配位化学理论

实验十一 配合物的生成、性质与应用

实验十一 配合物的生成、性质和应用 一、实验目的 1.了解配合物的生成和组成。 2.了解配合物与简单化合物的区别。 3.了解配位平衡及其影响因素。 4.了解螯合物的形成条件及稳定性。 二、实验原理 由中心离子(或原子)与配体按一定组成和空间构型以配位键结合所形成的化合物称配合物。配位反应是分步进行的可逆反应,每一步反应都存在着配位平衡。 M + nR MR n s n [MRn] [M][R]K 配合物的稳定性可由K 稳 (即K s )表示,数值越大配合物越稳定。增加配体(R)或金属离子(M)浓度有利于配合物(MRn)的形成,而降低配体和金属离子的浓度则有利于配合物的解离。如溶液酸碱性的改变,可能引起配体的酸效应或金属离子的水解等,就会导致配合物的解离;若有沉淀剂能与中心离子形成沉淀的反应发生,引起中心离子浓度的减少,也会使配位平衡朝离解的方向移动;若加入另一种配体,能与中心离子形成稳定性更好的配合物,则同样导致配合物的稳定性降低。若沉淀平衡中有配位反应发生,则有利于沉淀溶解。配位平衡与沉淀平衡的关系总是朝着生成更难解离或更难溶解物质的方向移动。 配位反应应用广泛,如利用金属离子生成配离子后的颜色、溶解度、氧化还原性等一系列性质的改变,进行离子鉴定、干扰离子的掩蔽反应等。 三、仪器和试药 仪器:试管、离心试管、漏斗、离心机、酒精灯、白瓷点滴板。 试药:H 2SO 4 (2mol·L -1)、HCl (1mol·L -1)、NH 3·H 2O (2, 6mol·L -1)、NaOH (0.1, 2mol·L -1) 、CuSO 4 (0.1mol·L -1, 固体)、HgCl 2 (0.1mol·L -1)、KI (0.1mol·L -1)、BaCl 2 (0.1mol·L -1)、K 3Fe (CN)6 (0.1mol·L -1)、NH 4Fe (SO 4)2 (0.1mol·L -1)、FeCl 3 (0.1mol·L -1)、KSCN (0.1mol·L -1)、NH 4F (2mol·L -1)、(NH 4)2C 2O 4 (饱和)、AgNO 3 (0.1mol·L -1)、NaCl (0.1mol·L -1)、KBr (0.1mol·L -1)、 Na 2S 2O 3 (0.1mol·L -1,饱和)、Na 2S (0.1mol·L -1)、FeSO 4 (0.1mol·L -1)、NiSO 4 (0.1mol·L -1) 、CoCl 2 (0.1mol·L -1)、CrCl 3 (0.1mol·L -1)、EDTA (0.1mol·L -1)、乙醇 (95%)、CCl 4、邻菲罗啉 (0.25%)、二乙酰二肟(1%)、乙醚、丙酮。 四、实验内容 1.配合物的生成和组成 (1)配合物的生成 在试管中加入0.5g CuSO 4·5H 2O (s), 加少许蒸馏水搅拌溶解,再逐滴加入2mol·L -1的氨水溶液,观察现象,继续滴加氨水至沉淀溶解而形成深蓝色溶液,然后加入2mL 95%乙醇,振荡试管,有何现象?静置2分钟,过滤,分出晶体。在滤纸上逐滴加入2 mol·L -1NH 3·H 2O 溶液使晶体溶解,在漏斗下端放一支试管承接此溶液,保留备用。写出相应离子方程式。 (2)配合物的组成 将上述溶液分成2份,在一支试管中滴入2滴0.1mol·L -1BaCl 2溶液,另一支试管滴入2滴0.1mol·L -1NaOH 溶液,观察现象,写出离子方程式。 另取两支试管,各加入5滴0.1mol·L -1CuSO 4溶液,然后分别向试管中滴入2滴0.1mol·L -1 BaCl 2溶液和2滴0.1mol·L -1NaOH 溶液,观察现象,写出离子方程式。 比较二实验结果,分析该配合物的内界和外界组成,写出相应离子方程式。

配合物在医学中的应用.

