上海高考解析几何试题

上海高考解析几何试题
上海高考解析几何试题

近四年上海高考解析几何试题

一.填空题:

1、双曲线116922=-y x 的焦距是 .

2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?,则点P 轨迹方程 ___。

3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。

4、将参数方程??

?=+=θ

θ

sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。

5、已知圆)0()5(:2

22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共

点,则r 的取值范围是 .

6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 .

7、已知圆2

x -4x -4+2y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ;

10、曲线2y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x .

12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m .

13、若直线1210l x my ++=: 

与直线231l y x =-:平行,则=m . 14 、以双曲线1542

2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22

219

x y a -

=右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF =

17、已知(1,2),(3,4A B

,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是

i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是

二.选择题:

18、过抛物线x y 42=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( )

A .有且仅有一条

B .有且仅有两条

C .有无穷多条

D .不存在 19、抛物线x y 42=的焦点坐标为 ( ) (A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(.

20、若R ∈k ,则“3>k ”是“方程

13

322

=+--k y k x 表示双曲线”的 ( ) (A )充分不必要条件. (B )必要不充分条件.

(C )充要条件. (D )既不充分也不必要条件.

21 、已知椭圆

22

1102

x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( ) (A )4. (B )5. (C )7. (D )8. 三.解答题

22 (本题满分18分)(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程;

(2)已知椭圆C 的方程是122

22=+b

y a x )0(>>b a . 设斜率为k 的直线l ,交椭圆C 于A B 、

两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;

(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步

骤,并在图中标出椭圆的中心.

23、(本题满分14分)如图,点A 、B 分别是椭圆

22

13620

x y +=长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA PF ⊥.

(1)求点P 的坐标;

(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于

MB ,求椭圆上的点到点M 的距离d 的最小值.

24 (本题满分14分)学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器

运行(按顺时针方向)的轨迹方程为

125

10022=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)

后返回的轨迹是以y 轴为对称轴、??

? ??

764,0M 为顶点的抛物线的实线

部分,降落点为)0,8(D . 观测点)0,6()0,4(B A 、同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;

(2)试问:当航天器在x 轴上方时,观测点B A 、测得离航天器的距离分别为多少时,应向航天器发出变轨指令?

25 、(本题满分14分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点.

(1)求证:“如果直线l 过点T (3,0),那么→

--OA →

--?OB =3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.

26 、(14分) 求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.

例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体

316后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为3

16

,求侧棱长”;也可以是“若正四棱锥的体积为3

16

,求所有侧面面积之和的最小值”.

试给出问题“在平面直角坐标系xOy 中,求点)1,2(P 到直线043=+y x 的距离.”的一个

有意义的“逆向”问题,并解答你所给出的“逆向”问题.

评分说明:

(ⅰ) 在本题的解答过程中,如果考生所给问题的意义不大,那么在评分标准的第二阶段所列6分中,应只给2分,但第三阶段所列4分由考生对自己所给问题的解答正确与否而定. (ⅱ) 当考生所给出的“逆向”问题与所列解答不同,可参照所列评分标准的精神进行评分.

x

y

27 (14分) 如图,在直角坐标系xOy 中,设椭圆

)0(1:22

22>>=+b a b

y a x C 的左右两个焦点 分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为(

)

1,2M .

(1) 求椭圆C 的方程;

(2) 设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积.

28(本题满分18分)我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆122

22=+c

x b y (0)x ≤合成

的曲线称作“果圆”,其中2

22c b a +=,0>a ,0>>c b .

如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.

(1)若012F F F △是边长为1的等边三角形,求 “果圆”的方程;

(2)当21A A >21B B 时,求a

b

的取值范围;

29在平面直角坐标系xOy 中,

A B 、分别为直线2x y +=与x y 、轴的交点,C 为AB 的中点. 若抛物线22(0)y px p =>过点C ,求焦点F 到直线AB 的距离.

30 、已知z 是实系数方程220x bx c ++=的虚根,记它在直角坐标平面上的对应点为

(Re ,Im )z P z z .

(1)若(,)b c 在直线20x y +=上,求证:z P 在圆1C :2

2

(1)1x y -+=上;

(2)给定圆C :222

()x m y r -+=(R m r ∈、,0r >),则存在唯一的线段s 满足:①若z

P 在圆C 上,则(,)b c 在线段s 上;② 若(,)b c 是线段s 上一点(非端点),则z P 在圆C 上. 写出线段s 的表达式,并说明理由;

近四年上海高考解析几何试题

一.填空题:只要求直接填写结果,每题填对得4分,否则一律得零分. 1、双曲线116922=-y x 的焦距是 .

6

5 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?,则点P 轨迹方程 ___。解答:设点P 的坐标是(x,y),则由4=?OA OP 知04242=-+?=+y x y x

3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是

()0,10,则双曲线的方程是__________。

解答:由双曲线的渐近线方程为x y 3±=,知3=a

b

,它的一个焦点是()0,10,知102

2

=+b a ,

因此3,1==b a 双曲线的方程是19

2

2

=-y x 4、将参数方程??

?=+=θ

θ

sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。

解答:4)1(22=+-y x 5、已知圆)0()5(:2

22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共

点,则r 的取值范围是 . )10,

0(

6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 4.

7、已知圆2

x -4x -4+2

y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 解:由已知得圆心为:(2,0)P

,由点到直线距离公式得:d ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ;

解:

已知22222224

2,161164(b a b c y x a a b c

F =??==????=?+=?

?-=???-??为所求;

10、若曲线2

y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条件

是 .

解:作出函数2

1,0

||11,0x x y x x x +≥?=+=?-+

的图象,

如右图所示:所以,0,(1,1)k b =∈-;

11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 5.

12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 2.

13、若直线1210l x my ++=: 

与直线231l y x =-:平行,则=m . 3

2

- 14 、以双曲线15

42

2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 .)3(122+=x y

16 、已知P 是双曲线22

219

x y a -

=右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 5.

17 (2008春季12) 已知(1,2),

(3,4)A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设

i P 是i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是

3

2

二.选择题:

18、过抛物线x y 42

=的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( B )

A .有且仅有一条

B .有且仅有两条

C .有无穷多条

D .不存在

解答:x y 42

=的焦点是(1,0),设直线方程为0)1(≠-=k x k y (1)将(1)代入抛物线方程可得0)42(2

2

2

2

=++-k x k x k ,x 显然有两个实根,且都大于0,它们的横坐标之和是

3

32435422

2

2±=?=?=+k k k k ,选B 19、抛物线x y 42=的焦点坐标为 ( B )

(A ))1,0(. (B ))0,1(. (C ))2,0(. (D ))0,2(.

20、若R ∈k ,则“3>k ”是“方程

13

322

=+--k y k x 表示双曲线”的 ( A ) (A )充分不必要条件. (B )必要不充分条件.

