神经网络作业

神经网络作业
神经网络作业

1.神经网络的发展与展望

经过近半个世纪的发展。神经网络理论在模式识别"自动控制"信号处理"辅助决策"人工智能等众多研究领域取得了广泛的成功,关于学习"联想和记忆等具有智能特点过程的机理及其模拟方面的研究正受到越来越多的重视,目前神经网络研究与发展主要集中在以下5个方面.

1. 神经生理学

神经解剖学研究的发展通过神经网络研究的发展。人们对人脑一些局部功能的认识已经有所提高。如对感知器的研究,对视觉处理网络的研究。对存储与记忆问题的研究等都取得一定的成功。遗憾的是这些成功一方面还远不够完善。另一方面。在对人脑作为一个整体的功能的解释上几乎起不到任何作用。科学家已经积累了大量关于大脑组成大脑外形、大脑运转基本要素等知识,但仍无法解答有关大脑信息处理的一些实质问题。

整体功能决不是局部功能的简单组合,而是一个巨大的质的飞跃。人脑的知觉和认知等过程是包含着一个复杂的动态系统中对大量神经元活动进行整合的统一性行动。由于人们对人脑完整工作过程几乎没有什么认识。连一个稍微完善的可令人接受的假设也没有。这造成神经网络研究始终缺乏一个明确的大方向这方面如果不能有所突破。神经网络研究将始终限于模仿人脑局部功能的缓慢摸索过程当中。而难以达到研究水平的质的飞跃。

2. 与之相关的数学领域的研究与发展

神经元以电为主的生物过程在认识上一般采用非线性动力学模型。其动力学演变过程往往是非常复杂的。神经网络这种强的生物学特征和数学性质。要求有更好的数学手段而对解决非线性微分方程这样的问题。稍微复杂一些的便没有办法利用数学方法求得完整的解这使得在分析诸如一般神经网络的自激振荡"稳定性"混沌等问题时常常显得力不从心。更不用说。当我们面对人脑这样的由成千上万个神经元网络子系统组成的巨系统。而每个子系统具有某种特定功能,又可能由成千上万个神经元组成。每个神经元本身是一个基本的非线性环节。

因此,笔者认为当今神经网络理论的发展已经客观要求有关数学领域必须有所发展。并大胆预期一种更简洁、更完善和更有效的非线性系统表达与分析的数学方法是这一领域数学发展的主要目标之一。

3. 神经网络应用的研究与发展

从神经网络发展过程看,理论研究经常走在前列。有时会超出实际使用阶段。虽然说理论研究和实际应用可以相辅相成。但实际需求总是科技发展的主要推动力。目前,在神经网络实用上,虽然有不少实际应用成果报道。如智能控制、模式识别及机器人控制等,但真正成熟的应用还比较少见。在这方面,作者重点研究了神经网络在故障诊断领域的应用。如将神经网络与信息融合技术相结合,构造出一神经网络信息融合分类器,并将其应用于电子设备故障断之中。取得了比较好的应用效果。

4.神经网络硬件的研究与发展

要真正实现神经网络计算机则神经网络芯片设计与生产技术必须有实质性的进展。目前,在单片上集成数百个神经元的制作技术已经没有困难。但这种水平与神经网络实际应用的要求尚有较大距离。神经网络硬件设计和理论研究相比要落后很多。因此这也是神经网络研究发展的重要方向之一。在这方面,光学技术是实现神经网络及神经计算机的一个比较理想的选择。因为光学技术具有非常好的固有特性。主要体现在(高驱动性较高的通信带宽以光速并行传递信息等。虽然光学神经计算机实现技术目前还不成熟,其商品化大规模实现还有待时日,但一些光学神经元器件,光电神经计算机研究已表现出广阔的发展和应用潜力,

并引起相应领域的充分关注。

5.新型神经网络模型的研究

为了推动神经网络理论的发展,除了期待神经生理学等研究突破外!将神经网络与其他理论交叉结合。研究新型神经网络模型!也是神经网络研究发展方向之一。如将之与混沌理论相结合产生的混沌神经网络理论。再如将量子力学与神经网络的结合研究量子神经网络,实现功能强大的量子神经计算就是目前神经网络研究的热点之一。在模型研究方面作者将模糊集合论与小脑神经网络相结合。研究了模糊小脑神经网络的组织运行原理,并将其应用到动态非线性系统的在线故障辨识之中较好地解决了非线性动态系统容错控制问题。

2.人工神经网络的种类及应用领域

1.小波神经网络

小波神经网络将小波变换良好的时频局域化特性和神经网络的自学习功能相结合,因而具有较强的逼近能力和容错能力。在结合方法上,可以将小波函数作为基函数构造神经网络形成小波网络,或者小波变换作为前馈神经网络的输入前置处理工具,即以小波变换的多分辨率特性对过程状态信号进行处理,实现信噪分离,并提取出对加工误差影响最大的状态特性,作为神经网络的输入。