配位化合物在医学中的应用 配位化合物是一类广泛存在、组成较为复杂、在 理论和应用上都十分重要的化合物。目前对配位化 合物的研究已远远超出了无机化学的范畴。它涉及 有机化学、分析化学、生物化学、催化动力学、电化学、量子化学等一系列学科。随着科学的发展,在生物学和无机化学的边缘已形成了一门新兴的学科生物无机化学。新学科的发展表明,配位化合物在生命过程中起着重要的作用。除此之外,配位化合物广泛应用于生化检验、药物分析、环境监测等方面。本文对配位化 合物理论的发展及其在医学、药学中的重要作用和应用作简单的论述。 1 配位化合物及其理论的发展 1. 1 配位化合物的组成配位化合物( coordination compound, 简称配合物, 旧称络合物) 是指独立存在的稳定化合物进一步结合而成的复杂化合物。从组成上看,配位化合物是由可以给出孤对电子对或多个不定域电子的一定数目的离子或分子(统称为配位体)和具有接受孤电子对或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。 中心原子大多是位于周期表中部的过渡元素。配位体中可作为配原子的总共约有14种元素,它们主要是位 于周期表的A、A、A族及H - 和有机配体中的C原子,这些元素是: H、C、O、F、P、S、Cl、As、Se、 Br、Sb、Te 、I[ 1]。 1. 2 配位化合物理论的发展配位化合物理论的发展经历了一个漫长的过程。国外最早的文献记载是在1704年,普鲁士染料厂的工人迪巴赫( Dies-bach) 把兽皮或牛血、Na2CO3在铁锅中煮, 得到一种兰色染料普鲁士蓝( Fe4[ Fe( CN)6]3)[ 2]。虽然如此,人们通常还是认为配位化合物始自1798年法

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

课题:配合物的应用

课题:配合物的应用 课型:课时:上课时间: 学习目标: 1、了解配合物的性质及应用 学习过程: 【自主学习】配合物在许多方面有广泛的应用 1、在实验研究中,常用形成配合物的方法来检验金属离子、分离物质、定量测定物质的组成。 2、在生产中,配合物被广泛应用于染色、电镀、硬水软化、金属冶炼领域。 3、在许多尖端领域如激光材料、超导材料、抗癌药物的研究、催化剂的研制等方面,配合物发挥着越来越大的作用。 一、在冶金工业上的应用 从矿石中提取金:(原理) 二、在电镀工业中的应用 三、在元素分离和分析化学中的应用 1、鉴定Fe3+、Cu2+ 2、分离Zn2+、Al3+ 3、Co2+的鉴定 四、在化工和生物化学中的应用 1、乙烯催化氧化制乙醛: 催化机理: 2、人造血 五、生物医药中的应用 1、煤气中毒的原因

2、铅中毒的治疗 3、治癌药物顺铂[Pt(NH3)2Cl2] 课堂训练 1、、要证明某溶液中不含Fe3+而可能含有Fe2+,进行如下实验操作时,最佳顺序为 ①加入足量氯水②加入足量酸性高锰酸钾溶液③加入少量NH4SCN溶液 A.①③B.③② C.③①D.①②③ 2、某白色固体可能由①NH4Cl ②AlCl3 ③NaCl ④AgNO3 ⑤KOH中的一种或几种组成,此固体投入水中得澄清溶液,该溶液可使酚酞呈红色,若向溶液中加稀硝酸到过量,有白色沉淀生成。对原固体的判断不正确的是A.肯定存在① B.至少存在②和⑤ C.无法确定是否有③ D.至少存在①、④、⑤ 3、从金矿中提取金,传统的方法是用氰化提金法。氰化提金法的原理是:用稀的氰化钠溶液处理粉碎了的金矿石,通入空气,使金矿中的金粒溶解,生成能溶于水的物质Na[Au(CN)2]。试写出并配平金粒溶解的化学方程式。然后再用锌从溶液中把金置换出来,试写出并配平该化学方程式

配位化学总结

1 配位化学导论总结 1. 配位化学 1) 定义:金属或金属离子同其他分子或离子相互结合的化学。 2) 基础:无机化学 3) 重要性:与其他学科互相渗透的交叉性学科 4) 发展: ● 近代配位化学: “键理论”等理论无法全面说明形成机理与成键方式. ● 现代配位化学理论:建立:1893年,瑞士化学家维尔纳提出了现代的配位键、配位数和配位化合物结构的基本概念,并用立体化学观点成功地阐明了配合物的空间构型和异构现象。 2. 配合物的基本概念 1) 定义:由具有接受孤对电子或多个不定域电子的空位原子或离子(中心体)与可以给出孤对电子或多个不定域电子的一定数目的离子或分子(配体)按一定的组成和空间构型所形成的物种称为配位个体,含有配位个体的化合物成为配合物。 2) 组成: 内界、外界、中心体、配体、配位原子 3) 配体分类: 4) 中心原子的配位数: ● 定义:单齿配体:配位数等于内界配体的总数。多齿配体:各配体的配位原子数与配体个数乘积之和。 ● 影响中心原子的配位数因素: A 、按配 体所含配 位原子的 数目分两 种: B 、根据 键合电子 的特征分 为三种:

3. 配合物的分类 4. 配合物的命名 原则是先阴离子后阳离子,先简单后复杂。 一、简单配合物的命名: (1)先无机配体,后有机配体 cis - [PtCl2(Ph3P)2] 顺-二氯 二?(三苯基磷)合铂(II) (2) 先列出阴离子,后列出阳离子,中性分子(的名称) K[PtCl3NH3] 三氯?氨合铂(II)酸钾 (3) 同类配体(无机或有机类)按配位原子元素符号的英文字母顺序排列。 [Co(NH3)5H2O]Cl3 三氯化五氨?一水合钴(III) 中心离子 对配位数 的影响 配体对配 位数的影 响1、按中心原 子数目分为: 2、按配合物 所含配体种 类分为: 3、按配体的 齿数分类: 4、按配合物 地价键特点 分类:

黄酮类化合物在配位化学中的应用

黄酮类化合物在配位化学中的应用 李召 (齐齐哈尔大学化学与化学工程学院应化081班) 摘要:黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方起着重要的作用。 关键词:黄酮类化合物、配位化学、抗氧化性 Summary:flavonoids (flavonoids) are a class exists in nature, with 2 - phenyl chromone (flavone) structure of the compounds. They have a keto molecular carbonyl oxygen atoms on the first with alkaline salt with acid, and its hydroxyl derivatives with more yellow, it is also known as yellow alkali elements or flavonoids. Flavonoids in plants are usually combined into glycosides with sugar, a small proportion of the free state (aglycone) form. Most plants contain flavonoids, which in plant growth, development, flowering, fruiting, and disease prevention such as antibiotic side plays an important role. Keyword:Flavonoids、Coordination Chemistry、Antioxidant 1.1 黄酮类化合物 黄酮类化合物 flavonoid 黄酮醇分子结构图 以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成?盐而表现为弱碱性,因此曾称为黄碱素类化合物。 根据三碳键(C3)结构的氧化程度和B环的连接位置等特点,黄酮类化合物可分为下列几类:黄酮和黄酮醇;黄烷酮(又称二氢黄酮)和黄烷酮醇(又称二氢黄酮醇);异黄酮;异黄烷酮(又称二氢异黄酮);查耳酮;二氢查耳酮;橙酮(又称澳咔);黄烷和黄烷醇;黄烷二醇(3,4)(又称白花色苷元。 黄酮类化合物中有药用价值的化合物很多,如槐米中的芦丁和陈皮中的陈皮苷,能降低血管的脆性,及改善血管的通透性、降低血脂和胆固醇,用于防治老年高血压和脑溢血。由银杏叶制成的舒血宁片含有黄酮和双黄酮类,用于冠心病、心绞痛的治疗。全合成的乙氧黄酮又名心脉舒通或立可 定,有扩张冠状血管、增加冠脉流量的作用。许多黄酮类成分具有止咳、祛痰、平喘、抗菌的活性。护肝,解肝毒、抗真菌、治疗急、慢性肝炎,肝硬化。

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

现代配位化学研究的领域及配位学的应用

现代配位化学的研究领域及配位化学的应用现代配位化学既有理论又有事实,它把最新的量子力学成就作为自己阐述配合物性质的理论基础, 也力图用热力学、动力学的知识去揭示配位反应的方向 和历程。 已经进入到了现代发展阶段的现代配位化学具有如下三个特点: ●从宏观到微观 现代配位化学进入到物质内部层次的研究阶段,也即进入了微观水平的研 究阶段。现在不只研究配位化合物的宏观性质,而且更重视物质微观结构的研 究即原子、分子内部结构特别是原子、分子中电子的行为和运动规律的研究, 从而建立了以现代化学键理论为基础的化学结构理论体系。 现代配位化学是既有翔实的实验资料又有坚实的理论基础的完全科学。 ●从定性描述向定量化方向发展 现代配位化学特别是结构配位化学已普遍应用线性代数、群论、矢量分析、拓扑学、数学物理等现代的数学理论和方法了,并且应用电子计算机进行科学 计算,对许多反映结构信息及物理化学性能的物理量进行数学处理。这种数学 计算又与高灵敏度、高精确度和多功能的定量实验测定方法相结合,使对配位 化合物性质和结构的研究达到了精确定量的水平。 ●既分化又综合,出现许多边缘学科 现代配位化学一方面是加速分化,另一方面却又是各分支学科之间的相互 综合、相互渗透,形成了许多新兴的边缘学科。 配位化学的地位 一、现代配位化学的研究领域

现代配位化学主要有七大活跃领域部分,分别为超分子化学、兀酸配休及小分子配体络合物、过渡金属有机络合物、金属原子簇络合物、络合催化、生物配位化学、富勒烯化学-老元素新发现(纳米材料)。 (一)超分子化学 超分子化学是研究两种以上的化学物种通过分子间力相互作用缔结而成为具有特定结构和功能的超分子体系的科学。简而言之,超分子化学是研究多个分子通过非共价键作用,而形成的功能体系的科学。 超分子化学是一门处于化学学科与物理、生命科学相互交叉的前沿学科。它的发展不仅与大环化学(冠醚、穴醚、环糊精、杯芳烃、富勒烯等)的发展密切相关,而且与分子自组装、分子器件和新颖有机材料的研究息息相关。从某种意义上讲,超分子化学将四大基础化学(有机化学、无机化学、分析化学和物理化学)有机地融合成一个整体。 1.分子识别 所谓分子识别是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程,是分子组装及超分子功能的基础(锁与钥匙的关系)。

