国产光学镜头竞争力的提升 (41)

红外光学材料大全

红外光学材料 1,进口CVD硒化锌(ZnSe)红外光学材料 CVD硒化锌(ZnSe)是一种化学惰性材料,具有纯度高,环境适应能力强,易于加工等特点。它的光传输损耗小,具有很好的透光性能。是高功率CO2激光光学元件的首选材料。由于该红外材料的折射率均匀和一致性很好,因此也是前视红外(FLIR)热成像系统中保护窗口和光学元件的理想材料。同时,该材料还广泛用于医学和工业热辐射测量仪和红外光谱仪中的窗口和透镜。 CVD ZINC SELENIDE Transmission Wavelength in Micrometers (t=8mm) 光学性质: 透过波长范围0.5μm---22μm 折射率不均匀性(Δn/n)<3×10- 吸收系数(1/cm) 5.0×10-3@1300nm 7.0×10-4@2700nm 4.0×10-4@3800nm 4.0×10-4@5250nm 5.0×10-4@10600nm 热光系数dn/dT(1/k,298—358k) 1.07×10-

折射率n随波长的变化(20℃) 理化性质: 激光损伤阈值:(10600nm脉冲激光,脉冲宽度=15μs) 2,进口CVD硫化锌(ZnS)红外光学材料

CVD硫化锌是一种化学惰性材料,具有纯度高,不溶于水,密度适中,易于加工等特点,广泛应用于红外窗口,整流罩和红外光学元件的制作。和硒化锌(ZnSe)一样,硫化锌(ZnS)也是一种折射率均匀性和一致性好的材料,在8000nm—12000nm波段具有很好的图像传输性能,该材料在中红外波段也有较高的透过率,但随着波长变短,吸收和散射增强。与硒化锌(ZNSE)相比,硫化锌的价格低,硬度高,断裂强度是硒化锌的两倍,抗恶劣环境的能力强,非常适合用于制造导弹整流罩和军用飞行器的红外窗口。 透过率曲线: CVD ZINC SULFIDE Transmission(CVD硫化锌) Wavelength in Micrometer (t =6mm) CLEARTRAN Transmission(多光谱CVD硫化锌) Wavelength in Micrometers (t=9.4mm) CVD硫化锌多光谱CVD硫化锌 密度(g . cm-3 @ 298k) 4.09 4.09 电阻率(Ω. Cm) ~1012~101.3

光学材料折射率的测定报告

光学材料折射率的测定 Summary :Refractive index is one of the important parameters of optical materials, which often needs to be measured in scientific research and production practice. The method of measuring the refractive index can be divided into two categories: one is the application of refractive index and reflection, total reflection law, through the accurate measurement of the angle of the refractive index of the geometric optics method, such as the minimum deviation angle method, grazing incidence method, total reflection method and displacement method, etc. Another kind is the light passed the medium (or by a dielectric reflection) and the polarization state changes of the phase change of the transmitted light or reflected light) and refraction rate is closely related to the principle to measure the refractive index of the physical optics method, such as cloth Brewster angle method, interferometry, ellipsometry etc.. 摘要:折射率是光学材料的重要参数之一,在科研和生产实际中常需要测量它。测量折射率的方法可分为两类:一类是应用折射率及反射、全反射定律,通过准确测量角度来求折射率的几何光学方法,如最小偏向角法、掠入射法、全反射法和位移法等。另一类是利用光通过介质(或由介质反射)后,透射光的相位变化(或反射光的偏振态变化)与折射率密切相关的原理来测定折射率的物理光学方法,如布儒斯特角法、干涉法、椭偏法等。 关键词:最小偏向角 偏振 全反射 分光计 干涉 布儒斯特角 引言:本实验要求综合已学过的光学知识和基本实验操作,查阅有关资料,拟定实验方案,完成对各种待测样品的折射率测定,从而对光学材料折射率的测量,在原理和方法上有更全面的认识。加深对分光计、阿贝折射仪、迈克尔孙干涉仪等光学仪器使用方法的了解。 一、最小偏向角法 【实验原理】 由图1的三棱镜光路图,可以证明: 2 sin 2sin sin sin min 1 1 A A r i n +== δ 其中A 是三棱镜的顶角,δmin 是出射光在i 1=i 2时的最小偏向角。由上式可见,只要测得三棱镜的顶角A 和对钠黄光的最小偏向角δmin ,便可间接测出对该波长的光的折射率n 。 【实验步骤】 1. 调节分光计到使用状态,打开汞灯照明平行光管,找到折射光谱 2. 对准某条谱线,转动游标盘和望远镜跟踪此谱线,当其不再继续移动而反向移动时,记录游标盘读数θ1、θ2 3. 测定入射光方向,将望远镜对准平行光管,使分划板十字竖线对准狭缝中央,读出此时两游标的读数θ1'、θ2',则最小偏向角δmin 为: ()()[] '2 1 22'11min θθθθδ-+-= 4. 重复测量,求平均值 图1 三棱镜中的光路图

