浅谈高炉富氧鼓风

浅谈高炉富氧鼓风
浅谈高炉富氧鼓风

浅谈高炉富氧鼓风

马洪斌

(首钢总公司)

摘要本文分析了富氧鼓风对高炉送风制度及炉缸煤气的影响,探讨了富氧鼓风在高炉冶炼过程的

合理使用。

关键词高炉鼓风富氧

Simply discussing oxygen enriched air blast

Ma Hongbin

(Shougang Corporation)

Abstract This article analyzes the influence of oxygen enriched air blast to blowing in system and coal gas in hearth. And it also discusses the reasonable use of oxygen enriched air blast to blast furnace process.

Keywords blast furnace blast oxygen enriched air blast

前言

高炉富氧鼓风是往高炉鼓风中加入工业氧,使鼓风含氧超过大气含量,其目的是在不增加风量、不增加鼓风机动力消耗的情况下,提高冶炼强度以增加高炉产量和强化喷吹燃料在风口前燃烧。鼓风中氧的浓度增加,燃烧单位碳所需的鼓风量减少;鼓风中氮的浓度降低,也使生成的煤气量减少,煤气中CO浓度因此而增大,由于煤气体积较小,煤气对炉料下降的阻力也减少,为提高高炉产量创造了条件。本文从高炉操作角度出发,分析了富氧鼓风对送风制度、炉缸煤气的影响,探讨了富氧鼓风在高炉冶炼过程的合理使用。

1富氧鼓风对送风制度的影响

1.1入炉风量

使用碳、氮平衡法计算高炉入炉风量。计算高炉入炉风量:

公式 1[1]

:高炉入炉风量,m3/min;:高炉产量,t/日;:煤比,Kg/t;、:煤粉中氧、水分含量,%。:风口前碳素燃烧率,%;:富氧率,,%;:鼓风湿度,%;:入炉总碳量,Kg/t。

1.2实际风速

实际风速是衡量高炉下部送风制度的重要参数,其决定了送风制度能否有效达到使风口回旋区向炉缸中心延伸的目的。计算实际风速:

公式 2[1]

:实际风速,m/s;:标准状态下的风量,m3/min;:风口总面积,m2;:热风温度,℃;:热风压力,KPa。

1.3鼓风动能

风口前回旋区的大小和形状主要由鼓风动能决定。计算鼓风动能:

公式 3[1]

:鼓风动能,Kg.m/s;:风口直径,m;:鼓风湿分,,g/m3。

1.4实例计算

以首钢1号高炉2010年6月份的冶炼条件进行计算,在高炉产量不变的情况下,随鼓风富氧率的升高,高炉入炉风量降低,实际风速和鼓风动能也随之出现降低,其中实际风速的降低是入炉风量的降低而引起的,鼓风动能的降低是入炉风量的降低及鼓风密度的变化而引起的。若高炉操作方面入炉风量不变,则随鼓风富氧率的升高,实际风速不变,鼓风动能由于鼓风密度的变化而升高。

表 1 富氧鼓风对送风制度的影响实例

富氧率% 入炉风量m3/min 实际风速m/s 鼓风动能Kg.m/s

1.0 5035 271.8 11729

2.0 4826 260.5 10338

3.0 4633 250.0 9160

4.0 4455 240.4 8155

5.0 4290 231.5 7293

6.0 4137 223.3 6548

2富氧鼓风对炉缸煤气的影响

2.1炉缸煤气量

炉缸煤气量是衡量高炉强化程度的重要参数,随高炉强化程度提高,炉内料柱实际通过的煤气量增加。计算炉缸煤气量:

公式 4[1]

:炉缸煤气量,m3/t;:吨铁入炉风量,m3/t;:煤粉的H含量,%;:煤粉燃烧率,%。

2.2理论燃烧温度

适宜的理论燃烧温度须满足高炉正常冶炼所需的炉缸温度和热量,保证液态渣铁充分加热和还原反应的顺利进行。计算理论燃烧温度:

公式 5[1]

:理论燃烧温度,℃;: 1Kg碳氧化成CO时放出的热量,KJ/Kg;:1Kg焦炭在1500℃时带入炉缸的物理热,KJ/Kg;:焦比,Kg/t;:焦炭的碳含量,%;:煤粉的碳含量,%;:在时大气的比热容,KJ/m3.℃;:在时氧气的比热容,KJ/m3.℃;:煤粉在高炉的分解热,KJ/Kg;:水分在高炉的分解热,KJ/Kg;:炉缸煤气在时的比热容,KJ/m3.℃。

2.3理论实际煤气流速

理论实际煤气流速以炉缸煤气量为基础,假设风口前区域产生的煤气全部被加热至理论燃烧温度,之后通过炉缸整个横截面向上流出,计算炉缸煤气流出时的流速,以表征高炉的强化程度。计算理论实际煤气流速:

公式 6[1]

:理论实际煤气流速,m/s;:炉料空隙系数;:炉缸横截面积,m2。

2.4实例计算

同样,以首钢1号高炉2010年6月份的冶炼条件进行计算,在高炉产量不变的情况下,随鼓风富氧率的升高,炉缸煤气量(换算为m3/min,利于比较)、理论实际煤气流速均降低,理论燃烧温度升高。若高炉操作方面入炉风量不变,则随鼓风富氧率的升高,炉缸煤气量、理论燃烧温度、理论实际煤气流速均升高。

表 2 富氧鼓风对炉缸煤气的影响实例

富氧率% 炉缸煤气量m3/min 理论燃烧温度℃理论实际煤气流速m/s

1.0 6156 2233 3.875

2.0 5900 2295

3.806

3.0 5666 2357 3.743

4.0 5450 2419 3.685

5.0 5249 2481 3.631

6.0 5063 2543 3.581

富氧率% 入炉风量m3/min 实际风速m/s 鼓风动能Kg.m/s

富氧率1.0% 5035 271.8 11729

富氧率2.0%、产量+270d/日5036 271.8 11748

表 4 维持送风制度不变情况下富氧鼓风及产量对炉缸煤气的影响实例

富氧率% 炉缸煤气量m3/min 理论燃烧温度℃理论实际煤气流速m/s 富氧率1.0% 6156 2233 3.875

富氧率2.0%、产量+270d/日6424 2233 4.043

变量入炉风量m3/min 实际风速m/s 鼓风动能Kg.m/s

富氧率1.0% 5035 271.8 11729

富氧率2.0%、产量+80d/日4888 263.8 10743

表 6 维持强化程度不变情况下富氧鼓风及产量对炉缸煤气的影响实例

变量炉缸煤气量m3/min 理论燃烧温度℃理论实际煤气流速m/s

富氧率1.0% 6156 2233 3.875

富氧率2.0%、产量+80d/日6053 2276 3.876

变量理论燃烧温度℃理论实际煤气流速m/s

富氧率1.0% 2233 3.875

富氧率2.0% 2295 3.806

煤比+30Kg/t 2195 3.809

富氧率2.0%、+30Kg/t 2253 3.741

变量炉缸煤气量m3/min 理论燃烧温度℃理论实际煤气流速m/s

富氧率1.0% 6156 2233 3.875

富氧率2.0%、6470t/日6424 2233 4.043

富氧率3.0%、6740t/日6693 2233 4.212

富氧率4.0%、7010t/日6962 2233 4.381

为缓解以上矛盾,高炉提高富氧率后,可考虑适当降低入炉风量,通过风口面积、风温等的调整维持合理的实际风速与鼓风动能,实现送风制度的稳定,这种调整在不影响高炉产量甚至产量增加的情况下,可以缓解炉内透气性与煤气流运动的矛盾,例如实例计算发现,高炉富氧率提高后,通过缩小风口面积、提高风温、增加煤比等调整手段,在产量升高的情况下,送风制度基本稳定,理论实际煤气流速也出现明显降低,为高炉顺行提供了有利条件。