论述价键理论和分子轨道理论说明O2

v1.0 可编辑可修改 1 1.论述价键理论和分子轨道理论说明O 2、N 2分子的结构和稳定性的基本思路, 两种理论的优点及不足之处。 答:价键理论(简称VB 法)认为两个原子相互靠近形成分子时,原子的价层电子轨道发生最大程度的重叠,使体系的能量降低,价层轨道中自旋相反的成单电子相互靠近配对,从而稳定成键。 共价键按原子轨道重叠方式不同,可分为σ键和π键(1分),N 2分子中, 两个N 原子各以一个含有单电子的p 轨道以头碰头的方式重叠形成σ键,另外两对含有单电子的p 轨道以肩并肩的方式重叠形成π键,所以N 2分子中两个氮 原子是两个π键和一个σ键连接,非常稳定。 O 2分子中,两个O 原子各以一个含有单电子的p 轨道以头碰头的方式重叠形 成σ键,另外一对含有单电子的p 轨道以肩并肩的方式重叠形成π键,所以O 2分子中两个氧原子原子是一个π键和一个σ键连接,没有N 2稳定。 分子轨道理论(简称MO 法)着重于分子的整体性,把分子作为一个整体来 处理,比较全面地反映了分子内部电子的各种运动状态。描述分子中电子运动状态的函数称为分子轨道。分子轨道有原子轨道先行组合而来。电子属于整个分子,电子在分子轨道填充,能量最低的状态即分子的结构。 O 2的分子轨道: (σ1s )2 (σ*1s )2 (σ2s )2 (σ*2s )2 (σ2p x )2 (π2p y )2 (π2p z )2 (π* 2p y )1 (π* 2p z )1 N 2的分子轨道: (σ1s )2 (σ*1s )2 (σ2s )2 (σ*2s )2 (σ2p x )2 (π2p y )2 (π2p z )2 N 2分子的键级为3,O 2分子的键级为2。所以N 2分子比氧气分子要稳定。 价键理论解决结构问题比较直观,计算比较简单,但其只考虑原子价层轨道 对成键的影响,不够全面,比如O 2分子的磁性用价键理论就难以解释;分子轨 道理论能较好地解释分子成键的情况、键的强弱和分子的磁性,但计算难度及工作量太大。

配位化学在工业中的应用

配位化学在工业中的应用 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。配位化合物在化学工业和生活中起着重要的作用,1963年化学诺贝尔奖金联合授给德国M.普朗克学院的K.齐格勒博士和意大利米兰大学的G.纳塔教授。他们的研究工作是发展了乙烯的低压聚合,这使数千种聚乙烯物品成为日常用品。齐格勒-纳塔聚合催化剂是金属铝和钛的配合物。而今,配位化学的研究已经有了很大的突破,现代配位化学理论在推进工业研究中得到了应用并成为工业设计原理的一个组成部分。 1、配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704 年斯巴赫(Diesbach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN) 3,其后1798 年塔斯赫特(Tassert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[1]。 2、配位化学新的发展及应用趋势 本世纪60 年代初期,由于发现了一批具有金属- 金属化学键的配合物,配位化学的研究重点从单核配合物转向多配合物,从而开始了对多金属偶合体系的研究。在此研究过程中,发现很早已为人们熟知利用的普鲁士蓝等一类混合价配合物,不仅可以用于传统的染料工业,还可以更广泛地应用于陶瓷、矿物、材料科学、高温超导等许多领域。如可用于合成高导电率的分子金属和超导材料、磁性材料、优良的非线性光学材料以及非线性导电材料等。因此,此类配合物引起各个学科研究者,如合成化学家、固体化学家、地质学家、生物学家、物理学家 的极大兴趣,成为当前化学基础研究的前沿领域。 混价配合物的中心原子,无论相同或不同的金属离子都具有两种明显不同的氧化态。它包括了元素周期表中的大多数金属元素。但是目前人们关注的焦点,多集中在过渡金属和稀土金属元素,因为这些元素的配合物常常具有独特的光、电、磁性质,并与生命活动密切相关。如混价配合物MnIIMnIIIMnIIO(OAc)6(py)3等。研究者通过对混合价过渡金属和稀土金属配合物的研究,合成了一系列新型分子材料和与生命活动紧密相关的模型化合物,建立了较完整的理论体系[2]。 3、配位化学在化学化工工业中的应用 配位化学在许多领域都有非常广泛的应用,尤其是在化学化工方面,显示出了它的应用优越性。 天然水和废水中配合物的形成 在水处理化学领域中,天然水和废水中配合物的形成是很重要的。水体中溶解态的重金属,大部分以配合物形式存在,因为水体中存在多种无机和有机配位体。重要的无机配位体有OH-、Cl-、CO32-、HCO32-等。有机配位体情况比较复杂,有动植物组织的天然降解产物,如氨基酸、糖、腐殖酸等,由于工业及生活废水的排入使存在的配位体更为复杂,如CN-、有机洗涤剂、NTA(氮基三乙酸N(CH2CO2H)3的三钠盐,洗涤剂的组分)、EDTA(乙二胺四乙酸的钠盐)、农药和大分子环状化合物。湖水中汞大部分与腐殖酸配合,而在海水中汞则主要与Cl-配合。 改变水溶液中的金属物种