光学基础知识及光学镀膜技术

光学基础知识及光学镀膜技术 光學薄膜是指在光學元件上或獨立的基板上鍍上一層或多層之介電質膜或金屬膜來 改變光波傳遞的特性。即應用光波在這些薄膜中進行的現象與原理,如透射、吸收、散 射、反射、偏振、相位變化等,進而設計及製造各種單層及多層之光學薄膜來達到科學 與工程上的應用。在本廠的實際應用上,DM半透板與ITO鍍膜屬於這個領域。 光學薄膜雖早於1817年Fraunhofer已經開始利用酸蝕法製成了抗反射膜,但是真正 的發展是在1930年真空鍍膜設備之後。而軍事的需求(望遠鏡、飛彈導向鏡頭、監視衛 星、夜視系統等)加速了光學薄膜的開發與研究。計算機的出現使得設計更為方便,相對 的各種理論及設計方法因應而出,光學薄膜的研究於是更為進步並充分應用於各種光電 系統及光學儀器之中,如光干涉儀、照相機、望遠鏡、顯微鏡、投影電視機、顯示器、 光鑯通訊、汽車工業、眼鏡等。 光學薄膜基本上是藉由干涉作用達到其效果的。簡單的如肥皂泡沫膜、金屬表層的 氧化膜、水面油層的顏色變化,都可以視為單層干涉的效果。因此,當光在膜層中的干

涉現象可以被偵測到時,我們就說這層模是薄的,否則是厚的(k值消散掉)。由於干涉現象不僅跟膜層的厚度有關,而且光源的干涉性和偵測性的種類也有關。 接下來為各位介紹幾個主題1.波動光學基本理論2.薄膜光學的應用及產品介紹3.薄膜設計方法4.金屬鍍膜材料5.光學薄膜的鍍製方法及設備6.光學薄膜材料。 光學薄膜的製作是理論設計的實現,它不僅和蒸鍍方法及材料有關亦與薄膜支撐 者,即基板之表面狀況及材質有密切的關係,事實上光學薄膜的研製的主要困難已經比 較少是在設計上,而是在製鍍上,亦即要製造出預期中的光學常數及厚度之薄膜,因此 新的製膜方法及監控方式在工程上更顯的重要。 1. 繞射和干涉的現象常常會被拿在一起來討論,繞射可視為很多光源互相干涉,但其數學處理的方式仍然與干涉不太一樣。例如全像或光柵,可以用繞射也可以用干涉來解釋,也各有其數學模式。光的波動說:當一個水波經過一個障礙時,我們可以看到障礙的邊緣會 泛起陣陣漣漪,這種現象就是繞射,光波也有繞射現象,這種現象是和光的直線前進或光 的粒子說相抵觸的。早在1500年,L.da Viaci 已提及光的繞射,Huygens在1678年首先創立光的波動理論,他把波陣面上每一點都視為一個次級子波的波源,而所有子波前進時的包絡面又形成新的波前,應用這個原理可以解釋光的直線前進、光的反射與折射。 1801年,Young用干涉理論來解釋單狹縫的現象,但實驗結