小波神经网络在电机故障诊断、高压电网故障信号处理与保护研究、轴承等机械故障诊断以及许多方面都有应用,将小波神经网络用于感应伺服电机的智能控制,使该系统具有良好的跟踪控制性能,以及好的鲁棒性,利用小波包神经网络进行心血管疾病的智能诊断,小波层进行时频域的自适应特征提取,前向神经网络用来进行分类,正确分类率达到94%。

小波神经网络虽然应用于很多方面,但仍存在一些不足。从提取精度和小波变换实时性的要求出发,有必要根据实际情况构造一些适应应用需求的特殊小波基,以便在应用中取得更好的效果。另外,在应用中的实时性要求,也需要结合DSP的发展,开发专门的处理芯片,从而满足这方面的要求。

2.混沌神经网络

混沌第一个定义是上世纪70年代才被Li?Yorke第一次提出的。由于它具有广泛的应用价值,自它出现以来就受到各方面的普遍关注。混沌是一种确定的系统中出现的无规则的运动,混沌是存在于非线性系统中的一种较为普遍的现象,混沌运动具有遍历性、随机性等特点,能在一定的范围内按其自身规律不重复地遍历所有状态。混沌理论所决定的是非线性动力学混沌,目的是揭示貌似随机的现象背后可能隐藏的简单规律,以求发现一大类复杂问题普遍遵循的共同规律。

1990年KAihara、TTakabe和MToyoda等人根据生物神经元的混沌特性首次提出混沌神经网络模型,将混沌学引入神经网络中,使得人工神经网络具有混沌行为,更加接近实际的人脑神经网络,因而混沌神经网络被认为是可实现其真实世界计算的智能信息处理系统之一,成为神经网络的主要研究方向之一。与常规的离散型Hopfield神经网络相比较,混沌神经网络具有更丰富的非线性动力学特性,主要表现如下:在神经网络中引入混沌动力学行为;混沌神经网络的同步特性;混沌神经网络的吸引子。

当神经网络实际应用中,网络输入发生较大变异时,应用网络的固有容错能力往往感到不足,经常会发生失忆现象。混沌神经网络动态记忆属于确定性动力学运动,记忆发生在混沌吸引子的轨迹上,通过不断地运动(回忆过程),一一联想到记忆模式,特别对于那些状态空间分布的较接近或者发生部分重叠的记忆模式,混沌神经网络总能通过动态联想记忆加以重现和辨识,而不发生混淆,这是混沌神经网络所特有的性能,它将大大改善Hopfield神经网络的记忆能力。混沌吸引子的吸引域存在,形成了混沌神经网络固有容错功能。这将对

复杂的模式识别、图像处理等工程应用发挥重要作用。

3.基于粗集理论的神经网络

粗糙集(Rough sets)理论是1982年由波兰华沙理工大学教授Z?Pawlak首先提出,它是一个分析数据的数学理论,研究不完整数据、不精确知识的表达、学习、归纳等方法。粗糙集理论是一种新的处理模糊和不确定性知识的数学工具,其主要思想就是在保持分类能力不变的前提下,通过知识约简,导出问题的决策或分类规则。目前,粗糙集理论已被成功应用于机器学习、决策分析、过程控制、模式识别与数据挖掘等领域。

粗集和神经网络的共同点是都能在自然环境下很好的工作,但是,粗集理论方法模拟人类的抽象逻辑思维,而神经网络方法模拟形象直觉思维,因而二者又具有不同特点。粗集理论方法以各种更接近人们对事物的描述方式的定性、定量或者混合性信息为输入,输入空间与输出空间的映射关系是通过简单的决策表简化得到的,它考虑知识表达中不同属性的重要性确定哪些知识是冗余的,哪些知识是有用的,神经网络则是利用非线性映射的思想和并行处理的方法,用神经网络本身结构表达输入与输出关联知识的隐函数编码。

在粗集理论方法和神经网络方法处理信息中,两者存在很大的两个区别:其一是神经网络处理信息一般不能将输入信息空间维数简化,当输入信息空间维数较大时,网络不仅结构复杂,而且训练时间也很长;而粗集方法却能通过发现数据间的关系,不仅可以去掉冗余输入信息,而且可以简化输入信息的表达空间维数。其二是粗集方法在实际问题的处理中对噪声较敏感,因而用无噪声的训练样本学习推理的结果在有噪声的环境中应用效果不佳。而神经网络方法有较好的抑制噪声干扰的能力。

因此将两者结合起来,用粗集方法先对信息进行预处理,即把粗集网络作为前置系统,再根据粗集方法预处理后的信息结构,构成神经网络信息处理系统。通过二者的结合,不但可减少信息表达的属性数量,减小神经网络构成系统的复杂性,而且具有较强的容错及抗干扰能力,为处理不确定、不完整信息提供了一条强有力的途径。