配位化学

配位聚合物在光电磁材料中的应用 摘要:配位聚合物由于其特殊的结构及其在光电磁等方面优异的性能引起了科学家的广泛关注。本文综述了金属有机化合物在光电磁材料中的应用,并对新型多功能材料在设计、合 成与应用方面的广阔前景作了展望。 关键词:配位聚合物;多功能材料;非线性光学;材料化学 引言: 配位聚合物(coordination polymers)或金属-有机框架(metal-organic frameworks,简称 MOFs)是指利用金属离子与有机桥联配体通过配位键合作用而形成的一类具有一维,二维或三维无限网络结构的配位化合物[1]。近年来,配位聚合物作为一种新型的功能化分子材料以其良好的结构可裁性和易功能化的特性引起了研究者浓厚的兴趣。配合物有无机的金属离子和有机配体,因此它兼有无机和有机化合物的特性,而且还有可能出现无机化合物和有机化合物均没有的新性质。配位聚合物分子材料的设计合成、结构及性能研究是近年来十分活跃的研究领域之一,它跨越了无机化学、配位化学、有机化学、物理化学、超分子化学、材料化学、生物化学、晶体工程学和拓扑学等多个学科领域,它的研究对于发展合成化学、结构化学和材料化学的基本概念及基础理论具有重要的学术意义,同时对开发新型高性能的功能分子材料具有重要的应用价值[2-7]。并对分子器件和分子机器的发展起着至关重要的作用。配位聚合物在新的分子材料中将发挥重要的作用。配位化学理论在材料的分子设计中也将起着重要的指导作用。 材料按其性能特征和用途大致可划分为结构材料和功能材料两大类。功能材料种类繁多,功能各异,其共同的特点和发展趋势是:(1) 性能优异;(2) 分子化;(3) 巨大的应用前景。金属有机光电磁材料综合了这几方面特点,将发展成为新一代材料,其结构和性能决定了它的应用越来越广泛。以下是金属有机化合物分别在光电磁材料中的应用。 1配位聚合物在光学材料中的应用 配位聚合物的光学性质研究主要集中在光致发光、电致发光以及非线性光学等方面

配位化学论文设计---分子轨道理论

配位化学论文 分子轨道理论的发展及其应用 160113004 2013级化教一班马慧敏 一、前言 价建理论、分子轨道理论和配位场理论是三种重要的化学键理论。三、四十年代,价键理论占主要的地位。五十年代以来由于分子轨道理论容易计算且得到实验(光电能谱)的支持,取得了巨大的发展,逐渐占优势。价建理论不但在理论化学上有重要的意义(下文中将详细介绍)。在应用领域也有重要的发展,如分子轨道理论计算有机化合物的吸收光谱用于染料化学;前线分子轨道理论在选矿中的研究等等。 二、简介 1、分子轨道理论产生和发展 在分子轨道理论出现以前,价键理论着眼于成键原子间最外层轨道中未成对的电子在形成化学键时的贡献,能成功地解释了共价分子的空间构型,因而得到了广泛的应用。但如能考虑成键原子的层电子在成键时贡献,显然更符合成键的实际情况。1932年,美国化学家 Mulliken RS和德国化学家HundF 提出了一种新的共价键理论——分子轨道理论(molecular orbital theory),即MO法。该理论注意了分子的整体性,因此较好地说明了多原子分子的结构。目前,该理论在现代共价键理论中占有很重要的地位。 以下是各个年代提出的关于分子轨道理论的一些重要理论和方法,是分子轨道理论发展过程中的几个里程碑! 1926-1932年,在讨论分子光谱时,Mulliken和Hund提出了分子轨道理论。 认为:电子是在整个分子轨道中运动,不是定域化的。他们还提出能级图、成键、反键轨道等重要的概念。 1931-1933年,Hukel提出了一种简单的分子轨道理论,用于讨论共轭分子的性质,相当成功。 1950年,Boys用Guass函数研究原子轨道,解决了多中心积分问题,是今天广为利用的自洽场分子轨道理论的基础,在量子化学的研究中占有重要地位。 1951年,Roothaan在Hartree-Fock方程的基础上,把分子轨道写成原子轨道的线性组合,得到Roothaan方程。 1952年,福井谦一提出前线分子轨道理论,用以讨论分子的化学活性和分子间相互作用等,可以解释许多实验结果。 1965年,Woodward和Hoffman提出分子轨道对称守恒原理,发展成讨论基元反应发生可能性的重要规则。用于指导某些复杂化合物分子的合成。 2、分子轨道理论的含义和一些重要分子轨道的构成方法 1)分子轨道理论的含义