表 9 富氧鼓风及配合调整因素对送风制度的影响实例

变量入炉风量m3/min 实际风速m/s 鼓风动能Kg.m/s 富氧率1.0% 5035 271.8 11729

富氧率4.0%、产量+150d/日、风温+20℃、

4552 270.8 11490

风口面积-0.0313m2、煤比+40Kg/t

变量炉缸煤气量理论燃烧温理论实际煤气流速

m/min m/s 富氧率1.0% 6156 2233 3.875 富氧率4.0%、产量+150d/日、风温+20℃、

5711 2337 3.743 风口面积-0.0313m2、煤比+40Kg/t

高炉富氧炼铁前景

高炉富氧炼铁前景 来源:张化义文章发表时间:2010-12-21 时至今日,通过增加喷煤量和提高生产率以降低铁水生产成本仍然是高炉炼铁生产的焦点。目前,最好的高炉利用系数已超过3t/m3d,典型的低焦比为260 kg/tHM ~270kg/tHM。Corus IJMuiden高炉富氧炼铁已达到35%~40%。实践证明,与传统的Rankine循环相比,利用高炉炉顶煤气进行联合循环发电可提高热效率35%~40%,有利于进一步降低铁水成本。联合循环发电可有效利用低发热值(约4500kJ/Nm3)高炉煤气。通过富氧满足“高炉贫N2操作”,降低焦比,提高生产率和减少CO2排放。 1 前言 在未来许多年里,高炉炼铁仍将继续占据着主导地位,其主要原因是: 1)替代高炉炼铁工艺的研究进展缓慢。考察了冶炼-还原工艺后认为,至今仍然只有Corex、Finex和HIsmelt工艺达到了商业生产水平。因为商业投资风险比BF大,因而替代炼铁工艺的应用可能继续受到限制。 2)因为维修和更新现有高炉需要的投资,比建设一座全新的替代高炉及其附属设备的投资低许多。 3)提高现代高炉炼铁生产率和降低铁水成本方面还存在着很大的潜力。 因此,未来几年将从以下几个方面对高炉炼铁进行深入研究: 1)降低铁水生产成本。如果铁矿石成本一定,铁水成本主要取决于还原剂(焦炭与煤)的消耗量和高炉利用率。因此,研究如何将喷煤量(PC1)和高炉利用率分别提高到230kg/tHM和3t/m3d以上是节约能源、降低铁水成本的关键。 2)减少CO2排放。通过资源的有效利用,也就是减少能源损失,提高能源和再生资源的使用效率以减少CO2排放将是研究工作的重点。为此本文将重点介绍高炉低N2运行前景,即提高热风炉送风含氧量,即超过喷煤需要的最低含量。 2 当前的粉煤喷吹和热风富氧量 表1是利用物质和热量平衡模型计算获得的消耗参数和冶炼1吨铁水的操作消耗

国外钢铁企业的高炉喷煤技术

2 国外钢铁企业的高炉喷煤技术 2.1浦项光阳厂和阿塞勒Gijon厂 近年来,浦项公司和阿塞勒公司的高炉生产者一直计划改进现有的喷煤装置,并对其静力分配器系统提出两种改进方案。改进现有喷煤装置的主要原因如下:1)焦炭的价格提高,质量较差,改进喷煤系统后,可以减少焦炭的使用量;2)寻求一种更经济、更稳定的高炉操作方式;3)高炉中修后,铁水生产能力提高;4)多年来的喷煤实践证明,喷吹煤粉可以实现高炉工艺最佳化,高煤比操作是可行的;5)原有喷煤装置的计量精度无法满足更高煤比的要求,即高煤比时不能保证稳定喷吹。 要想对原有的喷煤装置进行改进,有两个问题必须解决:首先,提高喷煤装置喷吹能力,应额外增加1台喷吹罐或优化喷吹罐的倒罐循环次序;其次,须检测煤粉总流量和流量精度。 对于单管流量控制系统或采用分配器的喷吹系统以及流量均衡喷嘴的系统,在安装测量和控制设备后,一般能够达到所要求精度,为了达到今后所必需的高精度,须改进喷煤装置。 2.1.1 单管流量控制 计划用一台喷吹罐取代静力分配器。喷吹罐后序的喷吹管线将安装煤粉流量的测量装置和煤粉流量控制阀,以对高炉各个风口煤粉喷吹过程实现闭环控制。喷吹罐前序的输送罐将用于向喷吹罐送煤。输送煤的载气一部分用于维持喷吹罐内的压力,另一部分通过布袋收粉器释放掉。布袋收粉器出口处的压力控制阀用于控制喷吹罐内的压力。这套方案具有单管流量控制装置的所有优点,如在喷吹管路中,煤粉流量精度的偏差小于1%、总流量控制偏差小于0.5%以及带入高炉的氮气量少等。实际上,由于喷吹罐的位置靠近高炉,因此喷吹罐内的喷吹压力较低,可实现高浓相输送。 此外,由于输送系统(输送罐到喷吹罐)与喷吹系统是分开的,所以总流量的波动不会影响喷吹流量。对简单分配器进行的第一套改进方案已在韩国浦项公司光阳厂的1号高炉成功实施,其原理见图1-1所示。

高炉鼓风机设备方案

前言 Ⅰ. 编制依据 ?国家及行业颁发的施工质量验收规范; ?本企业操作规程及科技成果; ?现场条件、施工特点及施工经验; ?招标文件; ?国家法律法规及强制性标准 Ⅱ. 工期目标 安装时间根据项目部具体安排。 Ⅲ. 质量目标 单位工程合格率100%。 分项工程合格率100% Ⅳ. 安全目标 1.杜绝工亡、重伤事故,千人负伤率控制在3‰; 2.消灭重大交通、火灾、机械设备事故; 3.创建安全文明工地,达标率不小于80﹪。 Ⅴ. 环保及文明施工目标 1.噪声排放达标。 2.现场目测无扬尘。 3.运输无遗洒。 4.生产及生活污水达标排放。