目前粗集与神经网络的结合已应用于语音识别、专家系统、数据挖掘、故障诊断等领域,将神经网络和粗集用于声源位置的自动识别,将神经网络和粗集用于专家系统的知识获取中,取得比传统专家系统更好的效果,其中粗集进行不确定和不精确数据的处理,神经网络进行分类工作。

4.神经网络与分形理论的结合

自从美国哈佛大学数学系教授B?B?Mandelbrot于20世纪70年代中期引入分形这一概念,分形几何学(Fractal geometry)已经发展成为科学的方法论--分形理论,且被誉为开创了20世纪数学重要阶段。现已被广泛应用于自然科学和社会科学的几乎所有领域,成为现今国际上许多学科的前沿研究课题之一。由于在许多学科中的迅速发展,分形已成为一门描述自然界中许多不规则事物的规律性的学科。它已被广泛应用在生物学、地球地理学、天文学、计算机图形学等各个领域。

分形神经网络的应用领域有图像识别、图像编码、图像压缩,以及机械设备系统的故障诊断等。分形图像压缩/解压缩方法有着高压缩率和低遗失率的优点,但运算能力不强,由于神经网络具有并行运算的特点,将神经网络用于分形图像压缩/解压缩中,提高了原有方法的运算能力。将神经网络与分形相结合用于果实形状的识别,首先利用分形得到几种水果轮廓数据的不规则性,然后利用3层神经网络对这些数据进行辨识,继而对其不规则性进行评价。

分形神经网络已取得了许多应用,但仍有些问题值得进一步研究:分形维数的物理意义;分形的计算机仿真和实际应用研究。随着研究的不断深入,分形神经网络必将得到不断的完善,并取得更好的应用效果。

人工智能大作业

第一章 1、3 什么就是人工智能?它的研究目标就是什么? 人工智能(Artificial Intelligence),英文缩写为AI。它就是研究、开发用于模拟、延伸与扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 研究目标:人工智能就是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理与专家系统等。 1、7 人工智能有哪几个主要学派?各自的特点就是什么? 主要学派:符号主义,联结主义与行为主义。 1.符号主义:认为人类智能的基本单元就是符号,认识过程就就是符号表示下的符号计算, 从而思维就就是符号计算; 2.联结主义:认为人类智能的基本单元就是神经元,认识过程就是由神经元构成的网络的信 息传递,这种传递就是并行分布进行的。 3.行为主义:认为,人工智能起源于控制论,提出智能取决于感知与行动,取决于对外界复 杂环境的适应,它不需要只就是,不需要表示,不需要推理。 1、8 人工智能有哪些主要研究与应用领域?其中有哪些就是新的研究热点? 1、研究领域:问题求解,逻辑推理与定理证明,自然语言理解,自动程序设计,专家系统,机器 学习,神经网络,机器人学,数据挖掘与知识发现,人工生命,系统与语言工具。 2、研究热点:专家系统,机器学习,神经网络,分布式人工智能与Agent,数据挖掘与知识发 现。 第二章 2、8 用谓词逻辑知识表示方法表示如下知识: (1)有人喜欢梅花,有人喜欢菊花,有人既喜欢梅花又喜欢菊花。 三步走:定义谓词,定义个体域,谓词表示 定义谓词 P(x):x就是人

【上海交通大学】【神经网络原理与应用】作业3

Neural Network Theory and Applications Homework Assignment3 oxstar@SJTU January19,2012 1Data Preprocessing First we used‘svm-scale’of LibSVM to scale the data.There are two main advantages of scaling:one is to avoid attributes in greater numeric ranges dominating those in smaller numeric ranges,another one is to avoid numerical di?culties during the calculation[1].We linearly scaled each attribute to the range[-1,+1]. 2Model Selection We tried three di?erent kernel functions,namely linear,polynomial and RBF. ?liner:K(x i,x j)=x T i x j ?polynomial:K(x i,x j)=(γx T i x j+r)d,γ>0 ?radial basis function(RBF):K(x i,x j)=exp(?γ x i?x j 2),γ>0 The penalty parameter C and kernel parameters(γ,r,d)should be chosen.We used the ‘grid-search’[1]on C andγwhile r and d are set to their default values:0and3. In Figure1,we presents the contour maps for choosing the proper attributes.We just searched for some maxima while the global maximum is usually di?cult to?nd and with the values of attributes increasing,the running time increasing dramatically.Note that‘ovr’stands for one-versus-rest task decomposition methods while‘ovo’is short for one-versus-one and‘pvp’is short for part-versus-part. The liner kernel doesn’t have private attributes,so we should just search for the penalty parameter C.The results are shown in Figure2. The?nal selection for each attributes are presented in Table1. Table1:A Selection for Each Attributes Decomposition Kernel Cγ RBF10 1.0 one-versus-rest Polynomial0.10.7 Liner1 RBF1 1.5 one-versus-one Polynomial0.010.2 Liner0.1 RBF10.1 part-versus-part Polynomial0.010.4 Liner1