(C )充要条件. (D )既不充分也不必要条件.

21 、已知椭圆

22

1102

x y m m +=--,长轴在y 轴上. 若焦距为4,则m 等于 ( D )

(A )4. (B )5. (C )7. (D )8. 三.解答题

22 (本题满分18分)(1)求右焦点坐标是)0,2(,且经过点)2,2(--的椭圆的标准方程;

(2)已知椭圆C 的方程是122

22=+b

y a x )0(>>b a . 设斜率为k 的直线l ,交椭圆C 于A B 、

两点,AB 的中点为M . 证明:当直线l 平行移动时,动点M 在一条过原点的定直线上;

(3)利用(2)所揭示的椭圆几何性质,用作图方法找出下面给定椭圆的中心,简要写出作图步

骤,并在图中标出椭圆的中心.

[解](1)设椭圆的标准方程为122

22=+b

y a x ,0>>b a ,

∴ 42

2

+=b a ,即椭圆的方程为142

22

2

=++b y b x , ∵ 点(2,2--)在椭圆上,∴

12442

2=++b b ,解得 42=b 或22

-=b (舍),

由此得82

=a ,即椭圆的标准方程为14

82

2=+y x . …… 5分 [证明](2)设直线l 的方程为m kx y +=, …… 6分

与椭圆C 的交点A (11,

y x )、B (22,

y x ),则有???

??=++=12

222b y a x m kx y ,

解得 02)(222222222=-+++b a m a kmx a x k a b ,

∵ 0>?,∴ 2222k a b m +<,即 222222k a b m k a b +<<+-.

则 2

2222121222

2212,2k a b m

b m kx m kx y y k a b km

a x x +=+++=++-=+,

∴ AB 中点M 的坐标为???

?

??++-22222222,k a b m b k a b km a . …… 11分

∴ 线段AB 的中点M 在过原点的直线 022=+y k a x b 上. …… 13分

[解](3)

如图,作两条平行直线分别交椭圆于A 、B 和D C 、,并分别取AB 、CD 的中点N M 、,连接直线MN ;又作两条平行直线(与前两条直线不平行)分别交椭圆于1A 、1B 和11D C 、,并分别取11B A 、11D C 的中点11N M 、,连接直线11N M ,那么直线MN 和11N M 的交点O 即为椭圆中心. …… 18分

23、(本题满分14分)如图,点A 、B 分别是椭圆

22

13620

x y +=长轴的左、右端点,点F 是椭圆的右焦点,点P 在椭圆上,且位于x 轴上方,PA PF ⊥.

(1)求点P 的坐标;

(2)设M 是椭圆长轴AB 上的一点,M 到直线AP 的距离等于

MB ,求椭圆上的点到点M 的距离d 的最小值.

[解](1)由已知可得点A (-6,0),F (4,0)

设点P 的坐标是},4{},,6{),,(y x FP y x AP y x -=+=则,由已知得

.623,018920

)4)(6(120

36222

2-===-+??

???=+-+=+

x x x x y x x y x 或则 由于).32

5,23(,325,23,0的坐标是点于是只能P y x y ∴==

> (2)直线AP 的方程是.063=+-y x 设点M 的坐标是(m ,0),则M 到直线AP 的距离是

2

|

6|+m , 于是

,2,66|,6|2

|

6|=≤≤--=+m m m m 解得又椭圆上的点),(y x 到点M 的距离d 有 ,15)2

9

(94952044)2(222222+-=-++-=+-=x x x x y x d

由于.15,2

9

,66取得最小值时当d x x =∴≤≤-

24 (本题满分14分)学校科技小组在计算机上模拟航天器变轨返回试验. 设计方案如图:航天器

运行(按顺时针方向)的轨迹方程为

125

10022=+y x ,变轨(即航天器运行轨迹由椭圆变为抛物线)后返回的轨迹是以y 轴为对称轴、??? ?

?

764,0M 为顶点的抛物线的实线

部分,降落点为)0,8(D . 观测点)0,6()0,4(B A 、同时跟踪航天器. (1)求航天器变轨后的运行轨迹所在的曲线方程;

(2)试问:当航天器在x 轴上方时,观测点B A 、测得离航天器的距离分别为多少时,应向航天器发出变轨指令?

[解](1)设曲线方程为7

642+=ax y , 由题意可知,764640+

?=a . 71

-=∴a .……4分 ∴ 曲线方程为7

64

712+-=x y . ……6分

(2)设变轨点为),(y x C ,根据题意可知

???

???

?+-==+)

2(,76471)1(,125100222x y y x

得 036742=--y y , 4=y 或4

9

-=y (不合题意,舍去).

4=∴y . ……9分 得 6=x 或6-=x (不合题意,舍去). ∴C 点的坐标为)4,6(, ……11分

4||,52||==BC AC .答:当观测点B A 、测得BC AC 、距离分别为452、时,应向航天器发出变轨指令. ……14分

25 、(本题满分14分)在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点.

(1)求证:“如果直线l 过点T (3,0),那么→

--OA →

--?OB =3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. [解](1)设过点T(3,0)的直线l 交抛物线y 2=2x 于点A(x 1,y 1)、B(x 2,y 2).

当直线l 的钭率不存在时,l 的方程为x=3,此时,直线l 与抛物线相交于点A(3,6)、B(3,-6).

∴OB OA ?=3;

当直线l 的钭率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,由22(3)

y x

y k x =??=-?

得 2122606ky y k y y --=?=- 又 ∵ 22112211,22

x y x y ==,

∴2121212121()34

OA OB x x y y y y y y =+=+=,

综上所述,命题“如果直线l 过点T(3,0),那么?=3”是真命题;

(2)逆命题是:设直线l 交抛物线y 2=2x 于A 、B 两点,如果?=3,那么该直线过点T(3,0).该命题是假命题. 例如:取抛物线上的点A(2,2),B(

2

1

,1),此时OA OB =3, 直线AB 的方程为:2(1)3

y x =+,而T(3,0)不在直线AB 上;

说明:由抛物线y 2=2x 上的点A (x 1,y 1)、B (x 2,y 2) 满足OB OA ?=3,可得y 1y 2=-6,或y 1y 2=2, 如果y 1y 2=-6,可证得直线AB 过点(3,0);

如果y 1y 2=2,可证得直线AB 过点(-1,0),而不过点(3,0).

26 、(14分) 求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题.

例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”.求出体

316后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为3

16

,求侧棱长”;也可以是“若正四棱锥的体积为3

16

,求所有侧面面积之和的最小值”.

试给出问题“在平面直角坐标系xOy 中,求点)1,2(P 到直线043=+y x 的距离.”的一个

有意义的“逆向”问题,并解答你所给出的“逆向”问题.

