电工基础第四章磁场与电磁感应教案

电工基础第四章磁场与电磁感应教案
电工基础第四章磁场与电磁感应教案

第四章 磁场和电磁感应

第一节 电流的磁效应

一、 磁场

1.磁场:磁体周围存在的一种特殊的物质叫磁场。磁体间的相互作用力是通过磁场传送的。磁体间的相互作用力称为磁场力,同名磁极相互排斥,异名磁极相互吸引。

2.磁场的性质:磁场具有力的性质和能量性质。

3.磁场方向:在磁场中某点放一个可自由转动的小磁针,它N 极所指的方向即为该点的磁场方向。

二、磁感线

1.磁感线

在磁场中画一系列曲线,使曲线上每一点的切线方向都与该点的磁场方向相同,这些曲线称为磁感线。如图所示。

2.特点

(1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。

(2) 磁感线是闭合曲线,在磁体外部,磁感线由N 极出来,绕到S 极;在磁体内部,磁感线的方向由S 极指向N 极。

(3) 任意两条磁感线不相交。

说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。 图5-2所示为条形磁铁的磁感线的形状。 3.匀强磁场

在磁场中某一区域,若磁场的大小方向都相同,这部分磁场称为匀强磁场。匀强磁场的磁感线是一系列疏密均匀、相互平行的直线。

三、电流的磁场

1.电流的磁场

直线电流所产生的磁场方向可用安培定则来判定,方法是:用右手握住导线,让拇指指向电流方向,四指所指的方向就是磁感线的环绕方向。

环形电流的磁场方向也可用安培定则来判定,方法是:让右手弯曲的四指和环形电流方向一致,伸直的拇指所指的方向就是导线环中心轴线上的磁感线方向。

条形磁铁的磁感线

磁感线

螺线管通电后,磁场方向仍可用安培定则来判定:用右手握住螺线管,四指指向电流的方向,拇指所指的就是螺线管内部的磁感线方向。

2.电流的磁效应

电流的周围存在磁场的现象称为电流的磁效应。电流的磁效应揭示了磁现象的电本质。

第二节 磁场的主要物理量

一、磁感应强度

磁场中垂直于磁场方向的通电直导线,所受的磁场力F 与电流I 和导线长度l 的乘积Il 的比值叫做通电直导线所在处的磁感应强度B 。即

Il

F B =

磁感应强度是描述磁场强弱和方向的物理量。

磁感应强度是一个矢量,它的方向即为该点的磁场方向。在国际单位制中,磁感应强度的单位是:特斯拉(T)。

用磁感线可形象的描述磁感应强度B 的大小,B 较大的地方,磁场较强,磁感线较密;B 较小的地方,磁场较弱,磁感线较稀;磁感线的切线方向即为该点磁感应强度B 的方向。

匀强磁场中各点的磁感应强度大小和方向均相同。

二、磁通

在磁感应强度为B 的匀强磁场中取一个与磁场方向垂直,面积为S 的平面,则B 与S 的乘积,叫做穿过这个平面的磁通量 Φ,简称磁通。即

Φ = BS

磁通的国际单位是韦伯(Wb)。 由磁通的定义式,可得 S

B Φ

=

即磁感应强度B 可看作是通过单位面积的磁通,因此磁感应强度B 也常叫做磁通密度,并用Wb/m 2作单位。

三、磁导率

1.磁导率 μ

磁场中各点的磁感应强度B 的大小不仅与产生磁场的电流和导体有关,还与磁场内媒介质(又叫做磁介质)的导磁性质有关。在磁场中放入磁介质时,介质的磁感应强度B 将发生变化,磁介质对磁场的影响程度取决于它本身的导磁性能。

物质导磁性能的强弱用磁导率 μ 来表示。μ 的单位是:亨利/米(H/m)。不同的物质磁导率不同。在相同的条件下,μ 值越大,磁感应强度B 越大,磁场越强;μ 值越小,磁感应强度B 越小,磁场越弱。

真空中的磁导率是一个常数,用 μ0表示

μ0 = 4π ? 10-7 H/m

2.相对磁导率 μ r

为便于对各种物质的导磁性能进行比较,以真空磁导率 μ0为基准,将其他物质的磁导率 μ 与 μ0比较,其比值叫相对磁导率,用 μr 表示,即

r μμμ=

根据相对磁导率 μ r 的大小,可将物质分为三类:

(1) 顺磁性物质:μ r 略大于1,如空气、氧、锡、铝、铅等物质都是顺磁性物质。在磁场中放置顺磁性物质,磁感应强度B 略有增加。

(2) 反磁性物质:μ r 略小于1,如氢、铜、石墨、银、锌等物质都是反磁性物质,又叫做抗磁性物质。在磁场中放置反磁性物质,磁感应强度B 略有减小。

(3) 铁磁性物质:μ r >> 1,且不是常数,如铁、钢、铸铁、镍、钴等物质都是铁磁性物质。在磁场中放入铁磁性物质,可使磁感应强度B 增加几千甚至几万倍。

几种常用铁磁性物质的相对磁导率

四、磁场强度

在各向同性的媒介质中,某点的磁感应强度B 与磁导率 μ 之比称为该点的磁场强度,

记做H 。即

H H B B H r 0μμμμ

===

磁场强度H 也是矢量,其方向与磁感应强度B 同向,国际单位是:安培/米(A/m)。 必须注意:磁场中各点的磁场强度H 的大小只与产生磁场的电流I 的大小和导体的形状有关,与磁介质的性质无关。

第三节 磁场对电流的作用力

一、磁场对直线电流的作用力

1.安培力的大小

磁场对放在其中的通电直导线有力的作用,这个力称为安培力。

(1) 当电流I 的方向与磁感应强度B 垂直时,导线受安培力最大,根据磁感应强度

Il

F B =

可得

BIl F = (2) 当电流I 的方向与磁感应强度B 平行时,导线不受安培力作用。

(3) 如图,当电流I 的方向与磁感应强度B 之间有一定夹角时,可将B 分解为两个互相垂直的分量:

一个与电流I 平行的分量,B 1 = B cos θ;另一个与电流I 垂直的分量,B 2 = B sin θ。B 1

对电流没有力的作用,磁场对电流的作用力是由B 2产生的。因此,磁场对直线电流的作用力为

θsin 2BIl Il B F == 当 θ = 90?时,安培力F 最大;当 θ = 0?时,安培力F = 0。 2.单位

公式中各物理量的单位均采用用国际单位制:安培力F 的单位用牛顿(N );电流I 的单位用安培(A );长度l 的单位用米(m );磁感应强度B 的单位用特斯拉(T )。

3.左手定则

安培力F 的方向可用左手定则判断:伸出左手,使拇指跟其他四指垂直,并都跟手掌在一个平面内,让磁感线穿入手心,四指指向电流方向,大拇指所指的方向即为通电直导线在磁场中所受安培力的方向。

由左手定则可知:F ⊥ B ,F ⊥ I ,即F 垂直于B 、I 所决定的平面。

二、磁场对通电线圈的作用力矩

磁场对直线电流的作用力

磁场对通电矩形线圈的作用力矩

将一矩形线圈abcd 放在匀强磁场中,如图5-4所示,线圈的顶边ad 和底边bc 所受的磁场力F ad 、F bc 大小相等,方向相反,在一条直线上,彼此平衡;而作用在线圈两个侧边ab 和cd 上的磁场力F ab 、F cd 虽然大小相等,方向相反,但不在一条直线上,产生了力矩,称为磁力矩。这个力矩使线圈绕OO ' 转动,转动过程中,随着线圈平面与磁感线之间夹角的改变,力臂在改变,磁力矩也在改变。