5.施工现场夜间无光污染。 6.使用环保型灭火器。 7.尽量减少油品、化学品的泄露现象。 8.固体废弃物实现分类管理,提高回收利用率。 9.最大限度地节约水、电能源。 1.工程项目概况 该标段工程设备安装主要包括鼓风机、马达,润滑油站,高位油箱,控制油站,控制阀台,防风消音器,水泵,空冷器,隔音罩,电动单梁起重机等。鼓风机及马达是工艺中最关键的设备,对安装质量的要求十分严格,其安装质量的优劣,直接关系到生产工艺线能否正常运行,在施工过程中,我们将严格按照设计图纸及国家有关技术标准和规范进行安装施工,关键、隐蔽工程将请业主及其委派的现场专家确认并会签,不合格工程不转入下一道工序。 2.工程施工特点 2.1 本工程施工地点属于厂房内施工,施工区域小。 2.2 本工程主体设备吨位较重、加工精度高、精密部件多,安装精度要求高。 2.3 本工程施工区域相关专业间交叉配合项目多。因此,要合理安排各专业间的配合施工。 2.4 施工过程鼓风机马达采用500吨汽车吊作业其余厂房内设备使用厂房内天车作业,厂房外设备采用汽车吊作业,吊装过程要做好对设备的保护。

高炉机前富氧项目基本要求

高炉机前富氧 技 术 方 三、验收标准及技术要求: 1、GB50316-2000《工业金属管道设计规范》 2、TSG D0001-2009《压力管道安全技术监察规程-工业管道》

3、GB16912-2008《深度冷冻法制取氧气及相关气体安全技术规程》 4、GB50235-2010《工业金属管道施工及验收规范》 5、GB50236-2011《现场设备、工业管道焊接工程施工规范》 6、HG20202-2000《脱脂工程施工及验收规范》 7、JB/T5902-2001《空气分离设备用氧气管道技术条件》 8、JB/T6896-2007《空气分离设备表面清洁度》 10、 四、 1 左右。 ,送入高2 1 通过低压管道送至炼铁厂的1#、2#、高炉风机,利用风机自然吸气与空气混合,进鼓风机压缩送高炉富氧。 工艺简图(虚线为改造后):

现在提出的鼓风机前富氧,主要现有设备基础上的改造。因为前面提到当氧气达到一定比例时鼓风机会发生爆炸。那么这年氧气的比例是多少才能引起爆炸呢.。我们对此进行了试验。试验是通过一个小的旧通风机进行逐步加氧模拟而进行的。证明氧气含量在27%以下是安全的。同时由于各种设备状况的不同,为了安全保险,我们建议机前富氧,含氧量不超过25%,是绝对安全的。为了保证含氧量不超 25% (根

设计方案 1#、2#高炉富氧总量为10000Nm3/h,氧气总管流量考虑最大为:12000Nm3/h,进口压力8kPa,主管道采用DN800mm,设计流速v=5.0m/s,当量距离L=1000m,设计理论压损ΔP=585Pa。 3、主要设备及材料的使用规范 选用管材:主管及送气支管采用焊接钢管(YB231-70)。 采用阀芯、 商业机 wincc 1 2 3 4 6 通过对含氧量的检测,系统可以自动判断是否达到预设指令的富氧率,通过PLC 控制器可对氧气调节阀自动调节阀门开关位置,也可用PID自动控制模式自动跟踪控制富氧率。 氧气系统发生故障时,由PLC根据所检测到的参数,自动迅速关断气动快速切断阀并打开保安氮气切断阀。

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

高炉鼓风机拨风系统

高炉鼓风机拨风系统标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

高炉鼓风机拨风系统改造 杜贞晓 引言在高炉工艺流程中,高炉鼓风机是高炉动力的来源,鼓风机必须给高炉提供充足、富余的风量才能保证高炉正常生产。然而,在高炉炼铁生产过程中,各种不可预测的故障时有发生,小故障可以及时处理,但是重要的连锁信号或高压供电一旦出现问题就导致鼓风机断风或直接停机,致使高炉突然无风压,引起高炉灌渣等重大生产事故。为避免这种重大事故的发生,我们第二炼铁厂根据实际情况,提出在鼓风机之间加拨风系统。 关键词拨风保障高炉送风避免灌渣 概述 拨风系统是两座高炉鼓风机其中一台故障,不能正常送风,另一台风机通过管道把一部分风压临时拨给故障风机,防止有故障的高炉断风的系统。风机故障一般分为停机和安全运行两种情况,我们这套系统针对这两种情况设计了拨风的要求和和条件。这套系统投资小,现场设备较少,设计思路简洁明了,作用大,为避免高炉灌渣,提供了可靠有利的保障。 改造内容: 、主要方法、技术路线 当某座高炉风机出现故障时,风压力降低较大,为防止风压突然消失后,经过判断,确认后,利用相邻两座高炉互为拨风,有效避免高炉吹管出现灌渣现象,避免损失的扩大。判断条件是当高炉相邻两台风机中有一台风机突然停机或安全运行时,拨风系统通过

信号自动判断拨风条件,当有停机信号或安全运行时,并且停机风机风压低于设定值 200KPa时,拨风控制系统控制拨风阀自动打开,使停机的风机仍然有100多KPa的压力,使高炉能保持一定的风压,避免灌渣。 、系统原理图 此套拨风系统采用了DN600不锈钢蝶阀,每两台相临风机间加两个手动阀,两个手动阀之间加一个气动蝶阀,气源采用氮气,氮气相比空气,更稳定,压力平稳,气源没有水等其他杂志,而且冬天可以防止结冰。在设备正常运行时,三个阀门全部开启。在休风检修设备时,关闭两端手动阀门,从而可以随意检修中间的气动阀门。 、硬件组成 2008年6月,按照分厂领导要求,电气、机械、工艺等各个工种开始施工。我们厂共由风机10台,其中备用机2台,有8台鼓风机相邻两台之间做保护,现场设备有气动阀门4台,每个气动阀两侧又加装2台手动阀门,电气设备配电柜2面,现场安装压力变送器8台,敷设电缆1000米,自动化系统是由一套西门子 S7-300 PLC控制,配有 CP343、模拟量输入、模拟量输出、数字量输入、数字量输出模块、中间继电器、信号隔离栅、24V电源、转换开关、按钮、指示灯等元件,来完成整个系统的信号检测和控制输出,现场设备是单向电磁阀控制气动阀门开关的,动力气源是氮气。 、技术原理和应用领域 应用领域:第二炼铁厂3#、4#风机房拨风装置改造于2008年4月18日批准立项后,节省资金起见,由二炼铁自行负责施工,2008年8月8日最后改造完毕,进入试运行阶段。

高炉喷煤制粉控制方案(王宏伟)