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

数据挖掘期末大作业任务

数据挖掘期末大作业 1.数据挖掘的发展趋势是什么?大数据环境下如何进行数据挖掘。 对于数据挖掘的发展趋势,可以从以下几个方面进行阐述: (1)数据挖掘语言的标准化描述:标准的数据 挖掘语言将有助于数据挖掘的系统化开发。改进多个数据挖掘系统和功能间的互操作,促进其在企业和社会中的使用。 (2)寻求数据挖掘过程中的可视化方法:可视 化要求已经成为数据挖掘系统中必不可少的技术。可以在发现知识的过程中进行很好的人机交互。数据的可视化起到了推动人们主动进行知识发现的作用。 (3)与特定数据存储类型的适应问题:根据不 同的数据存储类型的特点,进行针对性的研究是目前流行以及将来一段时间必须面对的问题。 (4)网络与分布式环境下的KDD问题:随着 Internet的不断发展,网络资源日渐丰富,这就需要分散的技术人员各自独立地处理分离数据库的工作方式应是可协作的。因此,考虑适应分布式与网络环境的工具、技术及系统将是数据挖掘中一个最为重要和繁荣的子领域。 (5)应用的探索:随着数据挖掘的日益普遍,其应用范围也日益扩大,如生物医学、电信业、零售业等 领域。由于数据挖掘在处理特定应用问题时存在局限性,因此,目前的研究趋势是开发针对于特定应用的数据挖掘系统。 (6)数据挖掘与数据库系统和Web数据库系统的集成:数据库系统和Web数据库已经成为信息处 理系统的主流。 2. 从一个3输入、2输出的系统中获取了10条历史数据,另外,最后条数据是系统的输 入,不知道其对应的输出。请使用SQL SERVER 2005的神经网络功能预测最后两条数据的输出。 首先,打开SQL SERVER 2005数据库软件,然后在界面上右键单击树形图中的“数据库”标签,在弹出的快捷菜单中选择“新建数据库”命令,并命名数据库的名称为YxqDatabase,单击确定,如下图所示。 然后,在新建的数据库YxqDatabas中,根据题目要求新建表,相应的表属性见下图所示。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

人工神经网络大作业

X X X X大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010年12月22日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1.1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1)神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。(3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型。②神经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后再与真实对象作比较(仿真处理方法)。 1.3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能,是一门新兴的前沿交叉学科,其概念以T.Kohonen.Pr的论述最具代表性:人工神经网络就是由简单的处理单元(通常为适应性)组成的并行互联网络,它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1.4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题:模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1.5理论局限性 (1)受限于脑科学的已有研究成果由于生理试验的困难性,目前对于人脑思维与记忆机制的认识尚很肤浅,对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2)尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网,节点间互连强度构成的矩阵可通过某种学

人工神经网络

人工神经网络(ANN)又称神经网络,是在现代神经科学研究成果的基础上,对生物神经系统的结构和功能进行数学抽象、简化和模仿而逐步发展起来的一种新型信息处理和计算系统。由于人工神经网络具有自学习、高容错、高度非线性描述能力等优点,现已广泛应用于经济、机器人和自动控制、军事、医疗、化学等领域[l ~ 3],并取得了许多成果。本文简要介绍人工神经网络的原理和特点,论述人工神经网络在高分子科学与工程领域的应用。 橡胶配方是决定橡胶制品性能的关键因素,由于材料配方与制品性能之间存在很复杂的非线性关系,多数情况下无法建立完整精确的理论模型,只能借助于回归方法得到经验公式。 传统的回归方法存在以下局限性: (1)使用不同的回9j方法可获得不同的经验公式,导致经验公式的繁多和不一致; (2)当配方项目及性能指标项目较多时,采用回归公式无法完全再现实验数据; (3)当实验进一步完善,实验数据增多的时候.其他人员再进行回归时,如果无法找到原来的回归方法、程序和实验数据,原来的回归公式将不能被利用,造成一定的浪费。随着计箅机的发展而出现的人工神经网络是人工智能方法.它不像回归方法那样,需预先给定基本函数,而是以实验数据为基础.经过有限次的迭代计算而获得的一个反映实验数据内在联系的数学模型,具有极强的非线性处理、自组织调整、自适应学习及容错抗噪能力,特别适用于研究像材料配方与制品性能之间关系的复杂非线性系统特性【¨】。因此,人们开始将人工神经网络应用于橡胶配方设计”J。 随着橡胶制品在各领域应用的拓展,橡胶配方设计变得越来越重要。人们进行橡胶配方设计主要有3个目的:提高制品的性能;改善加工工艺;降低生产成本。传统的橡胶配方设计方法有全因素设计、正交试验设计n_3]、均匀设计[4‘60等,而这些配方设计试验数据的处理方法无外乎方差分析和回归分析口]。由于材料的配方和性能之问存在非常复杂的非线性关系,回归分析只适合于单目标优化数据处理的模型,对于不同的性能,需要建立不同的模型,因此将其应用于配方设计有一定的局限性。近年来,发展日趋成熟的人工神经网络技术,尤其是BP神经网络凭借其结构简单、收敛速度快、预测精度高等优势越来越多地应用到橡胶配方设计试验中。 1橡胶配方设计 1.1橡胶配方设计概述 配方设计¨J是橡胶工业中的首要技术问题,在橡胶工业中占有重要地位。所谓配方设计,就是根据产品的性能要求和工艺条件,通过试验、优化、鉴定,合理地选用原材料,确定各种原材料的用量配比关系。 橡胶配方人员的主要工作就是要确定一系列变量对橡胶各项性能的定量或定性影响。变量可以是硫化剂、促进剂、填充剂、防老剂等,也可以是加工:[艺条件(如硫化温度、硫化时间等),总之是配方人员可能控制或测得的变量。橡胶各项基本性能包括拉伸强度、撕裂强度、硬度、定伸应力等物理机械性能,以 及加工性能、光洁度、外观等。 橡胶配方设计常常是多变量的试验设计,配方设计理论和试验设计方法对于 配方设计具有重要意义。