当线圈平面与磁感线平行时,力臂最大,线圈受磁力矩最大; 当线圈平面与磁感线垂直时,力臂为零,线圈受磁力矩也为零。 电流表就是根据上述原理工作的。

三、电流表工作原理

1.结构

电流表的结构如图所示。

在一个很强的蹄形磁铁的两极间有一个固定的圆柱形铁心, 铁心外套有一个可以绕轴转动的铝框,铝框上绕有线圈,铝框的 转轴上装有两个螺旋弹簧和一个指针,线圈两端分别接在这两个 螺旋弹簧上,被测电流就是经过这两个弹簧流入线圈的。

2.工作原理

如图所示,蹄形磁铁和铁心间的磁场是均匀地辐向分布,这样,不论通电线圈转到什么方向,它的平面都跟磁感线平行。因此,线圈受到的偏转磁力矩M 1就不随偏角而改变。通电线圈所受的的磁力矩M 1的大小与电流I 成正比,即

M 1 = k 1I

式中k 1为比例系数。

线圈偏转使弹簧扭紧或扭松,于是弹簧产生一个阻碍线圈偏转的力矩M 2,线圈偏转的角度越大,弹簧的力 θ 矩也越大,M 2与偏转角 θ 成正比,即

M 2 = k 2θ

式中k 2为比例系数。

当M 1、M 2平衡时,线圈就停在某一偏角上,固定在转轴

上的指针也转过同样的偏角,指到刻度盘的某一刻度。

比较上述两个力矩,因为M 1 = M 2,所以k 1I = k 2θ,即

kI I k k ==

2

1

θ 即测量时偏转角度 θ 与所测量的电流成正比。这就是电流表的工作原理。这种利用永久性磁铁来使通电线圈偏转达到测量目的的仪表称为磁电式仪表。

3.磁电式仪表的特点

(1) 刻度均匀,灵敏度高,准确度高。 (2) 负载能力差,价格较昂贵。

(3) 给电流表串联一个阻值很大的分压电阻,就可改装成量程较大的电压表;并联一个阻值很小的分流电阻,就可改装成量程较大的电流表;欧姆表也是由电流表改装的。

电流表的结构

磁电式电表的磁场

第四节 铁磁性物质

一、铁磁性物质的磁化

1.磁化

本来不具备磁性的物质,由于受磁场的作用而具有了磁性的现象称为该物质被磁化。只有铁磁性物质才能被磁化。

2.被磁化的原因

(1) 内因:铁磁性物质是由许多被称为磁畴的磁性小区域组成的,每一个磁畴相当于一个小磁铁。

(2) 外因:有外磁场的作用。

如图所示,当无外磁场作用时,磁畴排列杂乱无章,磁性相互抵消,对外不显磁性;如图所示,当有外磁场作用时,磁畴将沿着磁场方向作取向排列,形成附加磁场,使磁场显著加强。有些铁磁性物质在撤去磁场后,磁畴的一部分或大部分仍然保持取向一致,对外仍显磁性,即成为永久磁铁。

3.不同的铁磁性物质,磁化后的磁性不同。

4.铁磁性物质被磁化的性能,被广泛地应用于电子和电气设备中,如变压器、继电器、电机等。

二、磁化曲线

1.磁化曲线的定义

磁化曲线是用来描述铁磁性物质的磁化特性的。铁磁性物质的磁感应强度B 随磁场强度H 变化的曲线,称为磁化曲线,也叫B —H 曲线。

2.磁化曲线的测定

图 (a)是测量磁化曲线装置的示意图,(b)是根据测量值做出的磁化曲线。由图

5-8(b)可以看出,B 与H 的关系是非线性的,即H

B

=μ不是常数。

铁磁性物质的磁化

磁化曲线的测定

3.分析

(1) 0 ~ 1段:曲线上升缓慢,这是由于磁畴的惯性,当H 从零开始增加时,B 增加缓慢,称为起始磁化段。

(2) 1 ~ 2段:随着H 的增大,B 几乎直线上升,这是由于磁畴在外磁场作用下,大部分都趋向H 方向,B 增加很快,曲线很陡,称为直线段。

(3) 2 ~ 3段:随着H 的增加,B 的上升又缓慢了,这是由于大部分磁畴方向已转向H 方向,随着H 的增加只有少数磁畴继续转向,B 增加变慢。

(4) 3点以后:到达3点以后,磁畴几乎全部转到了外磁场方向,再增大H 值,B 也几乎不再增加,曲线变得平坦,称为饱和段,此时的磁感应强度叫饱和磁感应强度。

不同的铁磁性物质,B 的饱和值不同,对同一种材料,B 的饱和值是一定的。 电机和变压器,通常工作在曲线的2 ~ 3段,即接近饱和的地方。 4.磁化曲线的意义

在磁化曲线中,已知H 值就可查出对应的B 值。因此,在计算介质中的磁场问题时,磁化曲线是一个很重要的依据。

图给出了几种不同铁磁性物质的磁化曲线,从曲线上可看出,在相同的磁场强度H 下,硅钢片的B 值最大,铸铁的B 值最小,说明硅钢片的导磁性能比铸铁要好得多。

三、磁滞回线

磁化曲线只反映了铁磁性物质在外磁场由零逐渐增强的磁化过程,而很多实际应用中,铁磁性物质是工作在交变磁场中的。所以,必须研究铁磁性物质反复交变磁化的问题。

1. 磁滞回线的测定

2.分析

图5-10为通过实验测定的某种铁磁性物质的磁滞回线。

(1) 当B 随H 沿起始磁化曲线达到饱和值以后,逐渐减小H 的数值,由图可看出,B 并不沿起始磁化曲线减小,而是沿另一条在它上面的曲线ab 下降。

(2) 当H 减小到零时,B 0,而是保留一定的值称为剩磁,用B r 表示。永久性磁铁就是利用剩磁很大的铁磁性物质制成的。

(3) 为消除剩磁,必须加反向磁场,随着反向磁场的增强,铁磁性物质逐渐退磁,当反向磁场增大到一定值时,B 值变为0,剩磁完全消失,如图bc 段。bc 段曲线叫退磁曲线,这时H 值是为克服剩磁所加的磁场强度,称为矫顽磁力,用H C 表示。矫顽磁力的大小反

图5-9 几种铁磁性物质的磁化曲线

图5-10 磁滞回线

映了铁磁性物质保存剩磁的能力。

(4) 当反向磁场继续增大时,B 值从0起改变方向,沿曲线cd 变化,并能达到反向饱和点d 。

(5) 使反向磁场减弱到0,B —H 曲线沿de 变化,在e 点H =0,再逐渐增大正向磁场,B —H 曲线沿efa 变化,完成一个循环。

(6) 从整个过程看,B 的变化总是落后于H 的变化,这种现象称为磁滞现象。经过多次循环,可得到一个封闭的对称于原点的闭合曲线(abcdefa ), 称为磁滞回线。