2018年中国光学材料现状调研及发展趋势走势分析报告

报告简介【名称】

【编号】137AA2A 【价格】纸质版:19000元电子版:20000元纸质+电子版:21000元 【优惠价】¥13600 元 【电话】400 612 8668、0、0传真:0 【邮箱】 【网址】 【提示】如需英文、日文等其他语言版本报告,请向客服咨询。 《2018年中国光学材料现状调研及发展趋势走势分析报告》是专门针对光学材料产业的调研报告,采用客观公正的方式对光学材料产业的发展走势进行深入分析阐述,为客户进行竞争分析、发展规划、投资决策提供支持和依据,本项目在运作过程中得到了众多光学材料产业链各环节技术人员及营销人员的支持和帮助,在此再次表示谢意。 中国市场报告网发布的首先介绍了光学材料的背景知识,包括光学材料的相关概念、分类、应用、产业链结构,国际市场动态分析,国内市场动态分析,宏观经济环境分析及经济形势对光学材料行业的影响,光学材料行业国家政策及规划分析,光学材料产品技术参数,生产工艺技术,产品成本结构等;接着统计了中国主要企业光学材料产能、产量、成本、价格、毛利、产值等详细数据,同时统计了这些企业光学材料产品、客户、应用、产能、市场地位、企业联系方式等信息,最后通过对这些企业相关数据进行汇总统计和总结分析,得出中国光学材料产能市场份额,产量市场份额,供应量、需求量、供需关系,进口量、出口量、消费量等数据统计,同时介绍中国光学材料行业近几年产能、产量、售价、成本、毛利、产值等,之后分析了光学材料产业上游原料、下游客户及产业调查分析,并介绍光学材料营销渠道,行业发展趋势及投资策略建议,最后还采用案例的模式分析了光学材料新项目投资可行性研究及SWOT分析。 第一章光学材料产业概述 光学材料定义 光学材料分类及应用 光学材料产业链结构 光学材料产业概述

红外光学材料大全

1,进口CVD硒化锌(ZnSe)红外光学材料 CVD硒化锌(ZnSe)是一种化学惰性材料,具有纯度高,环境适应能力强,易于加工等特点。它的光传输损耗小,具有很好的透光性能。是高功率CO2激光光学元件的首选材料。由于该红外材料的折射率均匀和一致性很好,因此也是前视红外(FLIR)热成像系统中保护窗口和光学元件的理想材料。同时,该材料还广泛用于医学和工业热辐射测量仪和红外光谱仪中的窗口和透镜。 CVD ZINC SELENIDE Transmission Wavelength in Micrometers (t=8mm) 光学性质: 透过波长范围μm---22μm 折射率不均匀性(Δn/n) 吸收系数(1/cm)×10-3@1300nm ×10-4@2700nm ×10-4@3800nm ×10-4@5250nm ×10-4@10600nm 热光系数dn/dT(1/k,298— ×10-5@1150nm

折射率n随波长的变化(20℃) 理化性质: 激光损伤阈值:(10600nm脉冲激光,脉冲宽度=15μs) 2,进口CVD硫化锌(ZnS)红外光学材料 CVD硫化锌是一种化学惰性材料,具有纯度高,不溶于水,密度适中,易于加工等特点,广泛应用于红外窗口,整流罩和红外光学元件的制作。和硒化锌(ZnSe)一样,硫化锌(ZnS)

也是一种折射率均匀性和一致性好的材料,在8000nm—12000nm波段具有很好的图像传输性能,该材料在中红外波段也有较高的透过率,但随着波长变短,吸收和散射增强。与硒化锌(ZNSE)相比,硫化锌的价格低,硬度高,断裂强度是硒化锌的两倍,抗恶劣环境的能力强,非常适合用于制造导弹整流罩和军用飞行器的红外窗口。 透过率曲线: CVD ZINC SULFIDE Transmission(CVD硫化锌) Wavelength in Micrometer (t =6mm) CLEARTRAN Transmission(多光谱CVD硫化锌) Wavelength in Micrometers (t= 理化性质: CVD硫化锌多光谱CVD硫化锌 密度 (g . cm-3 @ 298k) 电阻率 (Ω. Cm)~1012~ 熔点 (℃)1827 化学纯度 (%) 热膨胀系数(1/k)* 10-6@273k* 10-6@273k * 10-6@373k* 10-6@373k