第二章 价键理论、晶体场理论

第二章配合物的化学键 理论 内容:研究中心原子和配体之间结合力的本性。 目标:解释性质,如配位数、几何结构、磁学性质、光谱、热力学稳定性、动力学反应性等。 三种理论:①价键理论、②晶体场理论、③分子轨道理论 第一节价键理论(Valence bond theory) 由L.Pauling提出 一、理论要点: ①配体的孤对电子可以进入中心原

子的空轨道;中心原子总是用空轨道杂化,然后用杂化轨道接收配体提供的孤对电子。 ②中心原子用于成键的轨道是杂化轨道(用于说明构型)。中心原子的价层电子结构与配体的种类和数目共同决定杂化类型。 ③杂化类型决定配合物的空间构型,磁距和相对稳定性。 二、轨道杂化及对配合物构型的解释 能量相差不大的原子轨道可通过线性组合构成相同数目的杂化轨道。 对构型的解释(依据电子云最大

重叠原理:杂化轨道极大值应指向配体) 指向实例 sp3、sd3杂化四面体顶点Ni(CO)4 sp2、sd2、dp2、d3杂化三角形顶点[AgCl3]2- dsp2、d2p2 杂化正方形顶点[PtCl4]2- d2sp3杂化八面体顶点[ Fe(CN)6]4- sp杂化直线型[AgCl2]-

三、内轨型和外轨型 若要形成ML6型配合物(L为单齿配体),则需要6个空杂化轨道接收6个L提供的孤电子对,满足该条件的杂化类型有d2sp3和sp3 d2。尽管这两种杂化都导致八面体型配合物,但前者是次外层(n-1)d轨道,而后者是最外层nd轨道,因此与这两种杂化相应的配合物分别称内轨型和外轨型配合物。 中心原子的价层电子数和配体的性质都是影响配合物内轨型和外轨型的因素。当d电子数≤3时,该层空d轨道≥2,总是生成内轨型配合物。

论述价键理论和分子轨道理论说明O2

论述价键理论和分子轨道理论说明O2 -CAL-FENGHAI.-(YICAI)-Company One1

1.论述价键理论和分子轨道理论说明O2、N2分子的结构和稳定性的基本思路,两种理论的优点及不足之处。 答:价键理论(简称VB法)认为两个原子相互靠近形成分子时,原子的价层电子轨道发生最大程度的重叠,使体系的能量降低,价层轨道中自旋相反的成单电子相互靠近配对,从而稳定成键。 共价键按原子轨道重叠方式不同,可分为σ键和π键(1分),N2分子中,两个N原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外两对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以N2分子中两个氮原子是两个π键和一个σ键连接,非常稳定。 O2分子中,两个O原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外一对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以O2分子中两个氧原子原子是一个π键和一个σ键连接,没有N2稳定。 分子轨道理论(简称MO法)着重于分子的整体性,把分子作为一个整体来处理,比较全面地反映了分子内部电子的各种运动状态。描述分子中电子运动状态的函数称为分子轨道。分子轨道有原子轨道先行组合而来。电子属于整个分子,电子在分子轨道填充,能量最低的状态即分子的结构。 O2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 (π*2p y)1 (π*2p z)1 N2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 N2分子的键级为3,O2分子的键级为2。所以N2分子比氧气分子要稳定。 价键理论解决结构问题比较直观,计算比较简单,但其只考虑原子价层轨道对成键的影响,不够全面,比如O2分子的磁性用价键理论就难以解释;分子轨道理论能较好地解释分子成键的情况、键的强弱和分子的磁性,但计算难度及工作量太大。 2