(7) 改变交变磁场强度H 的幅值,可相应得到一系列 大小不一的磁滞回线,如图5-11所示。连接各条对称 的磁滞回线的顶点,得到一条磁化曲线,叫基本磁化曲线。

3.磁滞损耗

铁磁性物质在交变磁化时,磁畴要来回翻转,在这个过

程中,产生了能量损耗,称为磁滞损耗。磁滞回线包围的面

积越大,磁滞损耗就越大,所以剩磁和矫顽磁力越大的铁 磁性物质,磁滞损耗就越大。因此,磁滞回线的形状常被用来

判断铁磁性物质的性质和作为选择材料的依据。

图5-11 基本磁化曲线

第五节 磁路的基本概念

一、磁路

1.主磁通和漏磁通

如图5-12所示,当线圈中通以电流后,大部分磁感线沿铁心、衔铁和工作气隙构成回路,这部分磁通称为主磁通;还有一部分磁通,没有经过气隙和衔铁,而是经空气自成回路,这部分磁通称为漏磁通。

2.磁路

磁通经过的闭合路径叫磁路。磁路和电路一样,分为有分支磁路和无分支磁路两种类型。图5-12给出了无分支磁路,图5-13给出了有分支磁路。在无分支磁路中,通过每一个横截面的磁通都相等。

二、磁路的欧姆定律

1.磁动势

通电线圈产生的磁通 Φ 与线圈的匝数N 和线圈中所通过的电流I 的乘积成正比。 把通过线圈的电流I 与线圈匝数N 的乘积,称为磁动势,也叫磁通势,即

E m = NI

磁动势E m 的单位是安培(A)。

2.磁阻

磁阻就是磁通通过磁路时所受到的阻碍作用,用R m 表示。磁路中磁阻的大小与磁路的长度l 成正比,与磁路的横截面积S 成反比,并与组成磁路的材料性质有关。因此有

S

l R μ=m

式中,μ 为磁导率,单位H/m ,长度l 和截面积S 的单位分别为m 和m 2。因此,磁阻R m 的单位为1/亨(H -1)。由于磁导率 μ 不是常数,所以R m 也不是常数。

3.磁路欧姆定律 (1) 磁路欧姆定律

通过磁路的磁通与磁动势成正比,与磁阻成反比,即

m m R E =Φ

上式与电路的欧姆定律相似,磁通 Φ 对应于电流I ,磁动势E m 对应于电动势E ,磁阻R m 对应于电阻R 。因此,这一关系称为磁路欧姆定律。

(2) 磁路与电路的对应关系

磁路中的某些物理量与电路中的某些物理量有对应关系,

同时磁路中某些物理量之间

图5-12 主磁通和漏磁通

图5-13 有分支磁路

与电路中某些物理量之间也有相似的关系。

三、全电流定律

根据磁路的欧姆定律m

m R E =

Φ,将S l

R NI E BS m m μΦ===、、代入,可得

l

IN

B μ

= 将上式与H B μ=对照,可得

l

IN

H =

或 Hl IN = 即磁路中磁场强度H 与磁路的平均长度l 的乘积,在数值上等于激发磁场的磁动势,这就是全电流定律。

磁场强度H 与磁路平均长度l 的乘积,又称磁位差,用U m 表示,即

U m =Hl

磁位差U m 的单位为安培(A)。

若所研究的磁路具有不同的截面,并且是由不同的材料构成的,则可以把磁路分成许多段来考虑,于是有

n n l H l H l H IN +++= 2211 或

∑∑==m U Hl IN

解: A 9.39801.039809 m /A 39809104105m 7

20=?==≈??==

=--Hl U B

B

H ,πμμ

【例5-1】匀强磁场的磁感应强度为5 ? 10-2T ,媒介质是空气,与磁场方向平行的线段长10cm ,求这一线段上的磁位差。

本 章 小 结

一、磁场

1.磁场是磁体周围存在的一种特殊物质,磁体通过磁场发生相互作用。

2.磁场的大小和方向可用磁感线来形象的描述:磁感线的疏密表示磁场的强弱,磁感线的切线方向表示磁场的方向。

二、电流的磁效应

1.通电导线周围存在着磁场,说明电可以产生磁,由电产生磁的现象称为电流的磁效应。电流具有磁效应说明磁现象具有电本质。

2.电流产生的磁场方向与电流的方向有关,可用安培定则,即右手螺旋定则来判断。

三、描述磁场的物理量

1.磁感应强度B

B 是描述磁场强弱和磁场方向的物理量,它描述了磁场的力效应。当通电直导线与磁

场垂直时,通过观察导线受力可知导线所在处的磁感应强度Il

F

B =

2.磁通

匀强磁场中,穿过与磁感线垂直的某一截面的磁感线的条数,叫穿过这个面的磁通,Φ =BS 。

3.磁导率

磁导率是描述媒介质导磁性能的物理量。某一媒介质的磁导率与真空磁导率之比,叫

这种介质的相对磁导率0

r μμ

μ=。

4.磁场强度

磁感应强度B 与磁导率 μ 之比称为该点的磁场强度l

IN H B

H =

=

,或μ

。 四、磁场对电流的作用力

1.磁场对放置于其中的直线电流有力的作用,其大小为θsin BIl F =,方向可用左手定则判断。

2.通电线圈放在磁场中将受到磁力矩的作用。

五、铁磁性物质的磁化

1.铁磁性物质都能够磁化。铁磁性物质在反复磁化过程中,有饱和、剩磁、磁滞现象,并且有磁滞损耗。

2.铁磁性物质的B 随H 而变化的曲线称为磁化曲线,它表示了铁磁性物质的磁性能。磁滞回线常用来判断铁磁性物质的性质和作为选择材料的依据。

六、磁路

1. 磁通经过的闭合路径称为磁路。磁路中的磁通、磁动势和磁阻的关系,可用磁路

欧姆定律来表示,即m m R E =Φ,其中S l

R μ=m 。

2.由于铁磁性物质的磁导率 μ 不是常数,因此磁路欧姆定律一般不能直接用来进行

磁路计算,只用于定性分析。

《法拉第电磁感应定律》教学设计

《法拉第电磁感应定律》教学设计 陕西省西安市田家炳中学简波 一、设计思想 法拉第电磁感应定律是电磁学的核心内容。从知识发展来看,它既与电场、磁场和稳恒电流有紧密联系,又是后面学习交流电、电磁振荡和电磁波的基础。它既是本章的教学重点,也是教学难点。 在学习本节内容之前,学生已经掌握了恒定电流、电磁感应现象和磁通量的相关知识,并且也知道了变化量和变化率的概念。学生已经具备了很强的实验操作能力,而且本节课的实验也是上节课所演示过的,只不过研究的侧重点不同。因此,有条件的学校可将本节课的演示实验改为学生分组实验。另外,学生对物理学的研究方法已有较为深刻的认识,在自主学习、合作探究等方面的能力有了较高的水平。 本节课的重点法拉第电磁感应定律的建立过程,设计中采用了让学生自己设计方案,自己动手做实验,思考讨论,教师引导找出规律的方法,使学生能够深刻理解法拉第电磁感应定律的建立过程。对于公式,让学生自己根据法拉第电磁感应定律,动手推导,使学生深刻理解。 本节课的难点是对、、物理意义的理解,在难点的突破上,采用 了类比的方法。把、、、E和υ、Δυ、、a类比起来,使学生更 容易理解、、和E之间的联系。 二、教学目标 (一)知识和能力目标 1.知道感应电动势的概念,会区分Φ、ΔΦ、的物理意义。 2.理解法拉第电磁感应定律的内容和数学表达式,并能应用解答有关问题。 3.知道公式的推导过程及适用条件,并能应用解答有关问题。