常见光学材料简介

常见光学材料简介 透镜是光学实验中的主要元件之一,可采用多种不同的光学材料制成,用于光束的准直、聚焦、成像。Newport提供的各种球面和非球面透镜,主要制作材料有BK7玻璃、紫外级熔融石英(UVFS)、红外级氟化钙(CaF2)、氟化镁(MgF2),以及硒化锌(ZnSe)。在从可见光到近红外小于2.1μm的光谱范围内,BK7玻璃具有良好的性能,且价格适中。在紫外区域一直到195nm,紫外级熔融石英是一种非常好的选择。在可见光到近红外2.1μm范围内,熔融石英具有比BK7玻璃更高的透射率,更好的均匀度以及更低的热膨胀系数。氟化钙和氟化镁则适用于深紫外或红外应用。 本文将对这些常见光学材料的性质和应用进行介绍,并列出了一些基本的材料参数,如折射率、透射率、反射率、Abbe数、热膨胀系数、传导率、热容量、密度、Knoop硬度,及杨氏模量。 BK7玻璃 BK7是一种常见的硼硅酸盐冕玻璃,广泛用作可见光和近红外区域的光学材料。它的高均匀度,低气泡和杂质含量,以及简单的生产和加工工艺,使它成为制作透射性光学元件的良好选择。BK7的硬度也比较高,可以防止划伤。透射光谱范围380-2100nm。但是它具有较高的热膨胀系数,不适合用在环境温度多变的应用中。 UV Grade Fused Silica(UVFS) 紫外级熔融石英 紫外级熔融石英是一种合成的无定型熔融石英材料,具有极高的纯度。这种非晶的石英玻璃具有很低的热膨胀系数,良好的光学性能,以及高紫外透过率,可以透射直到195nm的紫外光。它的透射性和均匀度均优于晶体形态的石英,且没有石英晶体的那些取向性和热不稳定性等问题。由于它的高激光损伤阈值,熔融石英常用于高功率激光的应用中。它的光谱透射范围可以达到2.1μm,且具有良好的折射率均匀性和极低的杂质含量。常见应用包括透射性和折射性的光学元件,尤其是对激光损伤阈值要求较高的应用。 CaF2 氟化钙 氟化钙是一种具有简单立方晶格结构的晶体材料,采用真空Stockbarger技术生长制备。它在真空紫外波段到红外波段都具有良好的透射性。这种宽光谱透射特性,加上它没有双折射性质,使它成为紫外到红外宽光谱应用理想选择。氟化钙在0.25-7μm内的透射率在90%以上,并具有较高的激光损伤阈值,常用于制作准分子激光的光学元件。红外级氟化钙通常采用自然界中可见的萤石生长而成,成本低廉。但氟化钙具有较大的热膨胀系数,热稳定性很差,要避免使用在高温环境中。氟化钙的折射率比较低,因此通常不需要在表面镀增透膜。 MgF2 氟化镁 氟化镁是一种具有正双折射性质的晶体,可采用Stockbarger技术生长,同样在真空紫外波段到红外波段具有良好的透射。通常在切割时使它的c轴与光轴方向平行,以降低双折射性质。氟化镁是另一种深紫外到红外的光学材料选择,透射范围0.15-6.5μm。另外,它可用