评分说明:

(ⅰ) 在本题的解答过程中,如果考生所给问题的意义不大,那么在评分标准的第二阶段所列6分中,应只给2分,但第三阶段所列4分由考生对自己所给问题的解答正确与否而定. (ⅱ) 当考生所给出的“逆向”问题与所列解答不同,可参照所列评分标准的精神进行评分. [解] 点)1,2(到直线043=+y x 的距离为24

3|1423|2

2

=+?+?. …… 4分

“逆向”问题可以是:

(1) 求到直线043=+y x 的距离为2的点的轨迹方程. …… 10分 [解] 设所求轨迹上任意一点为),

(y x P ,则

25

|

43|=+y x , 所求轨迹为01043=-+y x 或01043=++y x . …… 14分 (2) 若点)1,2(P 到直线0:=+by ax l 的距离为2,求直线l 的方程. …… 10分 [解]

2|2|2

2=++b a b a ,化简得0342=-b ab ,0=b 或b a 34=,

所以,直线l 的方程为0=x 或043=+y x . …… 14分 意义不大的“逆向”问题可能是:

(3) 点)1,2(P 是不是到直线043=+y x 的距离为2的一个点? …… 6分 [解] 因为

24

3|1423|2

2

=+?+?,

所以点)1,2(P 是到直线043=+y x 的距离为2的一个点. ……10分 (4) 点)1,1(Q 是不是到直线043=+y x 的距离为2的一个点? …… 6分 [解] 因为

25

7

43|1413|2

2≠=

+?+?,

x

y

x

y 所以点)1,1(Q 不是到直线043=+y x 的距离为2的一个点. ……10分 (5) 点)1,2(P 是不是到直线0125=+y x 的距离为2的一个点? …… 6分 [解] 因为

213

22

125|11225|2

2≠=

+?+?, 所以点)1,2(P 不是到直线0125=+y x 的距离为2的一个点. ……10分 27 、(14分) 如图,在直角坐标系xOy 中,设椭圆

)0(1:22

22>>=+b a b

y a x C 的左右两个焦点 分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为(

)

1,2M .

(1) 求椭圆C 的方程;

(2) 设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积.

[解] (1) [解法一] x l ⊥ 轴,2F ∴的坐标为

(

)

0,2.…… 2分

由题意可知 ?????=-=+,

2,

112

2222b a b

a 得 ???==.

2,

42

2b a ∴ 所求椭圆方程为12

42

2=+y x . …… 6分 [解法二]由椭圆定义可知

a MF MF 221=+. 由题意12=MF ,121-=∴

a MF . …… 2分

又由Rt △21F MF 可知 ()

12

2)12(2

2+=-a ,0>a ,

2=∴a ,又22

2

=-b a ,得22

=b . ∴ 椭圆C 的方程为12

42

2=+y x . …… 6分 (2)直线2BF 的方程为2-=x y . …… 8分

由 ??

?

??=+-=,124,

222y x x y 得点N 的纵坐标为32. …… 10分

又2221=F F ,3822322211=????

? ??+

?=

∴?BN F S . …… 14分

28(本题满分18分)我们把由半椭圆12222=+b y a x (0)x ≥与半椭圆122

22=+c

x b y (0)x ≤合成

的曲线称作“果圆”,其中2

22c b a +=,0>a ,0>>c b .

如图,点0F ,1F ,2F 是相应椭圆的焦点,1A ,2A 和1B ,2B 分别是“果圆”与x ,y 轴的交点.

(1)若012F F F △是边长为1的等边三角形,求 “果圆”的方程;

(2)当21A A >21B B 时,求a

b

的取值范围;

(3)连接“果圆”上任意两点的线段称为“果圆” 的弦.试研究:是否存在实数k ,使斜率为k 的“果圆”

平行弦的中点轨迹总是落在某个椭圆上?若存在,求出所有可能的k 值;若不存在,说明理由.

解:(1)

(

(012(0)00F c F F ,

,,,,

021211F F b F F ∴

=

==,,

于是222

23744c a b c ==+=,,所求“果圆”方程为 2241(0)7x y x +=≥,

224

1(0)3

y x x +=≤.

(2)由题意,得 b c a 2>+,即a b b a ->-222. 2222)2(a c b b =+> ,2

22)2(a b b a ->-∴,得

5

4

2

2

2

>∴-=>a b b a c b . 45b a ?

∴∈????

,. (3)设“果圆”C 的方程为22221(0)x y x a b +=≥,22

221(0)y x x b c +=≤.

记平行弦的斜率为k .

当0=k 时,直线()y t b t b =-≤≤与半椭圆22

221(0)x y x a b +=≥的交点是

P t ?? ? ???,与半椭圆22

221(0)y x x b c +=≤

的交点是Q t ??- ? ???

. ∴ P Q ,的中点M ()x y ,满足 221,

2

a c

t x b y t ?-?=

-??=?

, 得

1222

2

2

=+??

?

??-b y c a x .

b a 2<,∴ 2

2

220222a c a c b a c b b ----+??-=≠ ?

??

. 综上所述,当0=k 时,“果圆”平行弦的中点轨迹总是落在某个椭圆上.

当0>k 时,以k 为斜率过1B 的直线l 与半椭圆22

221(0)x y x a b +=≥的交点是

22232222222ka b k a b b k a b k a b ??

- ?++??

,. 由此,在直线l 右侧,以k 为斜率的平行弦的中点轨迹在直线x ka

b y 22

-=上,即不在某一椭

圆上.

当0

29在平面直角坐标系xOy 中,

A B 、分别为直线2x y +=与x y 、轴的交点,C 为AB 的中点. 若抛物线22(0)y px p =>过点C ,求焦点F 到直线AB 的距离. [解] 由已知可得 (2,0),

(0,2),(1,1)A B C , …… 3分

解得抛物线方程为 2y x =. … 6分 于是焦点 1,04F ??

?

??

.

…… 9分 ∴ 点F 到直线AB 的距离为

8=. …… 12分 30 、(本题满分18分) 已知z 是实系数方程2

20x bx c ++=的虚根,记它在直角坐标平面上

的对应点为(Re ,Im )z P z z .

(1)若(,)b c 在直线20x y +=上,求证:z P 在圆1C :2

2

(1)1x y -+=上;

(2)给定圆C :222

()x m y r -+=(R m r ∈、,0r >),则存在唯一的线段s 满足:①若z

P 在圆C 上,则(,)b c 在线段s 上;② 若(,)b c 是线段s 上一点(非端点),则z P 在圆C 上. 写出线段s 的表达式,并说明理由;

(3)由(2)知线段s 与圆C 之间确定了一种对应关系,通过这种对应关系的研究,填写表一(表中1s 是(1)中圆1C 的对应线段).