4.通过学生对实验的操作、观察、分析,找出规律,培养学生的动手操作能力,观察、分析、总结规律的能力。 (二)过程与方法目标 1.教师通过类比法引入感应电动势,通过演示实验,指导学生观察分析,总结规律。 2.学生积极思考认真比较,理解感应电动势的存在,通过观察实验现象的分析讨论,总结影响感应电动势大小的因素。 (三)情感、态度、价值观目标 1.通过学生之间的讨论、交流与协作探究,培养学生之间的团队合作精神。 2.让学生在探究过程中体验解决问题的成功喜悦,增进学生学习物理的情感。 三、教学重点 法拉第电磁感应定律的建立过程以及对公式E=、的理解。 四、教学难点 对Φ、ΔΦ、物理意义的理解。 五、教学准备 准备实验仪器:电流计、蹄形磁铁、螺线管、铁芯、学生电源、变阻器、开关、导线若干。(若为分组实验,应准备若干组器材) 六、教学过程 (一)引入新课 教师和学生一起回顾第一节中的三个实验。在这三个实验中,闭合电路中都产生了感应电流,则电路中必须要有电源,电源提供了电动势,从而产生电流。在电磁感应现象中产生的电动势叫做感应电动势。那么感应电动势的大小跟哪些因素有关呢?本节课我们就来共同研究这个问题。 (二)讲授新课 *感应电动势

电磁感应现象教学反思

篇一:电磁感应教学反思 《电磁感应》教学反思 —— 一名年轻教师的课后感想 临沧 市一中物理教研组李芳 时光 飞逝,转眼间,我步入教学岗位已经接近三年了,在我从一个学生变成一名教师的巨大角色转 换中,在学校领导和老教师的帮助和指导下,我努力做好每一件事情,注重自己教学业务水平 的提高、注重反思教学中的缺漏、注意做好对学生和引导和与学生之间的沟通,但毕竟经验 不足、能力有限、应变能力还很欠缺,教学中还是经常快乐并失落着。 对于 一名教师来说,每上完一节课,都会有很多感受,有源于 传授 知识的喜悦、有对重点突出和难点突破的成就感、当然也有对课中遗漏每个细节的遗憾、有对 部队学生有厌学情绪的不解、有对没有处理好教学中出现的一些突发事件的沮丧、有对课堂效 率不高的忧虑 本节 课我试图改变这种弊端,在教学过程的总体设计上以学生为探索者,教师做引路人。按照教师 为主导,学生为主体,多媒体演示作手段,问题为线索的构想,采用引导探索式教法来进行教 学。试图教学过程的各个环节不断地为学生创设问题情境,设置悬念,适时点拨。例如在引 入新课时启发学生用逆向思维去提出问题,激发他们探求新知识的兴趣。当探索多次失败时, 启迪学生要持之以恒;当探索成功时,则简明扼要地概括研究问题的思路。把学生从纯知识的 学习导向知识、能力、思想的全面发展。 首 先,开始时没有培养好学生的学习兴趣,让学生由“老师要我学”变为“我要学”这个问题上 我做的还很不够。有学生上课注意力不集中,甚至打瞌睡。 其 次,课堂中还是没做到敢于“放”,善于“引” 。这堂课在学生探究方法上和时间可能不够 的问题上会比较突出,三个探究实验能否收到良好的教学效果,与教师的科学引导密切相关。 如果“放而不引”,流于形式,不仅教学时间不够,学生也可能“玩无所获”,如探究“电磁 感应现象”实验、“感应电流的大小与哪些因素有关”的实验,实验次数较多,操作中易出现 如电路故障、方法不合理等这样那样的问题,没有教师的合理引导,学生不可能在有限时间内 完成学习任务。 最 后,我对初中物理教材和高中物理教材的研究还不够透彻。 篇二:电磁感应教学反思 高二物理《电磁感应现象》教学反思

第三章--磁场及电磁感应

课题 ※第三章磁场及电磁感应 ※第一节磁场课型 新课授课班级授课时数 1 教学目标 1.了解磁场及电流的磁场。 2.了解安培力的大小及方向。 教学重点 1.磁场。 2.安培力的大小及方向。 教学难点 安培力的大小及方向。 学情分析 教学效果 教后记

新授课 A、新授课 ※第一节磁场 一、磁场 1.磁体 某些物体具有吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物体叫磁体。磁体 分为天然磁体和人造磁体。常见的条形磁铁、马蹄形磁铁和针形磁铁等都是人造磁体, 如下图所示。 3-2 常见人造磁铁 2.磁极 磁体两端磁性最强,磁性最强的地方叫磁 极。任何磁体都有一对磁极,一个叫南极,用S 表示;另一个叫北极,用N表示,如右图所示。 N极和S极总是成对出现并且强度相等,不存在 独立的N极和S极。 当用一个条形磁铁靠近一个悬挂的小磁针(或条形磁铁)时,如下图所示。我们发现: 当条形磁铁的N极靠近小磁针的N极时, 小磁针N极一端马上被排斥;当条形磁铁 的N极靠近小磁针的S极时,小磁针S极 一端立刻被条形磁铁吸引。说明磁极之间 存在相互作用力,同名磁极互相排斥,异 名磁极互相吸引。 3.磁场 力是物质之间相互作用的结果。用手推门,门就会转动打开,这是因为力直接作用 于门。上述实验中,磁极之间存在的作用力并没有直接作用,到底是什么神密的物质使 得它们之间有力的作用呢?这种神密的物质就是磁场。磁极之间相互作用的磁力就是通 过磁场传递的。磁场是磁体周围存在的特殊物质。磁极在自己周围的空间里产生磁场, 磁场对它里面的磁极有磁场力的作用。 4.磁场方向 把小磁针放在磁场中的任一点,可以看到小磁针受磁场力的作用。静止时它的两 极不再指向南北方向,而指向一个别的方向。在磁场中的不同点,小磁针静止时指的 方向一般并不相同。 这个现象说明,磁场是有方向性的。一般规定,在磁场中某点放一个能自由转动的 (展示磁 铁) (对照实 物形进行 说明) (演示) (讲解)

中职电工基础教案201页

第一章电路基础知识 1.1 库仑定律 一、电荷 1、自然界中只有正、负电荷,电荷间作用力为“同性 相斥,异性相吸”。 2、电量 电荷的多少叫电量,电量的单位是库仑。1个电子电量e=1.6×10-19C。任何带电物体所带电量等于电子(或质子)电量或者是它们的整数倍,因此,把1.6×10-19C称为基元电荷。 二、库仑定律 1、库伦定律的内容 在真空中两个电荷间作用力跟它们的电量的乘积成正比,跟它们间的距离的平方成反比,作用力的方向在它们的连线上,这就是库仑定律。若两个点电荷q1,q2静止于真空中,距离为r,则q1受到q2的作用力F12为 式中F 12、q 1 、q 2 、r诸参数单位都已确定,分别为牛(N)、 库(C)、库(C)、米(m)由实验测得

k = 9×109 N ·m 2/C 2 q 2受到q 1的作用力F 21与F 12互为作用力与反作用力,它们大小相等,方向相反,统称静电力,又叫库仑力。 2、注意事项: (1)、库仑定律只适用于计算两个点电荷间的相互作 用力,非点电荷间的相互作用力,库仑定律不适用。 (2)、应用库仑定律求点电荷间相互作用力时,不用 把表示正、负电荷的“+”、“-”符号带入公式中,计算过程中可用绝对值计算,其结果可根据电荷的正、负确定作用力为引力或斥力以及作用力的方向。 三、例题讲解, 【例题1】两个点电荷电荷量C q 61104-?-=, C q 62102.1-?-=,在真空中的距离m r 4.0=,求两个点电荷 间作用力的大小及方向。 解:根据库仑定律 N r q q k F 27.04 .0102.11041092 669 221=?????==-- 作用力的方向在两个点电荷的连线上。因为同带负电荷, 所以作用力为斥力。 【例题2】两个点电荷分别带电荷量A q 和B q ,当它们间的距