高炉喷煤控制系统 技术方案 辽宁中新自动控制有限公司 2003-2-17

目录 一、概述 二、高炉喷煤工艺流程及主要部分自动化控制说明 三、自动化系统硬件组成 四、控制策略 五、控制系统的监控与操作

一、概述 近年来,我国的高炉喷煤取得了巨大的成绩,已经形成了具有特色的、成熟配套的喷煤技术和工艺流程。在高炉炼铁过程中采用富氧大喷煤可以节省大量焦炭,能够较大幅度地降低炼铁成本。例如采用先进的配煤技术,能够把不同性能的煤种进行混合,以提高其燃烧率;采用中速磨进行煤粉制备,大幅度降低电耗和噪音污染;采用热风炉烟气做载气和干燥气,既节约了能耗又起到了防爆作用;采用布袋一次收粉,取消了一级、二级旋风收粉装置;采用一级风机,实现全负压操作;采用直接喷吹工艺,喷吹系统和制粉系统设在同一厂房内;喷吹罐可采用串联或并联方式,采用流化罐上出料及浓相输送技术,可以使出煤均匀,防止脉动和减少对输煤管道的磨损;采用总管加分配器工艺将煤粉送至高炉的各个风口;采用电容流量计进行总管及支管煤粉计量,配合其它设备可以形成闭环煤量自动控制;采用氧煤枪进行局部富氧以提高煤粉燃烧率;采用供氧及安全控制系统以防止氧气泄露。因此,如何在保证控制安全可靠的前提下,实现低成本自动化,是喷煤自动控制设计者主要考虑的问题。 二、高炉喷煤工艺流程及主要部分自动化控制说明 从工艺角度来讲,整个系统可分为制粉和喷吹两个子系统,制粉工艺系统又分为原料控制系统、干燥系统、磨煤系统,喷吹工艺系统又分为布袋除尘、喷吹系统、动力系统。如下面高炉喷煤主工艺图。其工艺流程见图

高炉喷煤工艺主流程图 1:排烟风机入口调节阀,2:布袋除尘事故充氮阀,3:布袋反吹阀,4:中速磨事故充氮阀,5:煤粉仓事故充氮阀,6:均压阀,7:煤粉仓流化阀,8、9:喷吹罐放散阀,10、11:蝶阀,12、13:球阀,14、15:充压阀,16、25:补压阀,17、18:喷吹罐流化阀,19、22:补气调节阀,20、23:出煤阀,24、快切阀,26:氮气空气切换阀,27:安全用氮减压阀,28:氮气总管调节阀电气控制主要设备: a、制粉系统: 圆盘给料机、胶带机、检铁器、犁式卸料器、定量给料机、热风炉废气引风机,助燃风机,中速磨(密封电机、液压电机、慢传电机、加热器、润滑泵)、排煤风机。 各种阀:热风炉废气放散阀,冷风阀、干燥剂放散阀,中速磨事故充氮阀,快切阀,输煤阀等。 b、喷吹系统: 主排烟风机、布袋叶轮给煤机 各种阀:排烟风机入口调节阀,布袋除尘事故充氮阀,布袋反吹阀,煤粉仓脉冲阀、停风阀、煤粉仓事故充氮阀,煤粉仓流化阀,均压阀,喷吹罐放散阀,蝶阀,球阀,充压阀,补压阀,喷吹罐流化阀,补气调节阀,出煤阀,快切阀,氮气空气切换阀,安全用氮减压阀,

离心风机检修标准(DOC)

第一章离心式风机检修标准 一、综述 建龙一期工程中共装置了各类负机约台,包括全国容量最大的高炉鼓风机在内,但主要的是离心式风机,如各种加热炉的助燃风机,大电机风冷用风机,各种除尘 装置上包括电除尘和大布袋除尘装置的使用的各类除尘风机,煤气加压站中继加压风机等等。另外,虽然还有风压较高的罗茨风机以及水处理冷却塔用大直径轴流风机和通风用的轴流风机,但数量较少,或因转速较低,检修工作量不大。 本检修标准着重于常用的离心式风机,虽然用途不一,但其基本型式是离心式,因此从检修标准来讲,技术标准是一致的。 至于高炉鼓风机等个别重要设备,其技术标准将单独编制。 二、离心风机的检修周期及检修内容 1)风机的检修周期 风机的检修周期,一般按表1进行。 风机的检修周期与风机使用的场合有极大关系,介质中含尘量与含尘的特性,对风机的 磨损影响极大,应根据实际使用情况,予以调整。 2)风机的检修内容 ⑴检查、清洗各部轴承,更换轴承润滑脂或润滑油,标明正常油位,最低、最高油 位。⑵检查各部的密封情况,清扫内部尘垢; ⑶检查叶片风六挡板,导流板等有无裂纹、锈蚀、磨损、螺丝松动等情况,并进行 处理;⑷检查联轴器及其防护罩,更换磨损的橡胶弹性圈; ⑸检查和紧固各部螺栓; ⑹堵塞各处漏风并修复保温材料; ⑺检查、修理调节风门,保证其灵活,指示正确。 ⑻检查修理冷却水系统。 (n)中修(包括小修内容)

⑴根据叶轮焊接缝(或铆钉)的磨损、桧情况,进行焊补或更换叶片(铆钉),并作静 平衡校验; ⑵修理或更换联轴器; ⑶检查或更换轴承; ⑷检查、调整电动轴和风机主轴的同心度及水平度; ⑸修理或更换轴承座; ⑹修理风机外壳和叶片磨损严重的部位,补焊或更换防磨层内衬; ⑺除锈防腐处理。 (川)大修(包括中修内容) ⑴修理或更换风机主轴; ⑵制造或安装新叶轮,并作静平衡或动平衡校验; ⑶更换磨损严重的风机外壳; ⑷更换台板、轴承箱或重新浇灌基础。 三、风机主要部件及装配的质量 1)叶轮 小型风机的叶轮一般为单吸式,大型风机的叶轮为双吸式的。 叶轮是由前盘,后盘(如双吸式)和中盘,轮毂和叶片风部份组成,叶轮的检修及各部的质量标准为: ⑴叶轮局部磨穿,可以割去磨穿部份,用新材料修补,磨薄部位可以补焊,用角向砂轮打平,但焊接时必须注意热变形和消除焊接应力。 叶片磨损过薄时(一般为原厚度的30%,应更换新叶片,新叶片安装的允许偏差,应符合表2的数值。