智能控制(神经网络)-作业

智能控制作业 学生: 学 号: 专业班级: 7-2 采用BP 网路、RBF 网路、DRNN 网路逼近线性对象 2) 1(1)1(9.0)1()(-+-?--=k y k y k u k y ,分别进行matlab 仿真。 (一)采用BP 网络仿真 网络结构为2-6-1。采样时间1ms ,输入信号)6sin(5.0)(t k u ?=π,权值21,W W 的初值随机取值,05.0,05.0==αη。 仿真m 文件程序为: %BP simulation clear all; clear all; xite=0.5; alfa=0.5; w1=rands(2,6); % value of w1,initially by random w1_1=w1;w1_2=w1; w2=rands(6,1); % value of w2,initially by random w2_1=w2;w2_2=w2_1; dw1=0*w1; x=[0,0]'; u_1=0; y_1=0; I=[0,0,0,0,0,0]'; % input of yinhanceng cell Iout=[0,0,0,0,0,0]'; % output of yinhanceng cell FI=[0,0,0,0,0,0]'; ts=0.001; for k=1:1:1000 time(k)=k*ts;

u(k)=0.5*sin(3*2*pi*k*ts); y(k)=(u_1-0.9*y_1)/(1+y_1^2); for j=1:1:6 I(j)=x'*w1(:,j); Iout(j)=1/(1+exp(-I(j))); end yn(k)=w2'*Iout; %output of network e(k)=y(k)-yn(k); % error calculation w2=w2_1+(xite*e(k))*Iout+alfa*(w2_1-w2_2); % rectify of w2 for j=1:1:6 FI(j)=exp(-I(j))/(1+exp(-I(j))^2); end for i=1:1:2 for j=1:1:6 dw1(i,j)=e(k)*xite*FI(j)*w2(j)*x(i); % dw1 calculation end end w1=w1_1+dw1+alfa*(w1_1-w1_2); % rectify of w1 % jacobian information yu=0; for j=1:1:6 yu=yu+w2(j)*w1(1,j)*FI(j); end dyu(k)=yu; x(1)=u(k); x(2)=y(k); w1_2=w1_1;w1_1=w1; w2_2=w2_1;w2_1=w2; u_1=u(k); y_1=y(k); end figure(1); plot(time,y,'r',time,yn,'b'); xlabel('times');ylabel('y and yn');

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

期末大作业报告

期末大作业报告 课程名称:数字图像处理 设计题目:车牌识别 学院:信息工程与自动化学院 专业:计算机科学与技术 年级:xxxxx 学生姓名:xxxxxxx(学号xxxxxxxxxxxxx) 指导教师:xxxx 日期:20XX.6.10 教务处制 车牌识别 摘要:数字图像处理技术是20世纪60年代发展起来的一门新兴学科,随着图像处理理论和方法的进一步完善,使得数字图像处理技术在各个领域得到了广泛应用,并显示出广阔的应用前景。MATLAB既是一种直观、高效的计算机语言,同时又是一个科学计算平台。它为数据分析和数据可视化、算法和应用程序开发提供了最核心的数学和高级图形工具。根据它提供的500多个数学和工程函数,工程技术人员和科学工作者可以在它的集成环境中交互或编程以完成各自的计算。MATLAB中集成了功能强大的图像处理工具箱。由于MA TLAB语言的语法特征与C语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式,而且这种语言可移植性好、可扩展性强,再加上其中有丰富的图像处理函数,所以MA TLAB在图像处理的应用中具有很大的优势。车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。并用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。 关键词:车牌识别、数字图像处理、MATLAB