[证明](1)由题意可得 20b c +=,解方程2220x bx b +-=

,得z b =-, 2分 ∴

点(

),

z P b -

或()

,z P b -,

将点z P 代入圆1C 的方程,等号成立, ∴ z P 在圆1C :22(1)1x y -+=上. …… 4分 (2)[解法一] 当0?<,即2b c <

时,解得z b =-, ∴

点(

),

z P b -

或()

,z P b -,

由题意可得222()b m c b r --+-=,整理后得 222c mb r m =-+-, …… 6分

()240b c ?=-<,222()b m c b r ++-=, (,)b m r m r ∴∈---+.

∴ 线段s 为: 22

2c mb r m =-+-,[,]b m r m r ∈---+.

若(,)b c 是线段s 上一点(非端点),则实系数方程为

222220,(,)x bx mb r m b m r m r +-+-=∈---+.

此时0?<

,且点(

),

z P b -

、()

,z P b -在圆C 上.…… 10分

[解法二] 设i =+z x y 是原方程的虚根,则2(i)2(i)0++++=x y b x y c ,

解得22

,2,

x b y x bx c =-??

=++?①②

由题意可得,222

()x m y r -+=. ③ 解①、②、③ 得 22

2c mb r m =-+-. …… 6分

以下同解法一. [解](3)表一

近四年上海高考解析几何试题

近四年上海高考解析几何试题 近四年上海高考解析几何试题一(填空题:只要求直接填写结果,每题填对得4分,否则一律得零分. 5221 ( 2005春季7 ) 双曲线的焦距是 . 9x,16y,162 (2005年3) 直角坐标平面中,若定点与动点满足,则点P的A(1,2)P(x,y)xoyOP,OA,4轨迹方程是 __________。解答:设点P的坐标是(x,y),则由知OP,OA,4 x,2y,4,x,2y,4,0 3 (2005年5) 若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是,,y,,3x10,0 b__________。解答:由双曲线的渐近线方程为,知,它的一个焦点是,知,,y,,3x,310,0a 2y222,因此双曲线的方程是 a,1,b,3x,,1a,b,109 ,,,x12cos,4 (2005年6) 将参数方程(为参数)化为普通方程,所得方程是 __________。 ,,y,2sin,, 22解答: (x,1),y,4 2225 (2006春季5) 已知圆和直线. 若圆与直线没l:3x,y,5,0C:(x,5),y,r(r,0)Cl有公共 r 点,则的取值范围是 . (0,10) 6 (2006春季11) 已知直线过点,且与轴、轴的正半轴分别交于两点,为坐 P(2,1)yxlA、BO标原 点,则三角形面积的最小值为 . 4. OAB 227 (2006年2) 已知圆,4,4,,0的圆心是点P,则点P到直线,,1,0的距离yxxyx

是 ; |201|,,2 解:由已知得圆心为:,由点到直线距离公式得:; P(2,0)d,,211,8 (2006年7) 已知椭圆中心在原点,一个焦点为F(,2,0),且长轴长是短轴长的2倍,则3 该椭圆的标准方程是 ; 2b,4, 2,abc,,2,23,2y,,x2解:已知为所 求; ,,,,,,a161,,222164abc,,,,,F(23,0),,, ,5,9 (2006年8)在极坐标系中,O是极点,设点A(4,),B(5,,),则?OAB的面积是 ; 36 ,,,55 解:如图?OAB中, ,,,,,,,,OAOBAOB4,5,2(()),366 15, (平方单位); ,,,S45sin5,AOB26 210 (2006年11) 若曲线,||,1与直线,,没有公共点,则、分别应满足的条件yyxkxbkb

高中数学解析几何中的基本公式

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 221B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比 为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --= λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 21211k k k k +-,]2 ,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

2020高考数学专题复习-解析几何专题

《曲线的方程和性质》专题 一、《考试大纲》要求 ⒈直线和圆的方程 (1)理解直线的倾斜角和斜率的概念,掌握过两点的直线的斜率公式.掌握直线方 程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程. (2)掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系. (3)了解二元一次不等式表示平面区域. (4)了解线性规划的意义,并会简单的应用. (5)了解解析几何的基本思想,了解坐标法. (6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. ⒉圆锥曲线方程 (1)掌握椭圆的定义、标准方程和椭圆的简单几何性质,理解椭圆的参数方程. (2)掌握双曲线的定义、标准方程和双曲线的简单几何性质. (3)掌握抛物线的定义、标准方程和抛物线的简单几何性质. (4)了解圆锥曲线的初步应用. 二、高考试题回放 1.(福建)已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直 的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率是 ( ) A . 33 B .32 C .2 2 D .23

2.(福建)直线x +2y=0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于 . 3.(福建)如图,P 是抛物线C :y=2 1x 2上一点,直线l 过点P 且与抛物线C 交于另一点Q.(Ⅰ)若直线l 与过点P 的切线垂直,求线段PQ 中点M 的轨迹方程; (Ⅱ)若直线l 不过原点且与x 轴交于点S ,与y 轴交于点T ,试求 | || |||||SQ ST SP ST +的取值范围. 4.(湖北)已知点M (6,2)和M 2(1,7).直线y=mx —7与线段M 1M 2的交点M 分有向线段M 1M 2的比为3:2,则m 的值为 ( ) A .2 3 - B .3 2- C .4 1 D .4 5.(湖北)两个圆0124:0222:222221=+--+=-+++y x y x C y x y x C 与的 公切线有且仅有 ( ) A .1条 B .2条 C .3条 D .4条 6.(湖北)直线12:1:22=-+=y x C kx y l 与双曲线的右支交于不同的两 点A 、B. (Ⅰ)求实数k 的取值范围; (Ⅱ)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由. 7.(湖南)如果双曲线112 132 2 =-y x 上一点P 到右焦点的距离为13, 那么 点 P 到右准线 的 距 离 是 ( )

高考解析几何中的基本公式(优选.)