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

北台高炉富氧的技术经济分析

北台高炉富氧的技术经济分析 朱翔宇 (本溪北营集团公司炼铁厂10#高炉作业区 117017) 摘要:从理论上分析了高炉富氧技术的优点;结合北钢利用炼钢富余氧气进行高炉富氧喷煤方案,分析了高炉富氧带来的可观效益;提出了高炉富氧技术中有待探讨的几个问题。 关键词:高炉富氧氧气放散效益问题 Summary:The advantage that analyzed a blast furnace rich oxygen technique from the theory;Combine Beitai iron and steel group exploitation to make steel rich remaining oxygen carry on a blast furnace rich the oxygen spray a coal project and analyzed a blast furnace rich the oxygen bring of considerable efficiency;Put forward a blast furnace to enrich a few problems that need to be inquired intos in the oxygen technique. Keyword:The blast furnace enriches oxygen;Oxygen;Put to spread;Efficiency;Problem 1、引言 北钢集团现有13座高炉 (其中1~4#高炉容积为350m3,5~7#高炉容积为420, 8#、9#高炉容积为450m3、10#~13#高炉容积为530m3),年产生铁800万吨。北台钢铁集团高炉富氧喷煤起步于2005年,目前煤比已达到150kg/tFe的水平,创造了可观的经济效益。但随着喷煤量的增加,喷煤所带来的一些不利因素也愈显严重,特别是喷吹量增加,理论燃烧温度降低,从而对高炉顺行产生不利影响。据资料介绍和众多厂家实践,高炉富氧是进行热补偿的最有效措施。制氧厂生产的氧气供给炼钢有富余,特别是转炉生产不均衡使氧气有较大放散,以及制氧厂的潜力。有关部门把放散氧的利用和喷煤量的增加两者综合考虑,提出了高炉富氧的初步方案。笔者对其经济性和相关问题进行了初步探讨。 2高炉富氧的优点 2.1 提高高炉产量 富氧鼓风时,由于在风口前燃烧单位碳量所需的风量和产生的煤气量减少,因而可以提高冶炼强度,在焦比变化不大的情况下,可以提高高炉利用系数。按富氧1%计算,理论上高炉富氧后可提高产量0.01/0.21=4.76%

动力系统设备管理制度

2208005 动力系统设备管理制度 编号:XSC-SBC-005 (第四版) (受控) 2015-04-30发布 2015-05-01实施新兴铸管股份有限公司武安工业区生产管理部

文件修改简要

动力系统设备管理制度 编号:XSC-SBC-005 (第四版) 1 目的

明确设备分类,规范动力设备的运行管理。 2 适用范围 本制度适用于股份公司各单位水、风、气(汽)等动力设备的运行管理。 3 实施内容 3.1 动力系统设备分类: 3.1.1 供水设备:深井泵、加压泵、新水循环泵、储水池、水塔等。 3.1.2 供电设备:供电线路、配电设备、变压器等。 3.1.3 供风设备:高炉鼓风机、空气压缩机。 3.1.4 供氧(氮)设备:空分塔、氧(氮)压机、氧(氮)气球罐等。 3.1.5 煤气设备:煤气加压机及煤气柜等。 3.1.6 蒸汽设备:蒸汽锅炉、热水锅炉等。 3.1.7 动力管网:水、风、气(汽)等输送管道。 3.2 动力设备必须制订的各项管理制度名称 3.2.1 设备规程:使用、维护、检修等各项规程; 3.2.2 管理制度:事故、锅压、管网及电器等管理制度; 3.2.3 实施细则:运行管理、检修管理、润滑管理等细则; 3.2.4 各项程序:点巡检、事故分析等程序; 3.2.5 完好标准:制氧机、空压机、鼓风机、水泵等。 3.3 强化重要机组及大型设备的专业管理 3.3.1 重要机组及大型设备:D2350、D1450、D1050、DA200、DA400、H500等鼓风或空压设备;以及为其配套的大型电机。 3.3.2 开展以事业部点巡检工作为中心的设备全面管理;专检人员在做好设备点巡检的同时,做好对设备的运行、检修、润滑以及岗位人员点检的检查和各

高炉制粉喷煤技术的研究与应用

高炉制粉喷煤技术的研究与应用 作者:王维乔 1. 技术研发历程 高炉喷吹煤粉可以降低焦炭消耗,减少炼焦污染,调节炉况,促进高炉稳定顺行,强化高炉冶炼。首钢作为我国高炉喷煤技术的开创者和先行者,早在196 3年,就进行了系统的研究与试验,并于1964年在国内率先将其在高炉上进行工业化试验。1966年,首钢在全公司的高炉上进行推广应用,当时的年平均喷煤量达159kg/tHM,最高月平均喷煤量达到279kg/tHM,创造了当时的世界纪录。 1994年,在首钢1726-2536m3四座高炉上应用,采用集中制粉,间接喷吹,串联罐多管路喷煤。2000年,首钢进行重大技术改进,采用中速磨煤机制粉,布袋一级收粉,双系列串联罐直接喷吹,在首钢两座(1780m3、2536m3)高炉上应用,达到国际先进水平。 2004年,首钢国际工程公司设计的湘钢1800m3高炉,采用中速磨制粉,并列罐间接喷吹。2007年,首钢国际工程公司设计的迁钢2号2650m3高炉,采用并列罐直接喷吹,并实现全自动喷煤操作。2009年,首钢国际工程公司设计的京唐1号5500m3高炉,采用并列罐直接喷吹,全自动喷煤操作,并实现浓相输送。2010年,首钢国际工程公司设计的迁钢3号4000m3高炉,采用并列罐直接喷吹,全自动喷煤。2010年,首钢国际工程公司设计的京唐2号5500m3高炉,采用并列罐直接喷吹,浓相输送,全自动喷煤。 经过几十年的发展,首钢国际工程公司不断完善和优化设计,掌握了从原煤料场到煤粉制备和喷吹的全套高炉喷煤工艺设计。近年来,首钢国际工程公司还参与编制了国家标准GB 50607-2010《高炉喷吹煤粉工程设计规范》。 2. 高炉喷吹煤粉技术的主要技术特点 2.1 长距离直接喷吹,紧凑型布局 由首钢国际工程公司设计的首钢2号、3号高炉喷煤工程,完全采用国产化技术和设备,采用紧凑型短流程工艺,实现了煤粉长距离直接喷吹。2号高炉喷煤总管长度达到452m,已被列入第九批《中国企业新记录》。该项工程经有关专家鉴定,达到国际先进水平。 2.2 浓相输送 煤粉喷吹一般按输送浓度可分为稀相输送和浓相输送。稀相输送工艺相对简单,运行比较稳定;而随着煤粉输送浓度的提高,虽然增加了运行不稳定的可能性,但其可以节约大量输送气体的消耗,并且减少了管道磨损,因此其降低了维

风机基础知识

风机基础知识 一. 风机的分类: 1. 按工作原理:透平式----离心式 轴流式 混流式 贯流式 容积式----回转式----罗茨式 叶式 螺杆式 滑片式 往复式----活塞式 柱塞式 隔膜式 2. 按工作压力:通风机:P ≤0.015MPa(15000Pa) 鼓风机:0.015MPa(15000Pa <P ≤0.35MPa(350000Pa) 压缩机:P >0.35MPa(350000Pa) 3. 按用途:很多。 4-2X79 AF 烧结风机 AF 烧结风机 GY4-73 GY6-40引风机 SJ 烧结风机 Y5-48锅炉引风机 地铁风机 电站轴流风机 电站一次风机 对旋轴流风机 多级离心鼓风机 浮选洗煤风机

高炉风机 高温风机 高压离心风机 矿用风机 矿用局扇 煤气鼓风机 射流风机 手提轴流风机 水泥窑尾风机 隧道风机 污水处理风机 屋顶风机 屋顶风机 无蜗壳风机 箱体风机 箱体风机 消防风机 诱导风机 圆形管道风机 矩形管道风机 二. 风机的结构: 风机的主要零部件: 离心风机:叶轮,进风口,机壳,电机,底座,传动组, 轴流风机:叶轮,进口导叶,出口导叶,导流锥,风筒,集流器,电机,支架,传动组,