电磁感应定律的应用教案

电磁感应定律应用 【学习目标】 1.了解感生电动势和动生电动势的概念及不同。 2.了解感生电动势和动生电动势产生的原因。 3.能用动生电动势和感生电动势的公式进行分析和计算。 【要点梳理】 知识点一、感生电动势和动生电动势 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是磁场不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作动生电动势,另外一种是导体不动,由于磁场变化引起磁通量的变化而产生的电动势称作感生电动势。 1.感应电场 19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫静电场,静电场的电场线是由正电荷发出,到负电荷终止,电场线不闭合,而感应电场是一种涡旋电场,电场线是封闭的,如图所示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 要点诠释:感应电场是产生感应电流或感应电动势的原因,感应电场的方向也可以由楞次定律来判断。感应电流的方向与感应电场的方向相同。 2.感生电动势 (1)产生:磁场变化时会在空间激发电场,闭合导体中的自由电子在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。 (2)定义:由感生电场产生的感应电动势成为感生电动势。 (3)感生电场方向判断:右手螺旋定则。 3、感生电动势的产生 由感应电场使导体产生的电动势叫做感生电动势,感生电动势在电路中的作用就是充当电源,其电路是内电路,当它和外电路连接后就会对外电路供电。 变化的磁场在闭合导体所在的空间产生电场,导体内自由电荷在电场力作用下产生感应电流,或者说产生感应电动势。其中感应电场就相当于电源内部所谓的非静电力,对电荷产生作用。例如磁场变化时产生的感应电动势为cos B E nS t ?θ?= . 知识点二、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢?导体切割磁感线产生的感应电动势与哪些因素有关?他是如何将其他形式的能转化为电能的? 1、动生电动势

电磁感应现象教学设计

电磁感应现象教学设计 电磁感应现象教学设计 篇一:电磁感应现象教学设计 一、教材分析 课本从4个层面介绍了电磁感应——定性了解定磁感应现象、掌握感应电动势方向的判定规则和定量计算感应电动势的大小、了解电磁感应的两类情况、了解电磁感应规律在自感涡流电磁阻尼电磁驱动中的应用。 教材对感应电流产生条件、感应电流方向的判定、感应电动势的大小等的处理,全部是从唯象的角度,而且全部是拿磁通量来说事;但实际上,电磁感应存在两种本质完全不同的情况,而且谈论磁通量必须有一个回路,可是一根导体棒切割磁感线却没有回路。这种处理,实际上给学生造成了许多理解和应用上的困难。 不过,教材利用第五节做了一个补充,那么,一轮复习,笔者认为就应该纠回正常思路,先分两种情况说明,然后总结出感应电流产生条件、感应电流方向的判定规则和感应电动势的大小计算的磁通量表述。 另外,一轮复习,第一讲承担着全章知识内容的引领作用,因此本讲可以将本章所涉及的大部分关键模型拿出来与学生见面。 二、学情分析 学生已经自主复习了教材,并自主完成了第一讲资料前后的填空、

辨析和例题、练习,对本章、本讲所涉及的内容和题型都有了较为熟悉的了解。 但是,从练习的完成质量来看,学生对电磁感应的实质、磁通量的变化、楞次定律的综合应用都存在明显困难,这需要老师引导梳理和透彻理解本讲内容、并分类讲解楞次定律的应用思路和技巧。三、教学目标 1、知识与技能:熟练掌握磁通量及其变化的计算方法,理解感应电流的产生条件,深刻理解楞次定律并能够熟练、灵活应用。 2、过程与方法:通过教师的引导,一起重新整理知识脉络,从而加深对本章本节知识内容的理解;同时,通过对练习题的归类分析,从而加深对楞次定律的理解。 3、情感、态度与价值观:培养学生深入学习本章的兴趣和信心。 四、教学重难点 1、磁通量及其变化; 2、感应电流的产生条件; 3、楞次定律、右手定则的理解和应用。五、教学媒体 PPT多媒体课件,《与名师对话》一轮复习资料六、教学时间 七、教学反思 1、本讲第一部分内容——知识串讲部分,结合PPT课件讲快一些,因为特殊原因我的课件未能用成,导致知识串讲部分没有讲完。 2、有教师反映,感生电动势的讲解超纲——高考不考,一轮复习就不应该涉及。 3、楞次定律是电磁感应一章的难点,从后续几讲练习完成情况

电磁感应教案

《电磁感应》章节复习教案 第二课时:电磁感应综合问题 课型:复习课 时间:2015/04/22 班级:高二(1)班 教者:许军义 教学目标: (一)知识与技能 1.进一步掌握感应电流的产生条件、方向的判断、大小的计算。 2. 掌握解决电磁感应中电路问题,力学问题,能量问题,图像问题的分析方法及思路。 (二)过程与方法 通过电磁感应中的电路问题,力学问题,能量问题,图像问题的分析方法及思路的教学,使学生的解题能思路、解题能力和解题方法得到进一步的提高,初步达到高考要求。 (三)情感、态度与价值观 培养学生学以致用的思想,用辩证唯物主义的观点认识问题的态度。 教学重点:电磁感应综合问题分析方法及思路 教学难点:1.电磁感应与电路问题综合中等效电路分析。 2.电磁感应与力学问题综合中受力截面图分析及运动过程分析。 教学过程: 一、组织教学,清点人数。 二、导入教学,展示目标。 三、新课教学: (一)、电磁感应与电路知识的综合应用 用电路规律求解,主要1、解决电磁感应与电路问题的分析方法及思路。 (1)、确定电源: 首先判断产生电磁感应现象的那一部分导体就是电源,其次利用 或 求感应电动势的大小,利用右手定则或楞次定律判断电流方向。 (2)、分析电路结构,画等效电路图。 (3)、利有欧姆定律,串并联规律等。 2、例题分析 {例1} 匀强磁场的磁感应强度为B ,磁场宽度为d ,一正方形金属框连长为L,每边电阻 t n E ??Φ=θsin BLv E =

均为R ,金属框以速度V 匀速穿过磁场区域,其平面始终一磁感线方向垂直,如图所示。则线圈进入磁场磁场过程中a 、b 两点间电压Uab= ;穿出磁场磁场过程中a 、b 两点间电压Uab= 。 {解题方法过程} 学生活动:画出线圈进入磁场和穿出磁场过程中 等效电路 师生活动:根据等效电路及电路知识确定线圈进 入磁场和穿出磁场过程中a 、b 两点间 电压Uab 答案:进入磁场过程:Uab=BLV/4 穿出磁场过程:Uab=3BLV/4 (二)、电磁感应中的动力学问题 1、解决电磁感应与动力学问题的分析方法及思路: 教师活动:展示电磁感应中的动力学问题解题的基本思路方框图,并讲解。 学生活动:看图理解。 2、例题分析 {例2}如图所示,足够长的光滑平行金属导轨cd 和ef ,水平放置且相距L ,在其左端各固定一个半径为r 的四分之三金属光滑圆环,两圆环面平行且竖直。在水平导轨和圆环上各有一根与导轨垂直的金属杆,两金属杆与水平导轨、金属圆环形成闭合回路,两金属杆质量均为m 。整个装置放在磁感应强度大小为B 、方向竖直向上的匀强磁场中。当用水平向右的恒力F= 3 mg 拉细杆a ,经很长一段时间后,杆b 恰好静止在圆环上某处,试求: (1)此时回路中的感应电流; (2)此时杆b 的位置距圆环最低点的高度。 {解题方法过程} 学生活动:1、分析a 杆最终运动状态。 2、据a 3、画b 杆受力截面图。 a d b c 电路分析 确定电源 (E ,r ) 感应电流确定导体所受的安培力 受力分析确定合外力 a v 与a 方向关运动状态分析 临界状态