最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 特别地:x //AB 轴, 则=AB 。 y //AB 轴, 则=AB 。 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为 λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x

变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

2019年上海市高三数学一模分类汇编:解析几何

2(2019黄浦一模). 双曲线2 2 12 y x -=的渐近线方程为 2(2019奉贤一模). 双曲线22 13y x -=的一条渐近线的一个方向向量(,)d u v =u r ,则u v = 2(2019金山一模). 抛物线24y x =的准线方程是 2(2019浦东一模). 抛物线24y x =的焦点坐标为 3(2019杨浦一模). 已知双曲线221x y -=,则其两条渐近线的夹角为 4(2019静安一模). 若直线22(273)(9)30a a x a y -++-+=与x 轴平行,则a 的值是 4(2019普陀一模). 若直线l 经过抛物线2 :4C y x =的焦点且其一个方向向量为(1,1)d =u r , 则直线l 的方程为 5(2019徐汇一模). 已知双曲线22221x y a b -=(0a >,0b >) 的一条渐近线方程是2y x =,它的一个焦点与抛物线220y x =的焦点相同,则此双曲线的方程是 6(2019崇明一模). 在平面直角坐标系xOy 中,已知抛物线24y x =上一点P 到焦点的距离为5,则点P 的横坐标是 6(2019松江一模). 已知双曲线标准方程为2 213 x y -=,则其焦点到渐近线的距离为 7(2019闵行一模). 已知两条直线1:4230l x y +-=和2:210l x y ++=,则1l 与2l 的距离 为 7(2019崇明一模). 圆22240x y x y +-+=的圆心到直线3450x y +-=的距离等于 8(2019虹口一模). 双曲线22 143 x y -=的焦点到其渐近线的距离为 8(2019奉贤一模). 椭圆2214x y t +=上任意一点到其中一个焦点的距离恒大于1,则t 的取值范围为 9(2019静安一模). 以两条直线1:20l x y +=和2:350l x y ++=的交点为圆心,并且与直线315x y ++相切的圆的方程是 12(2019徐汇一模). 已知圆22:(1)1M x y +-=,圆22 :(1)1N x y ++=,直线1l 、2l 分 别过圆心M 、N ,且1l 与圆M 相交于A 、B 两点,2l 与圆N 相交于C 、D 两点,点P 是 椭圆22 194 x y +=上任意一点,则PA PB PC PD ?+?u u u r u u u r u u u r u u u r 的最小值为 12(2019黄浦一模). 如图,1l 、2l 是过点M 夹角为 3 π 的两条直线,且与圆心 为O ,半径长为1的圆分别相切,设圆周上一点P 到1l 、2l

解析几何中的基本公式

解析几何中的基本公式 解析几何学(analytic geometry )是借助坐标系,用代数方法研究几何对象之间的关系和性质的一门几何学分支,亦叫坐标几何。由法国数学家笛卡儿和费马等人创建,其思想来源可上溯到公元前两千年。 两点间距离:若)y ,x (B ),y ,x (A 2211,则2 12212)()(y y x x AB -+-= 平行线间距离:若0C By Ax :l , 0C By Ax :l 2211=++=++ 则:2221B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++οο 则P 到l 的距离为: 2 2B A C By Ax d +++= οο 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则: 2 122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222121y y y x x x 变形后: y y y y x x x x --=λ--= λ21 21或

若直线l1的斜率为k1,直线l2的斜率为k2,则l1到l2的角为),0(,π∈αα 适用范围:k1,k2都存在且k1k2≠-1 , 21121tan k k k k +-= α 若l1与l2的夹角为θ,则=θtan 2 12 11k k k k +-,]2,0(π∈θ 注意:(1)l1到l2的角,指从l1按逆时针方向旋转到l2所成的角,范围),0(π l1到l2的夹角:指 l1、l2相交所成的锐角或直角。 (2)l1⊥l2时,夹角、到角=2π 。 (3)当l1与l2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面 ] 20[π ∈ββα,,的夹角; (4)l1与l2的夹角为θ,∈ θ] 20[π ,,其中l1//l2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l1到l2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l1与直线l2的的平行与垂直

《空间解析几何2》教学大纲.

《空间解析几何2》教学大纲 课程编号:12307229 学时:22 学分:1.5 课程类别:限制性选修课 面向对象:小学教育专业本科学生 课程英语译名:In terspace An alytic Geometry (2) 一、课程的任务和目的 任务:本课程要求学生熟练掌握解析几何的基本知识和基本理论,正确地理解和使用向 量代数知识,并解决一些实际问题。深刻理解坐标观念和曲线(面)与方程相对应的观念,熟练掌握讨论空间直线、平面、曲线、曲面的基本方法,训练学生的空间想象能力和运算能力。 目的:通过本课程的学习,使学生掌握《空间解析几何》的基本知识、基本思想及基本方法,培养学生的抽象思维能力及空间想象力,培养学生用代数方法处理几何问题的能力,提高学生从几何直观分析问题和和解决问题的能力。为学习《高等代数》及《数学分析》及后继课程打下坚实基础,为日后胜任小学教学工作而作好准备。 二、课程教学内容与要求 (一)平面与空间直线(14学时) 1.教学内容与要求:本章要求学生熟练掌握平面与空间直线的各种形式的方程,能判别空间有关点、直线与平面的位置关系,能熟练计算它们之间的距离与交角。 2?教学重点:根据条件求解平面和空间直线的方程,及点、直线、平面之间的位置关系 3?教学难点:求解平面和空间直线的方程。 4.教学内容: (1)平面的方程(2课时):掌握空间平面的几种求法(点位式、三点式、点法式、一般式)。 (2)平面与点及两个平面的相关位置(2课时):掌握平面与点的位置关系及判定方法;掌握空间两个平面的位置关系及判定方法。 (3)空间直线的方程(2课时):掌握空间直线的几种求法(点向式、两点式、参数式、一般式、射影式)。 (5)直线与平面的相关位置(2课时):掌握空间直线与平面的位置关系及判定方法。 (6)空间两直线的相关位置(2课时):掌握空间两直线的位置关系及判定方法。 (7)空间直线与点的相关位置(2课时):掌握直线与点的位置关系及判定方法。 (8)平面束(2课时):掌握平面束的定义(有轴平面束和平行平面束),并能根据题意求平面束的方程。 (二)特殊曲面(8学时)

2018学年上海高三数学二模分类汇编——解析几何

1(2018松江二模). 双曲线22 219 x y a - =(0a >)的渐近线方程为320x y ±=,则a = 1(2018普陀二模). 抛物线212x y =的准线方程为 2(2018虹口二模). 直线(1)10ax a y +-+=与直线420x ay +-=互相平行,则实数a = 2(2018宝山二模). 设抛物线的焦点坐标为(1,0),则此抛物线的标准方程为 3(2018奉贤二模). 抛物线2y x =的焦点坐标是 4(2018青浦二模). 已知抛物线2x ay =的准线方程是14 y =-,则a = 4(2018长嘉二模). 已知平面直角坐标系xOy 中动点(,)P x y 到定点(1,0)的距离等于P 到定直线1x =-的距离,则点P 的轨迹方程为 7(2018金山二模). 若某线性方程组对应的增广矩阵是421m m m ?? ??? ,且此方程组有唯一 一组解,则实数m 的取值范围是 8(2018静安二模). 已知抛物线顶点在坐标原点,焦点在y 轴上,抛物线上一点(,4) M a -(0)a >到焦点F 的距离为5,则该抛物线的标准方程为 8(2018崇明二模). 已知椭圆22 21x y a +=(0a >)的焦点1F 、2F ,抛物线22y x =的焦 点为F ,若123F F FF =uuu r uuu r ,则a = 8(2018杨浦二模). 若双曲线22 21613x y p -=(0)p >的左焦点在抛物线22y px =的准线上,则p = 9(2018浦东二模). 已知抛物线型拱桥的顶点距水面2米时,量得水面宽为8米,当水面下降1米后,水面的宽为 米 10(2018虹口二模). 椭圆的长轴长等于m ,短轴长等于n ,则此椭圆的内接矩形的面积的最大值为 10(2018金山二模). 平面上三条直线210x y -+=,10x -=,0x ky +=,如果这三条直线将平面化分为 六个部分,则实数k 的取值组成的集合A = 10(2018青浦二模). 已知直线1:0l mx y -=,2:20l x my m +--=,当m 在实数范围内变化时,1l 与2l 的交点P 恒在一个定圆上,则定圆方程是 11(2018奉贤二模). 角α的始边是x 轴正半轴,顶点是曲线2225x y +=的中心,角的 终边与曲线2225x y +=的交点A 的横坐标是3-,角2α的终边与曲线22 25x y +=的交点 是B ,则过B 点的曲线2225x y +=的切线方程是 (用一般式表示) α