混流风机:离心式混流,轴流式混流 前向叶轮后向叶轮径向叶轮前向多翼叶轮 轴流风机叶轮混流风机叶轮 三.风机常用术语: 风机标准进口状态:一个大气压,20℃,湿度50%,空气的密度为1.2kg/m3 风机进口状态:大气压力,温度,湿度, 介质的种类,性质。风机常用的介质是空气。注意介质的附着性,磨损性,腐蚀性。 流量Q(风量):指风机进口工况的流量,m3/s或m3/h. 全压P(总压):指风机进口至出口的总压升。Pa。 静压Ps:指风机进口至出口的静压升。Pa.。 动压Pd:风机出口处的平均速度相对应的压力。Pa.。 风机转速n:指叶轮的转速。rpm或r/min。 风机消耗的功率:指风机克服一定的压力输送一定量的气体所需要的功率。kw。对应的是电机的输出功率×传动效率。 风机轴功率N轴(kw)=P(Pa)×Q(m3/h)/3600/(η风机×η传动)/1000×100%;η传动=0.95-0.98。 风机所需功率N(kw)=k×N轴(kw) k------ 四. 型式检验: 1.出厂检验:同下 2.通风机的空气动力性能试验:

高炉鼓风机拨风系统操作规程

高炉鼓风机拨风系统操作规程 一、风机拨风系统的拨风条件 为防止风机系统因意外原因无法正常供风,在送风系统安装拨风阀,以防止突然断风引起高炉灌风口事故发生。 拨风阀动作条件: 1、供风风机进入安全运行状态,送风压力低于100kPa时,拨风阀进行拨风。 2、供风风机主电机停机后,运行电流低于70A且送风压力低于100kPa时,拨风 阀进行拨风。 3、拨风风机压力不低于150kPa(15#、16#风机不低于200 kPa)。 二、拨风阀的操作规程 拨风阀设“集中控制”和“机旁操作”两种控制状态。 1、在“集中控制”状态,拨风阀由PLC进行控制,手动蝶阀保持常开状态,在供风风机满足拨风条件时,拨风阀自动打开,动作时间约为5秒,在“集中控制状态”,只控制拨风阀打开,不能自动关闭。 2、拨风阀在“机旁操作”控制状态,可通过操作“开阀”、“关闭”按钮,控制拨风阀的工作状态,其中开阀动作时间约为5秒,关阀时应先手动关闭手动蝶阀,保持2台风机风压稳定,手动阀全部关闭后,在“机旁操作”控制状态,关闭拨风阀。 3、拨风阀投入使用前,必须检查手动阀状态,保证2台手动阀均在开启状态。 三、拨风阀使用的注意事项 1、高炉正常休风,在高炉大幅减风前,必须 ..将拨风阀转入“机旁操作状态”,风机停机后,并切断拨风阀电源。高炉复风后,可将拨风阀投入使用。 2、拨风阀投入使用时,应处于“集中控制状态”,由PLC进行控制,当出现风机安全运行或非正常停机,拨风阀动作后,应首先通知相关两座高炉、车间领导及调度,说明情况,高炉值班室配合进行检查和操作;正常拨风后,高炉值班室不得打开冷风放散阀、炉顶放散阀排风,避免事故扩大。

炼铁厂高炉本体设备规程

1主题内容与适用范围 本规程规定了高炉本体的使用、维护、检修及管理方面的内容本规程适用于炼铁厂的高炉本体设备。 2高炉本体概况 图1-1高炉本体结构简图 2.1高炉工艺流程

图 1-2 高炉生产工艺流程图

3.高炉本体设备操作、维护、检修规程 3.1炉体冷却系统操作、维护、检修规程: 3.1.1操作规程 2)操作步骤及要求 ①高炉看水工必须随时掌握水压、水量、水质、水温变化情况,发现异常及时联系处理。 ②每次放渣出渣前,检查风口损坏及漏水情况,发现异常时及时处理。 ③检查炉皮发红、开裂、变形及渗水窜汽情况,发现异常及时联系处理。 ④每班全面检查测量水温差两次,并作好记录。 ⑤根据生产需要,按炉长要求及技术操作规程准确及时调节各部水温差。 ⑥视水管结垢情况,每半年至一年酸洗或清洗冷却壁一次。 3)突发性故障的处理办法 ①风口套烧裂漏水应及时向值班室汇报,根据高炉情况,休风更换处理。

②高炉冷却系统突然停水或水压降较大时,及时向值班室汇报,采取相应的措施,立即休风或 减压操作。 ③停水后,应迅速关闭从上至下的所有冷却设备阀门,防止来水后,损坏冷却壁。 ④来水后,要慢开冷却水阀门,使冷却壁逐渐冷却,防止损坏冷却壁。 4)设备正常运行指标 ①冷却水水压(表压)不低于0.3Mpa ②风口无漏水(渗漏)现象。 ③各部冷却壁及管接口无漏水。 ④每个部位测量的水温差,应在规定的允许范围(一般进出水温差控制在8℃以内)。 3.1.2维护规程 1)操作工维护的内容及责任 ①检查各部冷却壁有无渗漏。 ②检查各部管道及接口有无裂纹及漏水,根据情况更换管道。 ③随时掌握水压、水量、水质、水温度变化情况,发现异常及时联系处理。 ④放渣出铁前检查风口损坏情况,如有烧漏及时与值班室联系,安排时间及时更换。 ⑤视水管结垢情况,负责对冷却壁酸洗及渣洗,保证冷却系统完好正常。 ⑥负责定期清理各回水槽里的杂物,定时检查更换维护各部水阀门。 2)维修工维护的内容及责任 ①炉皮开裂时应及时补焊。 ②视情况配合看水工定期清理DN300及DN700过滤器,保证过滤器运行正常。 ③冷却壁根部及接管渗漏时应结合高炉休风情况及时处理。 3.1.3检修规程 1)检修周期及内容 ①冷却设备中修周期:4~5年,更换炉缸以上冷却设备。 ②冷却设备大修周期:8~10年,更换本体全部冷却设备。 ③光面冷却壁检查更换; ④炉体冷却设备试压及验收: 光面冷却壁,镶砖冷却壁,风口套,安装前应以0.6倍水管内径的木球作通球实验,然后用0.8MPa水试压,并以0.7㎏手锤敲击无漏水及冒汗现象,10分钟后压力降不大于3%。 所有冷却设备安装后必须做通水试验,进出水畅通,接头不漏水。 3.2高炉送风装置使用、维护、检修规程