电工基础教案43847

第一章直流电路 第一节直流电路的基本概念 一、电路的组成:由电源、负载、开关和导线等按照一定的方式连接起来的闭合回路,称为电路。 E 1、电源:在电路中提供电能的,如干电池,蓄电池,交直流发电机等。 2、负载(用电器):消耗能量的设备,如电灯、电炉和电动机等。 3、开关:用来实现对电路进行控制和保护作用等。如:刀闸开关、熔断器等。 4、导线;用来联接电路的,为电路提供通路的。在电路中起输送电能的作用。常用铜、铝等材料制作。 二、电流 1、电流:导体中自由电子在电场力的作用下作定向移动,形成电流。 2、方向:通常,我们把正电荷定向移动的方向定为电流的方向,而电子移动的方向和电流的方向正好相反。 3、电流的大小:在数值上等于单位时间内通过导体横截面的电量的多少。用符号I 表示

I = Q / t 式中I ——电流(A); Q ——电荷量(C); t ——时间(s)。 4、电流的测量:常用电流表。 注意:a、量称b、极性c、与被测电路串连。 例一、P4 如果3 s 内通过导体横截面的电量是12 C ,求通过导体的电流是多少?如果通过导体的电流是0.3 A,那么3s 内将有多少电量通过导体截面? 解:公式I=Q / t 三、电位、电压、电动势 1、电位(V): 1)、电位:把正电荷在某点具有的能量,称为该点的电位。 正电荷从高电位流向低电位;负电荷恰好相反2)、参考点:通常将大地作为参考点,且电位为零。 3)、电位的正负:正电位——某点电位高于参考点的电位。 负电位——与正电位相反。 4)、不同的参考点,电位不同,即电位的大小与参考点有关。 例:P6 求:V A,V B,V C A 3V B 6V C A 3V B 6v C

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

法拉第电磁感应定律教学设计

§4.4法拉第电磁感应定律 ——感应电动势的大小 昌吉市第四中学 常志平 【教学依据】 人教版高中物理选修3-2第四章第四节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【教材分析】 本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然而我认为在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 由于高中阶段电磁感应定律的定量实验很难完成,因而【新课程标准】没有要求通过定量实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 就本节内容而言,“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础;从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。根据课程标准和学生的接受能力,教学中应着重揭示法拉第电磁感应定律及其公式E=n t ??Φ的建立过程、物理意义及应用,(而公式E =BLv 只作为法拉第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求)可选讲。 【学情分析】 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的教学中,应该注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简、循序渐进,力求通过引导、启发,使同学们能利用已掌握的旧知识,来理解所要学习的新规律,力求通过明显的实验现象启发同学们主动起来,从而活跃大脑,激发兴趣,变被动记忆为主动认知。 【三维目标】 1.知识与技能: ①知道感应电动势的含义,能区分磁通量、磁通量的变化量和磁通量的变化率; ②理解法拉第电磁感应定律的内容和表达式,会用法拉第电磁感应定律解答有关问题. 2.过程与方法: ①通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力;

电工基础第四章磁场与电磁感应教(学)案

第四章 磁场和电磁感应 第一节 电流的磁效应 一、 磁场 1.磁场:磁体周围存在的一种特殊的物质叫磁场。磁体间的相互作用力是通过磁场传送的。磁体间的相互作用力称为磁场力,同名磁极相互排斥,异名磁极相互吸引。 2.磁场的性质:磁场具有力的性质和能量性质。 3.磁场方向:在磁场中某点放一个可自由转动的小磁针,它N 极所指的方向即为该点的磁场方向。 二、磁感线 1.磁感线 在磁场中画一系列曲线,使曲线上每一点的切线方向都与该点的磁场方向相同,这些曲线称为磁感线。如图所示。 2.特点 (1) 磁感线的切线方向表示磁场方向,其疏密程度表示磁场的强弱。 (2) 磁感线是闭合曲线,在磁体外部,磁感线由N 极出来,绕到S 极;在磁体部,磁感线的方向由S 极指向N 极。 (3) 任意两条磁感线不相交。 说明:磁感线是为研究问题方便人为引入的假想曲线,实际上并不存在。 图5-2所示为条形磁铁的磁感线的形状。 3.匀强磁场 在磁场中某一区域,若磁场的大小方向都相同,这部分磁场称为匀强磁场。匀强磁场的磁感线是一系列疏密均匀、相互平行的直线。 三、电流的磁场 1.电流的磁场 条形磁铁的磁感线 磁感线

直线电流所产生的磁场方向可用安培定则来判定,方法是:用右手握住导线,让拇指指向电流方向,四指所指的方向就是磁感线的环绕方向。 环形电流的磁场方向也可用安培定则来判定,方法是:让右手弯曲的四指和环形电流方向一致,伸直的拇指所指的方向就是导线环中心轴线上的磁感线方向。 螺线管通电后,磁场方向仍可用安培定则来判定:用右手握住螺线管,四指指向电流的方向,拇指所指的就是螺线管部的磁感线方向。 2.电流的磁效应 电流的周围存在磁场的现象称为电流的磁效应。电流的磁效应揭示了磁现象的电本质。

《电磁感应现象》教学设计

《电磁感应现象》教学设计 一、教材分析 电磁感应现象实在学生学习了电学的初步知识和电流能够产生磁场的基础上编排的,是初中电与磁的重点,同时也是电磁学的基础,通过本节课的学习,不仅能加深对电能生磁的理解,同时让学生对电磁学有一个较全面的认识,为下面和以后有关电磁学的学习奠定了基础。此外,电磁感应知识与人们日常生活、生产技术有着密切的联系,因此,学习这部分知识有重要的现实意义。 二、学情分析 初中学生正处于发育、成长阶段,他们对事物存在好奇心,具有强烈的操作兴趣。而且通过前面的学习,已经初步掌握了科学探究的方法,分析问题、应用知识解决问题的能力也有所加强。 三、设计理念 本节课以新课程理念为指导,实施探究式教学,注重培养学生动手、动脑的良好习惯,让学生通过自主探究获得新知识,渗透科学探索的精神。 本节课利用日常生活中的“电”由何而来,引入新课,以激发学生的学习欲望,体现了从生活走向物理。在探究“磁生电”的过程中,采取了“逆向思维”、“科学探究”等方法,使学生始终处于积极的思索之中,把“教学过程”转变为“探究过程”,培养了学生良好的思维习惯和初步的科学实践能力。而在学习发电机的过程中,则以学生自主学习为主,结合图片和模型,解决有关问题,同时通过“三峡工程”和“磁记录”等内容,把所学知识应用与生产实际中,以培养学生的自学能力以及终生的探索乐趣。 四、设计思路 1、三维目标 (1)知识与技能 ①理解电磁感应现象。 ②了解感应电流的方向与导体运动的方向及磁场的方向有关。