2020年上海市高三数学二模分类汇编:解析几何(16区全)

3(2020闵行二模). 若直线10ax by ++=的方向向量为(1,1),则此直线的倾斜角为 3(2020松江二模). 已知动点P 到定点(1,0)的距离等于它到定直线:1l x =-的距离,则点 P 的轨迹方程为 4(2020黄浦二模). 若直线1:350l ax y +-=与2:210l x y +-=互相垂直,则实数a 的值为 4(2020宝山二模). 已知双曲线22 22:1x y C a b -=(0,0)a b >>的实轴与虚轴长度相等,则C 的渐近线方程是 4(2020奉贤二模). 已知P 为双曲线22 :1412 x y Γ+=上位于第一象限内的点,1F 、2F 分别 为Γ的两焦点,若12F PF ∠是直角,则点P 坐标为 5(2020闵行二模). 已知圆锥的母线长为10,母线与轴的夹角为30°,则该圆锥的侧面积为 5(2020青浦二模). 双曲线22 144x y -=的一个焦点到一条渐近线的距离是 6(2020金山二模). 已知双曲线2 221x y a -=(0)a >的一条渐近线方程为20x y -=,则实 数a = 7(2020黄浦二模). 已知双曲线22 221x y a b -=(0a >,0b >)的一条渐近线平行于直线 :210l y x =+,双曲线的一个焦点在直线l 上,则双曲线的方程为 8(2020徐汇二模). 已知直线(2)(1)30a x a y ++--=的方向向量是直线 (1)(23)20a x a y -+++=的法向量,则实数a 的值为 8(2020浦东二模). 已知双曲线的渐近线方程为y x =±,且右焦点与抛物线24y x =的焦点重合,则这个双曲线的方程是 9(2020闵行二模). 已知直线1:l y x =,斜率为q (01q <<)的直线2l 与x 轴交于点A ,与y 轴交于点0(0,)B a ,过0B 作x 轴的平行线,交1l 于点1A ,过1A 作y 轴的平行线,交2l 于点1B , 再过1B 作x 轴的平行线交1l 于点2A ,???,这样依次得线 段01B A 、11A B 、12B A 、22A B 、???、1n n B A -、n n A B , 记n x 为点n B 的横坐标,则lim n n x →∞ = 9. 一个水平放置的等轴双曲线型的拱桥桥洞如图所示,已知当 前拱桥的最高点离水面5米时,量得水面宽度30AB =米,则 当水面升高1米后,水面宽度为 米(精确到0.1米)

解析几何公式大全

解析几何中的基本公式 1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-= 2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 3、 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 4、 直线与圆锥曲线相交的弦长公式:? ? ?=+=0)y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 5、 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=2221 21y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用范围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α 若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。

上海2020年高三数学基础知识回顾辅导讲义——解析几何(教师版)

1 / 26 一、直线与方程 ★1、直线的倾斜角及斜率: (1)倾斜角:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角.特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0,因此,倾斜角的范围是[)π,0. (2)斜率:①倾斜角不是2 π 的直线,它的倾斜角的正切叫做这条直线的斜率,即αtan =k (2 π α= 时,直线斜率不存在);②过两点的直线斜率公式:()211 21 2x x x x y y k ≠--= . ★2、直线的方程:点方向式: v y y u x x 0 0-= -(过点()00,y x ,方向向量()v u ,) 点法向式:()()000=-+-y y b x x a (过点()00,y x ,法向量()b a ,) 斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b 点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x 两点式: 11 2121 y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x 截矩式: 1x y a b +=(与x 轴交于点(,0)a ,与y 轴交于点(0,)b ) 一般式:0=++C By Ax (A ,B 不全为0) 高考数学基础知识回顾:解析几何 基础知识

2 / 26 ★★3、直线与直线的位置关系:(1)平行直线系:01=++C By Ax 与02=++C By Ax ;(2)垂直直线系:01=++C By Ax 与02=+-C Ay Bx ;(3)直线平行与垂直的充要条件:①当 111:b x k y l +=,222:b x k y l +=时,212121,//b b k k l l ≠=?;12121-=?⊥k k l l ;②当 :1111=++c y b x a l , :2222=++c y b x a l 时, //122121=-?b a b a l l ; 0212121=+?⊥b b a a l l ★★4、直线的夹角公式:(1)对直线0:1111=++c y b x a l ,0:2222=++c y b x a l , 2 2 2 22 12 121212121||| |||| |cos |cos b a b a b b a a d d +?++= ?==θα;(2)对直线111:b x k y l +=, 222:b x k y l +=,2 12 11tan k k k k +-= α ★★5、点到直线的距离:(1)点到直线的距离:点()00,y x P 到直线0:1=++C By Ax l 的距离为 2 2 00B A C By Ax d +++= ;(2 )点在直线的同侧或异侧的问题:令δ= ,当两点在直线l 的同侧,则它们的δ同号;当两点在直线l 的异侧,则δ异号;(3)两平行线间的距离公式: 0:11=++C By Ax l 与0:22=++C By Ax l 为2 2 21B A C C d +-= ★6、线性规划:①设出所求的未知数;①列出约束条件(即不等式组);①建立目标函数;①作出可行域;①运用图解法求出最优解. 二、圆与方程 ★1、圆的方程:(1)标准方程()()22 2 r b y a x =-+-,圆心 ()b a ,,半径为r ;(2)一般方程 02 2 =++++F Ey Dx y x ,圆心?? ? ??--2,2E D ,半径2422F E D -+,能形成圆的充要条件是 0422>-+F E D ;(3)参数方程:???+=+=θ θ sin cos r b y r a x ,圆心()b a ,,半径为r .