一、设计原理 车辆牌照识别系统的基本工作原理为:将摄像头拍摄到的包含车辆牌照的图像通过视频卡输入到计算机中进行预处理,再由检索模块对牌照进行搜索、检测、定位,并分割出包含牌照字符的矩形区域,然后对牌照字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP 格式的数字,输出则为车牌号码的数字。牌照自动识别是一项利用车辆的动态视频或静态图像进行牌照号码、牌照颜色自动识别的模式识别技术。其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。某些牌照识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。一个完整的牌照识别系统应包括车辆检测、图像采集、牌照识别等几部分。当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。牌照识别单元对图像进行处理,定位出牌照位置,再将牌照中的字符分割出来进行识别,然后组成牌照号码输出。 二、设计步骤 1. 提出总体设计方案: (1)车牌图像预处理方法 因为车牌图像都是在室外拍摄的,所以不可避免地会受到光照、气候等因素的影响,而且拍摄者的手部抖动与车辆的移动会造成图像的模糊。要去除这些干扰就得先对车牌图像进行预处理。由于当前数码相机的像素较高,原始图像的数据一般比较大,输入的彩色图像包含大量颜色信息,会占用较多的存储空间,且处理时也会降低系统的执行速度。因此对图像进行识别等处理时,常将彩色图像转换为灰度图像,以加快处理速度。对图像进行灰度化处理后常用的方法是图像二值化、去除背景图像、增强处理、边缘检测、滤波等处理等。

人工神经网络大作业

X X X X 大学 研究生考查课 作业 课程名称:智能控制理论与技术 研究生姓名:学号: 作业成绩: 任课教师(签名) 交作业日时间:2010 年12 月22 日

人工神经网络(artificial neural network,简称ANN)是在对大脑的生理研究的基础上,用模拟生物神经元的某些基本功能元件(即人工神经元),按各种不同的联结方式组成的一个网络。模拟大脑的某些机制,实现某个方面的功能,可以用在模仿视觉、函数逼近、模式识别、分类和数据压缩等领域,是近年来人工智能计算的一个重要学科分支。 人工神经网络用相互联结的计算单元网络来描述体系。输人与输出的关系由联结权重和计算单元来反映,每个计算单元综合加权输人,通过激活函数作用产生输出,主要的激活函数是Sigmoid函数。ANN有中间单元的多层前向和反馈网络。从一系列给定数据得到模型化结果是ANN的一个重要特点,而模型化是选择网络权重实现的,因此选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法就能得到包含学习训练样本范围的输人和输出的关系。如果用于学习训练的样本不能充分反映体系的特性,用ANN也不能很好描述与预测体系。显然,选用合适的学习训练样本、优化网络结构、采用适当的学习训练方法是ANN的重要研究内容之一,而寻求应用合适的激活函数也是ANN研究发展的重要内容。由于人工神经网络具有很强的非线性多变量数据的能力,已经在多组分非线性标定与预报中展现出诱人的前景。人工神经网络在工程领域中的应用前景越来越宽广。 1人工神经网络基本理论[1] 1. 1神经生物学基础 可以简略地认为生物神经系统是以神经元为信号处理单元, 通过广泛的突触联系形成的信息处理集团, 其物质结构基础和功能单元是脑神经细胞即神经元(neu ron)。(1) 神经元具有信号的输入、整合、输出三种主要功能作用行为。突触是整个神经系统各单元间信号传递驿站, 它构成各神经元之间广泛的联接。(3) 大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物, 其变化是先天遗传信息确定的总框架下有限的自组织过程。 1. 2建模方法 神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系, 这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法: ①神经生物学模型方法, 即根据微观神经生物学知识的积累, 把脑神经系统的结构及机理逐步解释清楚, 在此基础上建立脑功能模型。②神经计算模型方法, 即首先建立粗略近似的数学模型并研究该模型的动力学特性, 然后再与真实对象作比较(仿真处理方法)。 1. 3概念 人工神经网络用物理可实现系统来模仿人脑神经系统的结构和功能, 是一门新兴的前沿交叉学科, 其概念以T.Kohonen. Pr 的论述最具代表性: 人工神经网络就是由简单的处理单元(通常为适应性) 组成的并行互联网络, 它的组织能够模拟生物神经系统对真实世界物体所作出的交互反应。 1. 4应用领域 人工神经网络在复杂类模式识别、运动控制、感知觉模拟方面有着不可替代的作用。概括地说人工神经网络主要应用于解决下述几类问题: 模式信息处理和模式识别、最优化问题、信息的智能化处理、复杂控制、信号处理、数学逼近映射、感知觉模拟、概率密度函数估计、化学谱图分析、联想记忆及数据恢复等。 1. 5理论局限性 (1) 受限于脑科学的已有研究成果由于生理试验的困难性, 目前对于人脑思维与记忆机制的认识尚很肤浅, 对脑神经网的运行和神经细胞的内部处理机制还没有太多的认识。 (2) 尚未建立起完整成熟的理论体系目前已提出的众多人工神经网络模型,归纳起来一般都是一个由节点及其互连构成的有向拓扑网, 节点间互连强度构成的矩阵可通过某种学