③知道发电机的工作原理,知道发电机在工作时能量如何转化。 ④知道我们的生活用电是交流电。 (2)过程与方法 ①通过经历探究“磁生电”的过程,培养学生进行逆向思维和发散思维的能力。 ②通过制作发电机的过程培养学生的动手实践能力,鼓励学生积极开展小 发明、小制作活动。 (3)情感、态度与价值观: ①通过向学生介绍法拉第的生平,培养学生锲而不舍、坚忍不拔的思想品质。 ②通过介绍发电机的发明,是学生了解科技发展是人类社会进步的巨大推动力。 2、教学重点和难点 (1)教学重点:磁如何产生电。 (2)教学难点:电磁感应实验的设计方案和制作小发电机。 3、教学方法 观察实验法、科学猜想、实验探索法、讨论归纳法、多媒体演示、合作探究。 4、学法指导 现代的素质教育有一个更新的观念,就是培养学生的创新精神和实践能力,这其中最主要的因素就是懂得自己去发现问题而不是等别人来提问题,这也是我们以前教学过程中不太注意的,所以,现在我们要注意这些问题的发现。 对现时期的教学来讲,我们不仅要教学生知识,培养学生能力,传播学习的思想方法,重要的是通过这些手段,培养他们的学习能力,为他们今后继续教育或终身教育打下良好的基础。所以教学法部分有:(1)使学生学会发现问题,然后是分析、解决问题的能力。学生只有有了疑问,才有学习的动力,而问题的解决,恰好就是建立新的知识结构的过程,从而培养学生

大学物理习题册---磁场与电磁感应

一 选择题 (共36分) 1. (本题 3分)(2734) 两根平行的金属线载有沿同一方向流动的电流.这两根导线将: (A) 互相吸引. (B) 互相排斥. (C) 先排斥后吸引. (D) 先吸引后排斥. [ ] 2. (本题 3分)(2595) 有一N 匝细导线绕成的平面正三角形线圈,边长为a ,通有电流I ,置于均匀 外磁场B v 中,当线圈平面的法向与外磁场同向时,该线圈所受的磁力矩M m 值为 (A) 2/32IB Na . (B) 4/32IB Na . (C) °60sin 32IB Na . (D) 0. [ ] 3. (本题 3分)(2657) 若一平面载流线圈在磁场中既不受力,也不受力矩作用,这说明: (A) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向平行. (B) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向平行. (C) 该磁场一定均匀,且线圈的磁矩方向一定与磁场方向垂直. (D) 该磁场一定不均匀,且线圈的磁矩方向一定与磁场方向垂直. [ ] 4. (本题 3分)(2404) 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移. (D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ] 5. (本题 3分)(5137) 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中 (A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同. (D) 感应电动势相同,感应电流不同. [ ]

中职《电工基础》教案

中职《电工基础》教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

中职《电工基础》教案电工基础教案 使用教师:xxx 教学重点及学时安排 第一章认识电路 1、了解电路的组成、电路的三种状态和电气设 备额定值的意义。 2、掌握电路的基本概念:电动势、电流、电压、 电位、电阻、电能、电功率。 3、掌握、欧姆定律、最大功率输出定理,了解 电阻与温度的关系。 1、“理想电路模型”概念的建立。 2、理解理想元件与电路模型、线性电阻与非线性电

阻的概念。 3、理解、欧姆定律(全电路、部分电路欧姆定律)。教学章节学时数 1.1 电路 1.2 电流 6 1.3 电阻 1.4 部分电路欧姆定律 4 1. 5 电能和电功率 实训课 2 本章总学时 12 第二章简单的直流电路 1、掌握电阻串联分压关系和并联分流关系。 2、学会分析计算电路中各点电位。 3、掌握万用表的应用。

1、运用电阻串联分压关系和并联分流关系解决 电阻电路问题。 2、熟练分析计算电路中各点电位。 3、应用支路电流法分析计算简单的复杂电路。 教学章节学时数 2.1 电动势闭合电路的欧姆定律 2.2 电阻串联电路 8 2.3 电阻并联电路 2.4 电阻混联电路 习题课 1 2.5 万用表 2.6 电阻的测量 6 2.7 电路中各点电位的计算习题课 1 本章总学时 16 第三章复杂的直流电路 1、掌握基尔霍夫定律及其运用,学会运用支路电流

法分析计算简单的复杂电路(只含两个网孔)。 2、掌握电压源、电流源的等效变换。 3、掌握戴维宁定理及其应用 4、掌握叠加定理及其应用。 1、基尔霍夫定律及其运用,学会运用支路电流法分析计算简单的复杂电路。 2、电压源、电流源的等效变换。 3、掌握戴维宁定理及其应用 教学章节学时数 3.1 基尔霍夫定律

法拉第电磁感应定律教案新人教版选修Word版

高二物理选修3-2《法拉第电磁感应定律》教案 目的要求 复习法拉第电磁感应定律及其应用。 知识要点 1.法拉第电磁感应定律 (1)电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,即t k E ??Φ=,在国际单位制中可以证明其中的k =1,所以有t E ??Φ=。对于n 匝线圈有t n E ??Φ=。(平均值) 将均匀电阻丝做成的边长为l 的正方形线圈abcd 从匀强磁场中向右匀速拉出过程,仅ab 边上有感应电动势E =Blv ,ab 边相当于电源,另3边相当于外电路。ab 边两端的电压为3Blv /4,另3边每边两端的电压均为Blv /4。 将均匀电阻丝做成的边长为l 的正方形线圈abcd 放在匀强磁场 中,当磁感应强度均匀减小时,回路中有感应电动势产生,大小为E =l 2(ΔB /Δt ),这种情况下,每条边两端的电压U =E /4-I r = 0均为零。 (2)感应电流的电场线是封闭曲线,静电场的电场线是不封闭的,这一点和静电场不同。 (3)在导线切割磁感线产生感应电动势的情况下,由法拉第电磁感应定律可推导出感应电动势大小的表达式是:E=BLv sin α(α是B 与v 之间的夹角)。(瞬时值) 2.转动产生的感应电动势 ⑴转动轴与磁感线平行。如图,磁感应强度为B 的匀强磁场方向垂直于纸面向外,长L 的金属棒oa 以o 为轴在该平面内以角速度ω逆时针匀速转动。求金属棒中的感应电动势。在应用感应电动势的公式时,必须注意其中的速度v 应该指导线上各点的平均速度,在本题中 应该是金属棒中点的速度,因此有22 12L B L BL E ωω=?=。 ⑵线圈的转动轴与磁感线垂直。如图,矩形线圈的长、宽分 别为L 1、L 2,所围面积为S ,向右的匀强磁场的磁感应强度为B ,线圈绕图示的轴以角速度ω匀速转动。线圈的ab 、cd 两边切割磁 感线,产生的感应电动势相加可得E=BS ω。如果线圈由n 匝导线 绕制而成,则E=nBS ω。从图示位置开始计时,则感应电动势的瞬时值为e=nBS ωcos ωt 。该结论与线圈的形状和转动轴的具体 位置无关(但是轴必须与B 垂直)。 实际上,这就是交流发电机发出的交流电的瞬时电动势公式。 3.电磁感应中的能量守恒 只要有感应电流产生,电磁感应现象中总伴随着能量的转化。电磁感应的题目往往与能量守恒的知识相结合。这种综合是很重要的。要牢固树立起能量守恒的思想。 例题分析 例1:如图所示,长L 1宽L 2的矩形线圈电阻为R ,处于磁感 L 1 v c B l a b d l v a b d ω o a v b c L 1 L 2 ω