上海 解析几何综合测试题附答案

1.12F F 、是椭圆2 214 x y +=的左、右焦点,点P 在椭圆上运动,则12||||PF PF ?的最大值是 . 2.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 满足的关系式为____________; 以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆72x +3 2 y =1的公共点有_______个. 3.P 是抛物线y 2=x 上的动点,Q 是圆(x-3)2+y 2 =1的动点,则|PQ |的最小值为 . 4.若圆012222=-+-+a ax y x 与抛物线x y 2 1 2 =有两个公共点。则实数a 的范围为 . 5.若曲线y =与直线(2)y k x =-+3有两个不同的公共点,则实数 k 的取值范围 是 . 6.圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________. 7.经过两圆(x+3)2 +y 2 =13和x+2 (y+3)2 =37的交点,且圆心在直线x -y -4=0上的圆的方程为____________ 8.双曲线x 2 -y 2 =1的左焦点为F ,点P 为左支下半支上任意一点(异于顶点),则直线PF 的斜率的变化范围是___________. 9.已知A (0,7)、B (0,-7)、C (12,2),以C 为一个焦点作过A 、B 的椭圆,椭圆的另一个焦点F 的轨迹方程是___________. 10.设P 1(2,2)、P 2(-2,-2),M 是双曲线y = x 1 上位于第一象限的点,对于命题①|MP 2|-|MP 1|=22;②以线段MP 1为直径的圆与圆x 2+y 2=2相切;③存在常数b ,使得M 到直线 y =-x +b 的距离等于 2 2 |MP 1|.其中所有正确命题的序号是____________. 11.到两定点A (0,0),B (3,4)距离之和为5的点的轨迹是( ) A.椭圆 B.AB 所在直线 C.线段AB D.无轨迹 12.若点(x ,y )在椭圆4x 2+y 2=4上,则2 -x y 的最小值为( ) A.1 B.-1 C.- 3 23 D.以上都不对 13已知F 1(-3,0)、F 2(3,0)是椭圆m x 2+n y 2 =1的两个焦点,P 是椭圆上的点,当∠F 1PF 2= 3 π 2时,△F 1PF 2的面积最大,则有( ) A.m =12,n =3 B.m =24,n =6 C.m =6,n = 2 3 D.m =12,n =6 14.P 为双曲线C 上一点,F 1、F 2是双曲线C 的两个焦点,过双曲线C 的一个焦点F 1作∠F 1PF 2的平分线的垂线,设垂足为Q ,则Q 点的轨迹是( ) 12. A.直线 B.圆 C.椭圆 D.双曲线 三、解答题

解析几何公式-大全

解析几何中的基本公式 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++ 则:2 2 21B A C C d +-= 注意点:x ,y 对应项系数应相等。 点到直线的距离:0C By Ax :l ),y ,x (P =++ 则P 到l 的距离为:2 2 B A C By Ax d +++= 直线与圆锥曲线相交的弦长公式:?? ?=+=0 )y ,x (F b kx y 消y :02 =++c bx ax ,务必注意.0>? 若l 与曲线交于A ),(),,(2211y x B y x 则:2122))(1(x x k AB -+= 若A ),(),,(2211y x B y x ,P (x ,y )。P 在直线AB 上,且P 分有向线段AB 所成的比为λ, 则??? ????λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且??????? +=+=222 121y y y x x x 变形后:y y y y x x x x --=λ--= λ21 21或 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα 适用围:k 1,k 2都存在且k 1k 2≠-1 , 2 11 21tan k k k k +-= α

若l 1与l 2的夹角为θ,则= θtan 2 1211k k k k +-,]2,0(π ∈θ 注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。 (2)l 1⊥l 2时,夹角、到角= 2 π 。 (3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。 (1)倾斜角α,),0(π∈α; (2)]0[,π∈θθ→ →,,夹角b a ; (3)直线l 与平面]2 0[π∈ββα,,的夹角; (4)l 1与l 2的夹角为θ,∈θ]2 0[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,, 直线的倾斜角α与斜率k 的关系 每一条直线都有倾斜角α,但不一定有斜率。 若直线存在斜率k ,而倾斜角为α,则k=tan α。 直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合:①l 1//l 2? k 1=k 2 ②l 1⊥l 2? k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l 若A 1、A 2、B 1、B 2都不为零 l 1//l 2? 2 1 2121C C B B A A ≠ =; l 1⊥l 2? A 1A 2+B 1B 2=0;

2019年高考数学分类汇编:专题九解析几何

第九篇:解析几何 一、选择题 1.【2018全国一卷8】设抛物线C :y 2 =4x 的焦点为F ,过点(–2,0)且斜率为 23 的直线与 C 交于M ,N 两点,则FM FN = A .5 B .6 C .7 D .8 2.【2018全国一卷11】已知双曲线C : 2 2 13 x y ,O 为坐标原点,F 为C 的右焦点,过 F 的直线与C 的两条渐近线的交点分别为 M 、N.若△OMN 为直角三角形,则 |MN |= A .32 B .3 C .23 D .4 3.【2018全国二卷5】双曲线2 2 2 21(0,0)x y a b a b 的离心率为 3,则其渐近线方程为 A .2y x B .3y x C .22 y x D .32 y x 4.【2018全国二卷12】已知1F ,2F 是椭圆2 2 2 21(0)x y C a b a b :的左、右焦点,A 是C 的 左顶点,点P 在过A 且斜率为36 的直线上,12PF F △为等腰三角形, 12120F F P , 则C 的离心率为 A .23 B .12 C . 13 D . 14 5.【2018全国三卷 6】直线2 0x y 分别与x 轴,y 轴交于A ,B 两点,点P 在圆 2 2 2 2x y 上,则 ABP △面积的取值范围是 A .26, B .48 ,C . 232 ,D .2232 ,6.【2018全国三卷11】设12F F ,是双曲线2 2 221x y C a b : (00a b ,)的左,右焦点, O 是坐标原点.过 2F 作C 的一条渐近线的垂线,垂足为 P .若1 6PF OP ,则C 的离