高炉喷煤的现状及提高喷煤比的措施

高炉喷煤的现状及提高喷煤比的措施 摘要: 本文介绍了国内高炉喷煤现状, 分析了提高喷煤量的限制因素如炉缸热状态,煤粉燃烧,置换比,以及提高高炉喷煤比的措施,通过提高焦炭质量、改善鼓风质量、采用氧煤喷吹、混合喷吹等技术和工艺措施可有效提高喷煤比。 关键词:喷吹煤粉限制因素措施 1 前言 由于受自然资源和技术条件的限制, 我国在今后相当长的一段时间内仍将采用高炉炼铁工艺生产生铁。这是因为非高炉炼铁技术如直接还原炼铁, 目前只有在天然气资源丰富的国家或地区得到较大发展, 熔融还原炼铁正处于开发和完善阶段, 同时, 现有高炉生产能力很大, 还有大量的存量资产, 对现有的焦炉和高炉进行改造, 所需投资远比利用非高炉炼铁技术新建的炼铁设施要省得多。因此, 高炉炼铁技术在炼铁生产中仍将处于主导地位。但是, 高炉生产目前正受到投资、资源、成本、环保和运输等各方面的巨大压力。如何减轻这些压力是推动高炉炼铁继续生存与向前发展的关键。因此, 大力发展喷煤技术, 提高喷煤量是高炉炼铁技术发展的必然趋势。而高炉喷煤对优化高炉生产, 提高其经济效益有很重要的意义, 它可以扩展风口前的回旋区, 缩小呆滞区; 增加煤气中的氢气含量, 改善还原过程; 增加矿石在炉内停留的时间, 提高一氧化炭的利用率; 有利于提高风温和采用富氧鼓风, 对降低焦比和提高高炉的产量有显著效果; 它可以大量代替价格较高的焦炭, 降低生铁成本, 同时富化高炉煤气, 改善钢铁联合企业的能源供应。 2 高炉喷煤的现状 我国高炉喷煤具有较长的历史。进入90年代后高炉喷煤技术有了快速发展, 主要表现在高炉喷煤的一些重要技术问题取得突破, 如: 大高炉喷煤粉分配技术、串联罐软连接连续计量技术、可调混合器调节喷煤量技术、风口单支管煤粉计量技术流化上出料浓相输送技术等。目前, 重点企业喷煤高炉有51座, 占78%, 地方骨干企业喷煤高炉33座, 占28%。全国高炉喷煤总量从1990年的218万t 增加到1997年的638万t, 重点企业高炉喷煤总量达到489万t, 喷煤比达到84Kg/ t, 地方骨干企业喷煤量达到149万t,通过理论研究和生产实践, 确定了所追求的喷吹煤粉的目标: 吨铁燃料消耗500kg以下, 其中焦炭250kg以下, 煤粉250kg以上, 喷煤率(煤比/燃料比100%)达到50%以上。目前, 上述目标只有个别高炉短期内达到过, 如宝钢1号高炉1999年9月月平均焦比达到249. 7kg/ ,t 煤比260. 6kg/,t但燃料比超过了 500kg/,t 为510. 3kg/ t。该高炉1999年全年平均焦比为264kg/ ,t 煤比238kg/,t燃料比502kg/t。目前, 全球还没有高炉能够达到年平均焦比低于250kg/ ,t 同时煤比高于250kg/t 的。 3 提高喷煤量的限制因素 3.1 炉缸热状态 理论和实践表明, 只要高炉下部热量充沛, 上升的煤气通过热交换就能够保证上部的冶炼过程所要求的温度和热量。因此, 炉缸热状态成为高炉生产的关键。表明炉缸热状态的指标有多种,如风口前燃料燃烧的火焰温度(也称理论燃烧温度T理)、焦炭进入燃烧带时的温度Tc、必要的临界炉缸热贮备量等。世界各国炼铁工作者都把T理作为评价炉缸热状态的参数, 并根据各自的原燃料等操作条件和生产业绩, 统计归纳出各种T理的计算式, 以指导生产。应当指出, 各国的生产条件不同, 操作习惯也不同, 因此经验计算式不是万能的, 不能不顾自身条件随意套用。

对高炉富氧鼓风的几点认识

对高炉富氧鼓风的几点认识 (刘卫国) 1、概述 富氧鼓风一种高炉强化冶炼技术。在高炉大气鼓风中加入工业氧,以提高鼓风含氧浓度,强化风口区燃料燃烧,从而提高生铁产量。1913年比利时乌格尔厂第一次进行了高炉富氧鼓风试验,鼓风含氧增加到23%,产量提高12%,焦比降低2.5%~3%。60年代以来,随着高炉喷吹燃料技术的发展,我国鞍山钢铁公司、马鞍山钢铁公司、上海钢铁厂等先后在高炉上采用富氧鼓风。 2、富氧对高炉生产的影响 2.1 对高炉内热平衡的影响 单位碳素燃烧生成的热量升高,高炉内气固相比减少,因此炉缸热状态好转、炉缸和炉腹下部温度升高,煤气量减少,风口前理论燃烧温度上升。但由于煤气体积减少,会使中温区相对缩短,从而使低温区扩大。从总体看,由于单位生铁的鼓风量减少,热风带入的热量也会减少;但煤气量减少使顶温降低,可减少热支出;同时因富氧1%,可增产4%左右,单位生铁各部热损失也可以减少一些,所以总的热量消耗仍然是降低的。炉腹下部、炉缸温度上升,对硅、锰等一些难还原元素十分有利,因此适宜于冶炼锰铁、硅铁等铁种。 2.2 对回旋区的影响 高炉一般通过控制风速和鼓风动能来稳定回旋区的形状,达到稳定煤气流的目的。首先在风量不变时,随鼓风中含氧量增加,炉腹煤气量时逐渐增加的,为保证炉况顺行,应控制好炉腹煤气量和炉腹煤气流速。因

此在大量富氧时,应适当减少入炉风量。其次是富氧使炉缸的煤气量减少,炉缸温度上升。这两方面的原因导致高炉富氧后的回旋区缩短,使煤气流的初始分布趋向于边缘。故富氧后要调整布料制度以维持合理的煤气流分布。 2.3 对料柱透气性的影响 富氧后,炉缸煤气体积少,煤气对炉料下降的阻力也减少,但是富氧鼓风使燃烧带的焦点温度提高,炉缸半径方向的温度分布不合理,以及产生SiO气体剧烈挥发,到上部重新凝结,大大的降低了料柱透气性。 2.4 对燃料比的影响 A、随鼓风中含氧量的提高,煤气中CO浓度增加,煤气的还原能力提高,有助于间接还原过程的发展,有利于降低燃料比。 B、富氧后因煤气量减少,在某种程度上扩大了低于700℃的区域,又限制了间接还原的发展,但可通过喷吹燃料来抵消煤气量减少的因素。 C 、富氧可提高喷吹燃料的燃烧率,有利于提高燃料比 根据冶炼条件的不同,维持适合高炉炉型的富氧率使可以降低燃料比的。 2.5对喷吹燃料的影响 富氧鼓风使风口前理论燃烧温度提高,为了控制正常冶炼时的适宜理论燃烧温度,富氧后可适当增加喷吹燃料数量。为保证喷吹燃料在风口前充分燃烧,需要由一定氧的过剩系数。当喷吹燃料量较少时大气