配位化学的发展进程

配位化学论文

工业中的配位化学 摘要:配位化学从1704年发展至今,不断创造出许多富有生命力的新领域,为化学工业的发展带来新的契机。配位化学在化学化工方面显示出了不可替代的实用优越性。配位化学又称络合物化学,它是近三十年来发展最迅速的化学学科之一,其研究已渗透到无机化学、分析化学、有机化学、生物化学、电化学等学科中,并在金属的提取和富集、工业分析、催化、制药、染料、水质处理等方面得到广泛的应用。本文综述了配位化学在工业方面的应用,浅议配位化学的新发展及其近几年在化学化工工业中的发展前景。 关键词: 配位化学;配合物;发展;化学化工;应用 1前言 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。本世纪五十年代后,配位化学的发展突飞猛进,大量新配合物的制得及其结构研究,配合物中价键理论的研究,配合物的反应动力学的研究等方面在世界化学文献中占有重要的地位。配位化学之所以有今日的进展,固然和近代科学技术及侧试设备的进步有关,而更重要的是配位化学在科学技术及工农业生产上有极广泛和重要的应用。在工业生产中,多数应用到金属(或金属离子)的部门、工艺技以及原料、产品的分析皆或多或少地涉及到配合物。由于配位化学在工业中的应用面广、量大不能一一详述,下面拟几个方面做扼要介绍。 2 配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704年斯巴赫(Die sib ach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN)3,其后1798 年塔斯赫特(T assert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,A. W e r n e r创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[2]。 1缓蚀剂原则上讲,缓蚀剂的缓蚀作用,是由子水中加入它后,在金属材质表面形成了钝化型膜、沉淀型膜或吸附型膜,因而有效地阻止或降低水中腐蚀介质对金属的腐蚀速度。多数情况下成膜和形成配合物有关。例如,长久以来,应用铬酸盐作为缓蚀剂,它形成钝化型膜迅速、膜层牢固、缓蚀率高,但由于它对许多水生物有毒性,故近年来,国内外都在研究用钼酸盐、钨酸盐来代替铬酸盐,当水中存在一定量的O2时,钼酸盐在金属表面的成膜机理可表示为:

无机化学 第12章 配位化学基础习题及全解答

第12章 配位化学基础 1 M 为中心原子,a, b, d 为单齿配体。下列各配合物中有顺反异构体的是 (A ) (A ) Ma 2bd (平面四方)(B ) Ma 3b (C ) Ma 2bd (四面体)(D ) Ma 2b (平面三角形) 2 在下列配合物中,其中分裂能最大的是 (A ) (A ) Rh(NH 3)36+ (B )Ni(NH 3) 36+ (C ) Co(NH 3)36+ (D ) Fe(NH 3)36+ 3 在八面体强场中,晶体场稳定化能最大的中心离子d 电子数为 (B ) (A ) 9 , (B ) 6 , (C )5 , (D )3 4 化合物[Co(NH 3)4Cl 2]Br 的名称是 溴化二氯?四氨合钴(III ) ; 化合物[Cr(NH 3)(CN)(en)2]SO 4的名称是 硫酸氰?氨?二乙二胺合铬(III )。 5 四硫氰·二氨合铬(Ⅲ)酸铵的化学式是 NH 4[Cr (SCN )4(NH 3)2] ; 二氯·草酸根·乙二胺合铁(Ⅲ)离子的化学式是[Fe Cl 2(C 2O 4)en]- 4 。 6. 下列物质的有什么几何异构体,画出几何图形 (1)[Co(NH 3)4Cl 2]+ (2)[Co(NO 2)3(NH 3)3] 答:(1)顺、反异构(图略),(2)经式、面式异构(图略)。 7.根据磁矩,判断下列配合物中心离子的杂化方式,几何构型,并指出它们属于何类配合物(内/外轨型。 (1)[Cd (NH 3)4]2+ μm =0 ; (2)[Ni(CN)4]2- μm =0 ; (3)[Co(NH 3)6]3+ μm =0 ; (4)[FeF 6]3- μm =μB ; 答:

论述价键理论和分子轨道理论说明O2

1.论述价键理论和分子轨道理论说明O2、N2分子的结构和稳定性的基本思路,两种理论的优点及不足之处。 答:价键理论(简称VB法)认为两个原子相互靠近形成分子时,原子的价层电子轨道发生最大程度的重叠,使体系的能量降低,价层轨道中自旋相反的成单电子相互靠近配对,从而稳定成键。 共价键按原子轨道重叠方式不同,可分为σ键和π键(1分),N2分子中,两个N原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外两对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以N2分子中两个氮原子是两个π键和一个σ键连接,非常稳定。 O2分子中,两个O原子各以一个含有单电子的p轨道以头碰头的方式重叠形成σ键,另外一对含有单电子的p轨道以肩并肩的方式重叠形成π键,所以O2分子中两个氧原子原子是一个π键和一个σ键连接,没有N2稳定。 分子轨道理论(简称MO法)着重于分子的整体性,把分子作为一个整体来处理,比较全面地反映了分子内部电子的各种运动状态。描述分子中电子运动状态的函数称为分子轨道。分子轨道有原子轨道先行组合而来。电子属于整个分子,电子在分子轨道填充,能量最低的状态即分子的结构。 O2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 (π*2p y)1 (π*2p z)1 N2的分子轨道: (σ1s)2 (σ*1s)2 (σ2s)2 (σ*2s)2 (σ2p x)2 (π2p y)2 (π2p z)2 N2分子的键级为3,O2分子的键级为2。所以N2分子比氧气分子要稳定。 价键理论解决结构问题比较直观,计算比较简单,但其只考虑原子价层轨道对成键的影响,不够全面,比如O2分子的磁性用价键理论就难以解释;分子轨道理论能较好地解释分子成键的情况、键的强弱和分子的磁性,但计算难度及工作量太大。