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

上海高考中的解析几何

x y 上海高考中的解析几何问题 解析几何历来是高考的重点,有基础题也有能力题。基础题主要考查曲线(直线)方程的确定,直线与曲线相交的点、线关系,要求对解析几何中的诸多公式掌握全面,使用合理,有一定的计算能力要求。在能力立意理念指导下,解析几何能力题从传统中脱胎出来,充分利用其数形结合的特点,椭圆、双曲线、抛物线三类曲线的内在联系及特殊到一般的本质探求,编拟考题,面目一新。 (一) 确定曲线(直线)方程 此类问题属基本题,常用待定系数法确定相关曲线,计算相关的点、线等。通常题号比较靠前,能力题的(1)(2)问也常属于此基础题。 (2008-19春)在平面直角坐标系xoy 中,A 、B 分别是直线x+y=2与x 、y 轴的交点,C 为AB 的中点。若抛物线y 2=2px (p>0)过点C ,求焦点F 到直线AB 的距离。 (2007-18春)如图,在直角坐标系xOy 中,设椭圆)0(1:22 22>>=+b a b y a x C 的左右两个焦点 分别为21F F 、. 过右焦点2F 且与x 轴垂直的直线l 与椭圆C 相交,其中一个交点为( ) 1,2M . (1) 求椭圆C 的方程; (2) 设椭圆C 的一个顶点为),0(b B -,直线2BF 交椭圆C 于另一点N ,求△BN F 1的面积. (2002-18 春)已知 F 1、F 2为双曲线 )0,0(122 22 >>=-b a b y a x 的焦点.过F 2作垂直于x 轴的直线交双曲线于点P ,且∠PF 1F 2=30?,求双曲线的渐近方程. (2002-18秋)已知点A (—3,0)和B (3,0), 动点C 到A 、B 两点的距离之差的绝对值为2,点C 的轨迹与直线y=x —2交于D 、E 两点.求线段DE 的长 (2000-17秋)已知椭圆C 的焦点分别为)0,22()0,22(21F F 和-,长轴长为6,设直2+=x y 交椭圆C 于A 、B 两点,求线段AB 的中点坐标。 (2001-18秋)设F 1、F 2为椭圆4 92 2y x +=1的两个焦点,P 为椭圆上的一点.已知P 、

2013-2018年上海高考试题汇编-解析几何

近五年上海高考真题——解析几何 (2018春12)如图,正方形ABCD 的边长为20米,圆O 的半径为1米,圆心是正方形的中心,点P 、Q 分别在线段AD 、CB 上,若线段PQ 与圆O 有公共点,则称点Q 在点P 的“盲区”中.已知点P 以1.5米/秒的速度从A 出发向D 移动,同时,点Q 以1米/秒的速度从C 出发向B 移动,则在点P 从A 移动到D 的过程中,点Q 在点P 的盲区中的时长约为__________秒(精确到0.1) 答案:4.4 关键点:引入时刻t ,表示点,P Q ,直线PQ ,列出(不等式)圆心到直线PQ 的距离小于等于半径,解不等式可得 提示:以A 为原点建立坐标系,设时刻为t ,则40(0,1.5),(20,20),03 P t Q t t -≤≤ 则0 1.5: 20020 1.5PQ x y t l t t --= ---,化简得(8)8120t x y t --+= 点(10,10)O 到直线PQ 1≤,化简得23161280t t +-≤ t ≤≤0 4.4t t ≤≤??=≈ P 到两个定点(1,0)和(1,0)-的距离之和等于4,则动点P 的轨迹为__________. 答案:22143 x y +=

知识点: (2018秋20)设常数2t >,在平面直角坐标系xOy 中,已知点()2,0F ,直线l :x t =,曲线Γ:28y x =()0,0x t y ≤≤≥,l 与x 轴交于点A 、与Γ交于点B ,P 、Q 分别是曲线Γ与线段AB 上的动点. (1)用t 表示点B 到点F 的距离; (2)设3t =,2FQ =,线段OQ 的中点在直线FP 上,求△AQP 的面积; (3)设8t =,是否存在以FP 、FQ 为邻边的矩形FPEQ ,使得点E 在Γ上?若存在,求点P 的坐标;若不存在,说明理由. 【解析】(1)2BF t =+;(2)AQP S = △;(3)25P ? ?? . 关键点:FQ FP PM =+ 知识点:中点弦 (2018春18)已知a R ∈,双曲线2 2 :1x y Γ-=.直线1y kx =+与Γ相交于A 、B 两点,且线段AB 中点的横坐标为1,求实数k 的值. 答案. . 关键点: 12 12 x x +=,因此用设而不求,韦达定理 知识点:和立体几何相关 19.(7分+7分)利用“平行于圆锥曲线的母线截圆锥面,所得截线是抛物线”的几何原理,某快餐店用两个射灯(射出的光锥视为圆锥)在广告牌上投影出其标识,如图1所示,图2是投影出的抛物线的平面图,图3是一个射灯的直观图,在图2与图3中,点O 、A 、 B 在抛物线上,O C 是抛物线的对称轴,OC AB ⊥于C ,3AB =米, 4.5OC =米. (1)求抛物线的焦点到准线的距离; (2)在图3中,已知OC 平行于圆锥的母线SD ,AB 、DE 是圆锥底面的直径,求 圆锥的母线与轴的夹角的大小(精确到0.01°).

(完整)上海高考解析几何试题

近四年上海高考解析几何试题 一.填空题: 1、双曲线116922=-y x 的焦距是 . 2、直角坐标平面xoy 中,定点)2,1(A 与动点),(y x P 满足4=?,则点P 轨迹方程 ___。 3、若双曲线的渐近线方程为x y 3±=,它的一个焦点是()0,10,则双曲线的方程是__________。 4、将参数方程?? ?=+=θ θ sin 2cos 21y x (θ为参数)化为普通方程,所得方程是__________。 5、已知圆)0()5(:2 22>=++r r y x C 和直线053:=++y x l . 若圆C 与直线l 没有公共 点,则r 的取值范围是 . 6、已知直线l 过点)1,2(P ,且与x 轴、y 轴的正半轴分别交于B A 、两点,O 为坐标原点,则三角形OAB 面积的最小值为 . 7、已知圆2x -4x -4+2 y =0的圆心是点P ,则点P 到直线x -y -1=0的距离是 ; 8、已知椭圆中心在原点,一个焦点为F (-23,0),且长轴长是短轴长的2倍,则该椭圆的标准方程是 ; 10、曲线2 y =|x |+1与直线y =kx +b 没有公共点,则k 、b 分别应满足的条是 . 11、在平面直角坐标系xOy 中,若抛物线x y 42=上的点P 到该抛物线的焦点的距离为6, 则点P 的横坐标=x . 12、在平面直角坐标系xOy 中,若曲线24y x -=与直线m x =有且只有一个公共点,则 实数=m . 13、若直线1210l x my ++=: 与直线231l y x =-:平行,则=m . 14 、以双曲线1542 2=-y x 的中心为焦点,且以该双曲线的左焦点为顶点的抛物线方程是 . 16 、已知P 是双曲线22 219x y a - =右支上的一点,双曲线的一条渐近线方程为30x y -=. 设12F F 、分别为双曲线的左、右焦点. 若23PF =,则1PF = 17、已知(1,2), (3,4)A B ,直线1l :20,:0x l y ==和3:l x +3y 10-=. 设i P 是 i l (1,2,3)i =上与A 、B 两点距离平方和最小的点,则△123PP P 的面积是 二.选择题:

相关文档
最新文档