高炉鼓风机拨风系统

高炉鼓风机拨风系统 Prepared on 22 November 2020

高炉鼓风机拨风系统改造 杜贞晓 引言在高炉工艺流程中,高炉鼓风机是高炉动力的来源,鼓风机必须给高炉提供充足、富余的风量才能保证高炉正常生产。然而,在高炉炼铁生产过程中,各种不可预测的故障时有发生,小故障可以及时处理,但是重要的连锁信号或高压供电一旦出现问题就导致鼓风机断风或直接停机,致使高炉突然无风压,引起高炉灌渣等重大生产事故。为避免这种重大事故的发生,我们第二炼铁厂根据实际情况,提出在鼓风机之间加拨风系统。 关键词拨风保障高炉送风避免灌渣 概述 拨风系统是两座高炉鼓风机其中一台故障,不能正常送风,另一台风机通过管道把一部分风压临时拨给故障风机,防止有故障的高炉断风的系统。风机故障一般分为停机和安全运行两种情况,我们这套系统针对这两种情况设计了拨风的要求和和条件。这套系统投资小,现场设备较少,设计思路简洁明了,作用大,为避免高炉灌渣,提供了可靠有利的保障。 改造内容: 、主要方法、技术路线 当某座高炉风机出现故障时,风压力降低较大,为防止风压突然消失后,经过判断,确认后,利用相邻两座高炉互为拨风,有效避免高炉吹管出现灌渣现象,避免损失的扩大。判断条件是当高炉相邻两台风机中有一台风机突然停机或安全运行时,拨风系统通过信号自动判断拨风条件,当有停机信号或安全运行时,并且停机风机风压

低于设定值200KPa时,拨风控制系统控制拨风阀自动打开,使停机的风机仍然有100多KPa的压力,使高炉能保持一定的风压,避免灌渣。 、系统原理图 此套拨风系统采用了DN600不锈钢蝶阀,每两台相临风机间加两个手动阀,两个手动阀之间加一个气动蝶阀,气源采用氮气,氮气相比空气,更稳定,压力平稳,气源没有水等其他杂志,而且冬天可以防止结冰。在设备正常运行时,三个阀门全部开启。在休风检修设备时,关闭两端手动阀门,从而可以随意检修中间的气动阀门。 、硬件组成 2008年6月,按照分厂领导要求,电气、机械、工艺等各个工种开始施工。我们厂共由风机10台,其中备用机2台,有8台鼓风机相邻两台之间做保护,现场设备有气动阀门4台,每个气动阀两侧又加装2台手动阀门,电气设备配电柜2面,现场安装压力变送器8台,敷设电缆1000米,自动化系统是由一套西门子 S7-300 PLC控制,配有CP343、模拟量输入、模拟量输出、数字量输入、数字量输出模块、中间继电器、信号隔离栅、24V电源、转换开关、按钮、指示灯等元件,来完成整个系统的信号检测和控制输出,现场设备是单向电磁阀控制气动阀门开关的,动力气源是氮气。 、技术原理和应用领域 应用领域:第二炼铁厂3#、4#风机房拨风装置改造于2008年4月18日批准立项后,节省资金起见,由二炼铁自行负责施工,2008年8月8日最后改造完毕,进入试运行阶段。

高炉富氧对高炉的影响

高炉富氧的最大效果是提高产量。富氧鼓风将给炉内带来二个方面的变化,一是风口前理论燃烧温度(Tf)的升高,二是吨铁煤气量的下降。另外,增加富氧率,也有利于改善煤粉的燃烧。 鼓风中氧的浓度增加,燃烧单位碳所需的鼓风量减少;鼓风中氮的浓度降低,也使生成的煤气量减少,煤气中CO浓度因此而增大。这些变化,对冶炼过程产生多方面的影响: 1)、由于煤气体积少,煤气对炉料下降的阻力也减少,为加大鼓风量、提高冶炼强度创造了条件。 2)、随鼓风中含氧量的提高,煤气中CO浓度增加,煤气的还原能力提高,有助于间接还原过程的发展,但因煤气量减少,在某种程度上扩大了低于700℃的区域,又限制了间接还原的发展。所以富氧能否降低燃料消耗,要由实际生产结果来定,不同冶炼条件,结果也不相同。 3)、富氧鼓风改变了冶炼中的热平衡。从分区看,由于富氧提高了理论燃烧温度,下部高温区热交换显著改善,热量集中于炉腹以下。但由于煤气体积减少,会使中温区相对缩短,从而使低温区扩大。从总体看,由于单位生铁的鼓风量减少,热风带入的热量也会减少;但煤气量减少使顶温降低,可减少热支出;同时因富氧1%,可增产4%左右,单位生铁各部热损失也可以减少一些,所以总的热量消耗仍然是降低的。 4)、富氧鼓风对顺行产生影响。因为富氧鼓风使燃烧带的焦点温度提高,炉缸半径方向的温度分布不合理,以及产生SiO气体剧烈挥发,到上部重新凝结、降低料柱透气性,从而破坏炉况顺行。所以在富氧又采用高风温时,用喷吹燃料控制理论燃烧温度是经济合理的。若无喷吹燃料装置,则应采用加湿鼓风。 高炉富氧鼓风的特点和作用[文秘家园-www,https://www.360docs.net/doc/c83716228.html,,找范文请到文秘家园] 高炉冶炼是高温物理化学反应,参与反应的主要元素是Fe-C-O。Fe来源于矿石,包括烧结矿、球团矿、块矿等。碳来源于燃料,包括焦炭及各种喷吹物。O2来源于高炉鼓风和富氧。原先矿石和燃料是由高炉上部装入的,而从高炉下部进入炉内的仅是鼓风,后来发展高炉综合鼓风技术,即从高炉下部进入炉内的不仅有鼓风,还有富氧及各种可燃的碳氢化合物,甚至还有含铁、含CaO的粉状物质。 富氧的目的原先主要为提高风中含氧,强化高炉冶炼,后来由于喷吹燃料技术发展,高炉喷吹的天然气、重油或煤粉量过大时,导致高炉理论燃烧温度过度下降,使高炉过程困难,同时也难于继续提高喷煤量。而高炉富氧之后,可以相应提高理论燃烧温度,提高反映区的氧化气氛,形成富氧喷吹技术,特别是富氧喷煤技术,更适合国内的实际。 现在国内高炉喷煤量已普遍达到100kg/t,而宝山高炉达到200kg/t的国际水平,还有一大批高炉煤比超过了150kg/t,从高炉喷吹煤粉的实践可知道,在无富氧的条件下,煤比一般能达到100kg/t,个别可达到120kg/t,若想达到更高的水平必须配备富氧,否则将导致高炉喷煤置换比降低。目前国内高炉富氧一般在1—3%的水平,个别可能高些。国外有的国家电力充足,富氧可达到10%,甚至更高。敬业高炉这次富氧仍然是用炼钢余氧,但更大的目的在强化高炉冶炼,多出铁,当然也应相应提高煤比,所以一旦富氧,立即达到较高水平,

相关文档
最新文档