常用金属材料介绍

常用金属材料 金属材料来源丰富,并具有优良的使用性能和加工性能,是机械工程中应用最普遍的材料,常用以制造机械设备、工具、模具,并广泛应用于工程结构中。 金属材料大致可分为黑色金属两大类。黑色金属通常指钢和铸铁;有色金属是指黑色以外的金属及其合金,如铜合金、铝及铝合金等。 1.2.1 钢 钢分为碳素钢(简称碳钢)和合金两大类。 碳钢是指含碳量小于2.11%并含有少量硅、锰、硫、磷杂质的铁碳合金。工业用碳钢的含碳量一般为0.05%~1.35%。 为了提高钢的力学性能、工艺性能或某些特殊性能(如耐腐蚀性、耐热性、耐磨性等),冶炼中有目的地加入一些合金元素(如Mn、Si、Cr、Ni、Mo、W、V、Ti等),这种钢称为合金钢。 (一)碳钢 1.碳钢的分类 碳钢的分类方法有多种,常见的有以下三种。 (1)按钢的含碳量多少分类分为三类: 低碳钢,含碳量 0.25%; 中碳钢,含碳量为0.25%~0.60%; 高碳钢,含碳量>0.60%。 (2)按钢的质量(即按钢含有害元素S、P的多少)分类分为三类: 普通碳素钢,钢中S、P含量分别≤0.055%和0.045%; 优质碳素钢,钢中S、P含量均≤0.040%; 高级碳素钢,钢中S、P含量分别≤0.030%和0.035%。 (3)按钢的用途分类分为两类: 碳素结构钢,主要用于制造各种工程构件和机械零件; 碳素工具钢,主要用于制造各种工具、量具和模具等。 2.碳钢牌号的表示方法 (1)碳素结构钢碳素结构钢的牌号由屈服点“屈”字汉语拼音第一个字母Q、屈服点数值、质量等级符号(A、B、C、D)及脱氧方法符号(F、b、Z)等

四部分按顺序组成。其中质量等级按A、B、C、D顺序依次增高,F代表沸腾钢,b代表镇静钢,Z代表镇静钢等。如Q235-A·F表示屈服强度为235Mpa的A 级沸腾碳素结构钢。 (2)优质碳素结构钢优质碳素结构钢的牌号用两位数字表示。这两位数字代表钢中的平均含碳量的万分之几。例如45钢,表示平均含碳量为0.45%的优质碳素结构钢。08钢,表示平均含碳量为0.08%的优质碳素结构钢。 (3)碳素工具钢碳素工具钢的牌号是用碳字汉语拼音字头T和数字表示。其数字表示钢的平均含碳量的千分之几。若为高级优质,则在数字后面加“A”。例如,T12钢,表示平均含碳量为1.2%的碳素工具钢。T8钢,表示平均含碳量为0.8%的碳素工具钢。T12A,表示平均含碳量为1.2%的高级优质碳素工具钢。 3.碳钢的用途举例 Q195、Q215,用于铆钉、开口销等及冲压零件和焊接构件。 Q235、Q255,用于螺栓、螺母、拉杆、连杆及建筑、桥梁结构件。 Q275,用于强度较高转轴、心轴、齿轮等。 Q345,用于船舶、桥梁、车辆、大型钢结构。 08钢,含碳量低,塑性好,主要用于制造冷冲压零件。 10、20钢,常用于制造冲压件和焊接件。也常用于制造渗碳件。 35、40、45、50钢属中碳钢,经热处理后可获得良好的综合力学性能,主要用制造齿轮、套筒、轴类零件等。这几种钢在机械制造中应用非常广泛。 T7、T8钢,用于制造具有较高韧性的工具,如冲头、凿子等。 T9、T10、T11钢,用作要求中等韧性、高硬度的刃具,如钻头、丝锥、锯条等。 T12、T13钢,用于要求更高硬度、高耐磨性的锉刀、拉丝模具等。 (二)合金钢 合金钢的分类方法有多种,常见的有以下两种。 (1)按用途分类分为三类: 合金结构钢,用于制造各种性能要求更高的机械零件和工程构件; 合金结构钢,用于制造各种性能要求更高的刃具、量具和模具; 特殊性能钢,具有特殊物理和化学性能的钢,如不锈钢、耐热钢、耐磨钢等。 (2)铵合金元素总含量多少分类分为三类:

光学材料特性

光学材料特性表:

常用光学塑料-聚甲基丙烯甲酯PMMA 密度(kg/m3):(1.17~1.20)×10E3 nD ν:1.49 57.2~57.8 透过率(%):90~92 吸水率(%):0.3~0.4 玻璃化温度:10E5 熔点(或粘流温度):160~200 马丁耐热:68 热变形温度:74~109(4.6 ×10Pa) 68~99(18.5×10Pa) 线膨胀系数:(5~9)×10E-5 计算收缩率(%):1.5~1.8 比热J/kgK:1465 导热系数W/m K:0.167~0.251 燃烧性m/min:慢 耐酸性及对盐溶液的稳定性:出强氧化酸外,对弱碱较稳定 耐碱性:对强碱有侵蚀对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响日光及耐气候性:紫外透过滤73.5% 常用光学塑料-苯乙烯甲基丙烯酸甲酯共聚物 密度(kg/m3):(1.12~1.16)×10E3 nD ν:1.533 42.4 透过率(%):90 吸水率(%):0.2 玻璃化温度: 熔点(或粘流温度): 马丁耐热:<60 热变形温度:85~99 (18.5×105Pa) 线膨胀系数:(6~8)×10E-5 计算收缩率(%): 比热J/kgK: 导热系数W/m K:0.125~0.167 燃烧性m/min:慢

耐酸性及对盐溶液的稳定性:除强氧化酸外,对酸盐水均稳定 耐碱性:对强碱有侵蚀,对弱碱较稳定 耐油性:对动植物油,矿物油稳定 耐有机溶剂性:对芳香族,氯化烃等能溶解,醇类脂肪族无影响 日光及耐气候性:紫外透过滤73.5% 常用光学塑料-聚碳酸酯PC 密度(kg/m3):1.2 ×10E3 nD ν:1.586(25) 29.9 透过率(%):80~90 吸水率(%):23CRH50% 0.15 水中0.35 玻璃化温度:149 熔点(或粘流温度):225~250(267) 马丁耐热:116~129 热变形温度:132~141(4.6×105Pa) 132138(18.5×105Pa) 线膨胀系数:6×10-5 计算收缩率(%):0.5~0.7 比热J/kgK:1256 导热系数W/m K:0.193 燃烧性m/min:自熄 耐酸性及对盐溶液的稳定性:强氧化剂有破坏作用,在高于60水中水解,对稀酸,盐,水稳定 耐碱性:强碱溶液,氨和胺类能腐蚀和分解,弱碱影响较轻 耐油性:对动物油和多数烃油及其酯类稳定 耐有机溶剂性:溶于氯化烃和部分酮,酯及芳香烃中,不溶于脂肪族,碳氢化合物,醚和醇类 日光及耐气候性:日光照射微脆化 常用光学塑料-烯丙基二甘碳酸酯CR39 密度(kg/m3):25 1.32×10E3 nD ν:1.498 53.6~57.8 透过率(%):92 吸水率(%):0.2 24h 25 玻璃化温度:

TFT-LCD光学膜介绍

一、光学薄膜简介 1、光学薄膜的定义 光学薄膜在我们的生活中无处不在,从精密及光学设备、显示器设备到日常生活中的光学薄膜应用;比方说,平时戴的眼镜、数码相机、各式家电用品,或者是钞票上的防伪技术,皆能被称之为光学薄膜技术应用之延伸。倘若没有光学薄膜技术作为发展基础,近代光电、通讯或是镭射技术将无法有所进展,这也显示出光学薄膜技术研究发展的重要性。 光学薄膜系指在光学元件或独立基板上,制镀上或涂布一层或多层介电质膜或金属膜或这两类膜的组合,以改变光波之传递特性,包括光的透射、反射、吸收、散射、偏振及相位改变。故经由适当设计可以调变不同波段元件表面之穿透率及反射率,亦可以使不同偏振平面的光具有不同的特性。 一般来说,光学薄膜的生产方式主要分为干法和湿法的生产工艺。所谓的干式就是没有液体出现在整个加工过程中,例如真空蒸镀是在一真空环境中,以电能加热固体原物料,经升华成气体后附着在一个固体基材的表面上,完成涂布加工。日常生活中所看到装饰用的金色、银色或具金属质感的包装膜,就是以干式涂布方式制造的产品。但是在实际量产的考虑下,干式涂布运用的范围小于湿式涂布。湿式涂布一般的做法是把具有各种功能的成分混合成液态涂料,以不同的加工方式涂布在基材上,然后使液态涂料干燥固化做成产品。在本文中仅讨论湿式涂布技术的光学薄膜产业。 2、光学薄膜种类 光学薄膜根据其用途分类、特性与应用可分为:反射膜、增透膜/减反射膜、滤光片、偏光片/偏光膜、补偿膜/相位差板、配向膜、扩散膜/片、增亮膜/棱镜片/聚光片、遮光膜/黑白胶等。相关衍生的种类有光学级保护膜、窗膜等。 2.1、反射膜 反射膜一般可分为两类,一类是金属反射膜,一类是全电介质反射膜。此外,还有将两者结合的金属电介质反射膜,功能是增加光学表面的反射率。 一般金属都具有较大的消光系数。当光束由空气入射到金属表面时,进入金属内的光振幅迅速衰减,使得进入金属内部的光能相应减少,而反射光能增加。消光系数越大,光振幅衰减越迅速,进入金属内部的光能越少,反射率越高。人们总是选择消光系数较大,光学性质较稳定的金属作为金属膜材料。在紫外区常用的金属薄材料是铝,在可见光区常用铝和银,在红外区常用金、银和铜,此外,铬和铂也常作一些特种薄膜的膜料。由于铝、银、铜等材料在空气中很容易氧化而降低性能,所以必须用电介质膜加以保护。常用的保护膜材料有一氧化硅、氟化镁、二氧化硅、三氧化二铝等。 金属反射膜的优点是制备工艺简单,工作的波长范围宽;缺点是光损大,反射率不可能很高。为了使金属反射膜的反射率进一步提高,可以在膜的外侧加镀几层一定厚度的电介质层,组成金属电介质反射膜。需要指出的是,金属电介质射膜增加了某一波长(或者某一波

光电材料报告

---光电产业在国内外的发展概况 【调研报告】 报告人:孙四五 2013/04/09

1.概述 1.1光电材料 1.2光电器件 1.3光电产业 2.国际发展概状 3.国内发展概状 3.1我国光电产业的开端及兴起 3.2现状 3.2.1产业分布现状及发展 3.2.2光电材料研发能力现状及发展 3.2.3国家和地区政策及规划 3.3存在的问题及发展趋势

1.1光电材料 光电材料是指用于制造各种光电设备(主要包括各种主、被动光电传感器光信息处理和存储装置及光通信等)的材料,主要包括红外材料、激光材料、光纤材料、非线性光学材料等,通过分子束外延,CVD等技术手段可以获得相关用途的材料形式。 举例:GaAs(砷化镓)--迁移率高(0.8m2/V.s),禁带宽度大(1.43eV,在军事领域(雷达、电子战系统、导弹、卫星等)和商用领域(移动电话,微波识别系统等)中具有极其重要的作用,GaAs单晶可以用于制造发光二极管(LED)激光器,光控制点(PD)太阳能电池,微波二极管等。

1.2光电器件 随着光电技术和光电材料的不断发展,应用在生活、军事上的光电器件得到了蓬勃发展。 发光二极管、液晶显示屏、激光器、太阳能电池

由于 解决方案新能源,新材料的开发节电、节材器件的开发传统化石能源枯竭 金属矿物质枯竭 当今世界面临的两大危机 光 电 功 能 材 料 光电器件光电产业的发展 科技的发展及国防军事的需要军事

1.3光电产业 光电产业是以光电技术为核心、并利用光电技术实现产品的生产与制造,构 筑完整的产业链。光电产业涵盖LCD、LED、光伏、光通信、激光等各个领域。 光电技术自20世纪60-70年代开始萌芽,目前已进入技术日新月异、工业化 生产技术日渐成熟的时期,已成为全球电子工业产业技术转型的趋势。 光电产业被认为是21 世纪全球经济发展的“战略性行业”之一, 是一个比较庞大的产业,它涉及到了社会的方方面面。按综合传统习惯和近年来细分产业发展趋势,产业可以具体分为以下几方面: 1、液晶产业液晶产业的市场规模日益增长, TFT2LCD 下游应用设备中液 晶显示屏、笔记本电脑、液晶电视、手机需求都呈现出强劲的增长势头。

相关文档
最新文档