基于人工神经网络的图像识别

本文首先分析了图像识别技术以及bp神经网络算法,然后详细地阐述了人工神经网络图像识别技术。 【关键词】人工神经网络 bp神经网络图像识别识别技术 通常而言,所谓图像处理与识别,便是对实际图像进行转换与变换,进而达到识别的目的。图像往往具有相当庞大的信息量,在进行处理图像的时候要进行降维、数字化、滤波等程序,以往人们进行图像识别时采用投影法、不变矩法等方法,随着计算机技术的飞速发展,人工神经网络的图像识别技术将逐渐取代传统的图像识别方法,获得愈来愈广泛的应用。 1 人工神经网络图像识别技术概述 近年来,人工智能理论方面相关的理论越来越丰富,基于人工神经网络的图像识别技术也获得了非常广泛的应用,将图像识别技术与人工神经网络技术结合起来的优点是非常显著的,比如说: (1)由于神经网络具有自学习功能,可以使得系统能够适应识别图像信息的不确定性以及识别环境的不断变化。 (2)在一般情况下,神经网络的信息都是存储在网络的连接结构以及连接权值之上,从而使图像信息表示是统一的形式,如此便使得知识库的建立与管理变得简便起来。 (3)由于神经网络所具有的并行处理机制,在处理图像时可以达到比较快的速度,如此便可以使图像识别的实时处理要求得以满足。 (4)由于神经网络可增加图像信息处理的容错性,识别系统在图像遭到干扰的时候仍然能正常工作,输出较准确的信息。 2 图像识别技术探析 2.1 简介 广义来讲,图像技术是各种与图像有关的技术的总称。根据研究方法以及抽象程度的不同可以将图像技术分为三个层次,分为:图像处理、图像分析以及图像理解,该技术与计算机视觉、模式识别以及计算机图形学等学科互相交叉,与生物学、数学、物理学、电子学计算机科学等学科互相借鉴。此外,随着计算机技术的发展,对图像技术的进一步研究离不开神经网络、人工智能等理论。 2.2 图像处理、图像识别与图像理解的关系 图像处理包括图像压缩、图像编码以及图像分割等等,对图像进行处理的目的是判断图像里是否具有所需的信息并滤出噪声,并对这些信息进行确定。常用方法有灰度,二值化,锐化,去噪等;图像识别则是将经过处理的图像予以匹配,并且对类别名称进行确定,图像识别可以在分割的基础之上对所需提取的特征进行筛选,然后再对这些特征进行提取,最终根据测量结果进行识别;所谓图像理解,指的是在图像处理与图像识别的基础上,根据分类作结构句法分析,对图像进行描述与解释。所以,图像理解包括图像处理、图像识别和结构分析。就图像理解部分而言,输入是图像,输出是对图像的描述解释。 3 人工神经网络结构和算法 在上个世纪八十年代,mcclelland与rumelhant提出了一种人工神经网络,截止现在,bp神经网络已经发展成为应用最为广泛的神经网络之一,它是一种多层前馈神经网络,包括输入层、输出层和输入层输出层之间隐藏层,如图1所示,便是一种典型的bp神经网络结构。 bp神经网络是通过不断迭代更新权值使实际输入与输出关系达到期望,由输出向输入层反向计算误差,从而通过梯度下降方法不断修正各层权值的网络。 bp神经网络结构算法如下所述: (1)对权值矩阵,学习速率,最大学习次数,阈值等变量和参数进行初始化设置; (2)在黑色节点处对样本进行输入;

神经网络作业20092676吴戈林电子0901班

神经网络原理及其应用——基于BP 人工神经网络的图像分割器 学校:东北大学 班级:电子信息工程0901班 姓名:吴戈林 学号:20092676 指导老师:王斐 时间:2012年12月

目录 人工神经网络 (3) 一、特点与优势 (3) 二、人工神经网络的主要研究方向 (4) 三、人工神经网络的应用分析 (4) 四、人工神经网络在图像分割中的应用 (6) 1.问题概述 (7) 2.基于BP 人工神经网络的图像分割器 (8) 2.1神经网络结构的确定 (8) 2. 2 神经网络结构的改进 (9) 2. 3 BP 神经网络的图像分割基本训练 (9) 2. 4 BP 神经网络的针对性训练 (10) 3.网络应用 (10) 4.结论 (11) 五、课程收获与感想 (11) 六、参考文献 (12)