实验三-配合物的生成、性质与应用

实验三 配合物的生成、性质和应用 一、实验目的 1.了解配合物的生成和组成。 2.了解配合物与简单化合物合复盐的区别。 3.了解配位平衡及其影响因素。 4.了解螯合物的形成条件及稳定性。 5.熟悉过滤盒试管的使用等基本操作。 二、实验原理 由中心离子(或原子)与配体按一定组成和空间构型以配位键结合所形成的化合物称配合物。配位反应是分步进行的可逆反应,每一步反应都存在着配位平衡。 M + nR ? MR n s n [MRn] [M][R]K 配合物的稳定性可由K 稳 (即K s )表示,数值越大配合物越稳定。增加配体(R)或金属离子(M)浓度有利于配合物(MRn)的形成,而降低配体和金属离子的浓度则有利于配合物的解离。如溶液酸碱性的改变,可能引起配体的酸效应或金属离子的水解等,就会导致配合物的解离;若有沉淀剂能与中心离子形成沉淀的反应发生,引起中心离子浓度的减少,也会使配位平衡朝离解的方向移动;若加入另一种配体,能与中心离子形成稳定性更好的配合物,则同样导致配合物的稳定性降低。若沉淀平衡中有配位反应发生,则有利于沉淀溶解。配位平衡与沉淀平衡的关系总是朝着生成更难解离或更难溶解物质的方向移动。 配位反应应用广泛,如利用金属离子生成配离子后的颜色、溶解度、氧化还原性等一系列性质的改变,进行离子鉴定、干扰离子的掩蔽反应等。 三、仪器和试剂 仪器:试管、离心试管、漏斗、离心机、酒精灯、白瓷点滴板。 试药:H 2SO 4 (2mol·L -1)、HCl (1mol·L -1)、NH 3·H 2O (2, 6mol·L -1)、NaOH (0.1, 2mol·L -1) 、CuSO 4 (0.1mol·L -1, 固体)、HgCl 2 (0.1mol·L -1)、KI (0.1mol·L -1)、BaCl 2 (0.1mol·L -1)、K 3Fe (CN)6 (0.1mol·L -1)、NH 4Fe (SO 4)2 (0.1mol·L -1)、FeCl 3 (0.1mol·L -1)、KSCN (0.1mol·L -1)、NH 4F (2mol·L -1)、(NH 4)2C 2O 4 (饱和)、AgNO 3 (0.1mol·L -1)、NaCl (0.1mol·L -1)、KBr (0.1mol·L -1)、 Na 2S 2O 3 (0.1mol·L -1,饱和)、Na 2S (0.1mol·L -1)、FeSO 4 (0.1mol·L -1)、NiSO 4 (0.1mol·L -1) 、CoCl 2 (0.1mol·L -1)、CrCl 3 (0.1mol·L -1)、EDTA (0.1mol·L -1)、乙醇 (95%)、CCl 4、邻菲罗啉 (0.25%)、二乙酰二肟(1%)、乙醚、丙酮。 四、实验内容 1.配合物的生成和组成 (1)配合物的生成 在试管中加入0.5g CuSO 4·5H 2O (s), 加少许蒸馏水搅拌溶解,再逐滴加入2mol·L -1的氨水溶液,观察现象,继续滴加氨水至沉淀溶解而形成深蓝色溶液,然后加入2mL 95%乙醇,振荡试管,有何现象?静置2分钟,过滤,分出晶体。在滤纸上逐滴加入2 mol·L -1NH 3·H 2O 溶液使晶体溶解,在漏斗下端放一支试管承接此溶液,保留备用。写出相应离子方程式。 现象:有浅蓝色沉淀碱式硫酸铜生成:Cu 2++ 2NH 3·H 2O=Cu 2(OH)2SO 4+2NH 4+ 继续滴加沉淀溶解加入乙醇,现象和解释: 析出Cu(NH 3)4 SO 4(蓝色) (2)配合物的组成 将上述溶液分成2份,在一支试管中滴入2滴0.1mol·L -1BaCl 2溶液,另一支试管滴入2滴0.1mol·L -1NaOH 溶液,观察现象,写出离子方程式。

相关文档
最新文档