人工神经网络 人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connectionist Model),是对人脑或自然神经网络(Natural Neural Network)若干基本特性的抽象和模拟。人工神经网络以对大脑的生理研究成果为基础的,其目的在于模拟大脑的某些机理与机制,实现某个方面的功能。国际著名的神经网络研究专家,第一家神经计算机公司的创立者与领导人Hecht Nielsen给人工神经网络下的定义就是:“人工神经网络是由人工建立的以有向图为拓扑结构的动态系统,它通过对连续或断续的输入作状态相应而进行信息处理。”这一定义是恰当的。人工神经网络的研究,可以追溯到1957年Rosenblatt提出的感知器模型(Perceptron) 。它几乎与人工智能——AI(Artificial Intelligence)同时起步,但30余年来却并未取得人工智能那样巨大的成功,中间经历了一段长时间的萧条。直到80年代,获得了关于人工神经网络切实可行的算法,以及以Von Neumann体系为依托的传统算法在知识处理方面日益显露出其力不从心后,人们才重新对人工神经网络发生了兴趣,导致神经网络的复兴。目前在神经网络研究方法上已形成多个流派,最富有成果的研究工作包括:多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。人工神经网络是在现代神经科学的基础上提出来的。它虽然反映了人脑功能的基本特征,但远不是自然神经网络的逼真描写,而只是它的某种简化抽象和模拟。 一、特点与优势 人工神经网络的以下几个突出的优点使它近年来引起人们的极大关注: (1)可以充分逼近任意复杂的非线性关系; (2)所有定量或定性的信息都等势分布贮存于网络内的各神经元,故有很强的鲁棒性和容错性; (3)采用并行分布处理方法,使得快速进行大量运算成为可能; (4)可学习和自适应不知道或不确定的系统; (5)能够同时处理定量、定性知识。 人工神经网络的优越性,主要表现在三个方面: 第一,具有自学习功能。例如实现图像识别时,只在先把许多不同的图像样板和对应的应识别的结果输入人工神经网络,网络就会通过自学习功能,慢慢学会识别类似的图像。自学习功能对于预测有特别重要的意义。预期未来的人工神经网络计算机将为人类提供经济预测、市场预测、效益预测,其应用前途是很远大的。 第二,具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想。 第三,具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往需要很大的计算量,利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

人工神经网络的发展及应用

人工神经网络的发展及应用 西安邮电学院电信系樊宏西北电力设计院王勇日期:2005 1-21 1 人工神经网络的发展 1.1 人工神经网络基本理论 1.1.1 神经生物学基础生物神经系统可以简略地认为是以神经元为信号的处理单元,通过广泛的突触联系形成的信息处理集团,其物质结构基础和功能单元是脑神经细胞,即神经元(neuron) 。 (1)神经元具有信号的输人、整合、输出三种主要功能作用行为,结构如图1 所示: (2)突触是整个神经系统各单元间信号传递驿站,它构成各神经元之间广泛的联接。 (3)大脑皮质的神经元联接模式是生物体的遗传性与突触联接强度可塑性相互作用的产物,其变化是先天遗传信息确定的总框架下有限的自组织过程。 1.1.2 建模方法神经元的数量早在胎儿时期就已固定,后天的脑生长主要是指树突和轴突从神经细胞体中长出并形成突触联系,这就是一般人工神经网络建模方法的生物学依据。人脑建模一般可有两种方法:①神经生物学模型方法,即根据微观神经生物学知识的积累,把脑神经系统的结构及机理逐步解释清楚,在此基础上建立脑功能模型;②神 经计算模型方法,即首先建立粗略近似的数学模型并研究该模型的动力学特性,然后冉与真实对象作比较(仿真处理方法)。1.1.3 概

念人工神经网络用物理町实现系统采模仿人脑神经系统的结构和功能,是一门新兴的前沿交义学科,其概念以T.Kohonen.Pr 的论述 最具代表性:人工神经网络就是由简单的处理单元(通常为适应性神经元,模型见图2)组成的并行互联网络,它的组织能够模拟生物神 经系统对真实世界物体所作出的交互反应。 1.2 人工神经网络的发展 人工神经网络的研究始于40 年代初。半个世纪以来,经历了兴起、高潮与萧条、高潮及稳步发展的较为曲折的道路。1943 年,心理学家W.S.Mcculloch 和数理逻辑学家W.Pitts 提出了M—P 模型, 这是第一个用数理语言描述脑的信息处理过程的模型,虽然神经元的功能比较弱,但它为以后的研究工作提供了依据。1949 年,心理学家D. O. Hebb提出突触联系可变的假设,根据这一假设提出的学习规律为神经网络的学习算法奠定了基础。1957 年,计算机科学家Rosenblatt 提出了著名的感知机模型,它的模型包含了现代计算机的一些原理,是第一个完整的人工神经网络。1969 年,美国著名人工智能学者M.Minsky 和S.Papert 编写了影响很大的Perceptron 一书,从理论上证明单层感知机的能力有限,诸如不能解决异或问题,而且他们推测多层网络的感知能也不过如此,在这之后近10 年,神经网络研究进入了一个缓慢发展的萧条期。美国生物物理学家J.J.Hopfield 于1982年、1984 年在美国科学院院刊发表的两篇文章,有力地推动了神经网络的研究,引起了研究神经网络的

相关文档
最新文档