电磁感应教案

课题:电磁感应现象 课型:新授课 说课人:王庆华 一、教材分析 ?电磁感应现象是中等职业学校物理教材第六章第三节 的内容,它是电磁学中的重点、难点,也是本教材的重点内容。前面学了电场、电动势、电阻定律、全电路欧姆定律等有关内容后,对电流的产生进一步认识。对理解变压器、电动机等电器的工作原理有很大帮助。 教学目标:1、理解楞次定律的内涵 2、应用楞次定律判定感应电流方向 教学重点:理解楞次定律中的“两个磁场”、“阻碍”所指的含义 教学难点:学生能理解并较好地应用楞次定律 ?二、教法指导:主要采用讲授法、演示实验法、情景模 拟法 学法指导:分组讨论、动手操作、多种感官并用 三、教学过程: (一)组织教学 (二)复习回顾:

上节课我们通过学习几种感应电流的获得方法,建立了用统一物理量来描述感应电流产生的一般条件,请同学们 回想并回答: 1、这个物理量是什么? 2、这个感应电流产生的一般条件是什么? 导入:在这些产生感应电流的方法中,感应电流的方向是不 同的,那么,它的方向由哪些因素决定?又遵循什么规律 呢? 本节我们就来学习探究这个问题。 (三)、新授过程 1、借助上一节p162图6-24的实验来探究感应电流方向 的决定因素 让学生结合图6-25及图6-26阅读p164“实验探究” 部分,这期间,教师在黑板作图6-27中的(1)和(2)。 2、结合图6-27分析感应电流的磁场方向的影响因素:(1)在分析前先指出“两个磁场”所指的内容: 在实验中有两个磁场:一是条形磁铁产生的磁场,二是线圈中流动的感应电流(相当于通电螺线管)产生的磁场 (2)指出:两个磁场的方向间有密切关系,遵循一定的规律 (3)分析这个遵循的规律: A、图(1)情形下:让学生特别注意“两个磁场”的方

《4.4法拉第电磁感应定律教案》

4.4法拉第电磁感应定律 【教学目标】 (1)知道感应电动势,及决定感应电动势大小的因素。 (2)知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、 t ??Φ。 (3)理解法拉第电磁感应定律内容、数学表达式。 (4)知道E =BLv sin θ如何推得。 【教学重点】法拉第电磁感应定律。 【教学难点】感应电流与感应电动势的产生条件的区别。 【教学方法】自主学习 合作探究 巩固延伸 【教学过程】 一、复习提问:1、在电磁感应现象中,产生感应电流的条件是什么? 2、恒定电流中学过,电路中存在持续电流的条件是什么? 3、在发生电磁感应的情况下,用什么方法可以判定感应电流的方向? 二、引入新课 1、问题1:既然会判定感应电流的方向,那么,怎样确定感应电流的强弱呢? 2、问题2:如图所示,在螺线管中插入一个条形磁铁,问 ①、在条形磁铁向下插入螺线管的过程中,该电路中是否都有电流?为什么? ②、有感应电流,是谁充当电源? ③、上图中若电路是断开的,有无感应电流电流?有无感应电动势? 3、产生感应电动势的条件是什么?4、比较产生感应电动势的条件和产生感应电流的条件你有什么发现? 三、进行新课 (一)、探究影响感应电动势大小的因素 (1)猜测:感应电动势大小跟什么因素有关?(2)探究问题: 问题1、在实验中,电流表指针偏转原因是什么? 问题2:电流表指针偏转程度跟感应电动势的大小有什么关系? 问题3:在实验中,快速和慢速效果有什么相同和不同? 实验结论电动势的大小与磁通量的变化快慢有关,磁通量的变化越快电动势越大,磁通量的变化越慢电动势越小。 (二)、法拉第电磁感应定律 a b G E r

《电磁感应》教学设计

《电磁感应》教学设计 (一)引入新课:我们的物理“很美”,它具有“和谐的美”、“规律的美”——如浩瀚的宇宙及我们的太阳系在各就各位的运行着;它还具有“对称美”——如有“正电”就有“负电”、磁体有“南极”就有“北极”、平面镜中的像与物完全对称、还听说有“物质”就有“反物质”??当然物理也具有“奇异的美”,如听说有“磁单极子”,还有什么“宇称不守恒”……随着以后年级的递增,你会逐渐发现物理的各种美。通过奥斯特实验,我们知道:“电”能产生出“磁” ,(老师不妨在30秒内重现这个实验),那么同学猜想,反过来,“磁”能否生产出“电”来呢?(顺便板书逆向箭头并带问号) 几乎所有学生猜:“磁”也能生“电”。(那只是乱猜,无正当 理由,只是思维定势喊的) (二)引导学生确定需要哪些器材(这里,老师起很大主导作用):当然要有磁体,还得有导线(否则,电流在哪流?),我给准备的是2m长的。还得有检验是否生出电流来的电流表(否则,你生出电来 了都还不知道呢)。 (三)这时,老师宣布:“开始试验,我看咱班那位同学把法拉 第憋了10年才发现的电流找出来”:同学们跃跃欲试,摩拳擦掌, 都想第一个发现,情绪激动,但无从下手,不知怎么摆弄好,憋得难

受,我则煞有介事的巡视着??我知道他们几乎发现不了。但我就想让他们憋很长一段时间并且还没书看,急的难受。巡视时,我发现各种各样的做法:1、导线敞开着,放在蹄型磁体上不动(很多学生);2、导线敞开着,在蹄型磁体上随便乱动(很多学生);3、导线敞开着,放在蹄型磁体中间不动(很多学生);4、导线敞开着,放在蹄型磁体中间晃动(部分学生);?? 这时候,我只问学生一句话:“开着的导线里会有电流吗?”只见大部分学生开始把导线闭合。但还是没有同学生产出电流来,我再说:“不急,人家法拉第用了好几年,我们才一节课,不过二班有个同学发现了”(其实没有)。就这样,学生们在好胜心的驱动下,积极的想着办法??我巡视着,开始发现有些学生把导线缠绕到蹄型磁体上。约15——20分钟以后(绝不是浪费),我走上讲台演示,我用的演示器材就是普通导线,我用夸张的慢动作缠绕10圈,快速切割,学生不约而同的:“啊,电流!”,我再用夸张的慢动作缠绕20圈,30圈,学生高呼:“大电流!”;再换正规实验器材——线圈,再做实验,然后,在线圈里接入一个灯泡,也发光。到此,学生一直感叹,后悔,我就差那么一点点!此时,我讲法拉第及科拉顿的故事。发给学生们线圈也感受感受。师生共同总结:产生电流的条件及电流方向与什么有关。

高考物理一轮复习第九章电磁感应专题十一电磁感应中的电路和图象问题教案

专题十一 电磁感应中的电路和图象问题 突破 电磁感应中的电路问题 1.对电源的理解:在电磁感应现象中,产生感应电动势的那部分导体就是电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能. 2.对电路的理解:内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成. 3.问题分类 (1)确定等效电源的正负极、感应电流的方向、电势高低、电容器极板的带电性质等问题. (2)根据闭合电路求解电路中的总电阻、路端电压、电功率等问题. (3)根据电磁感应的平均感应电动势求解电路中通过的电荷量. 考向1 电动势与路端电压的计算 [典例1] 如图所示,竖直平面内有一金属环,其半径为a ,总电阻为2r (金属环粗细均匀),磁感应强度大小为B 0的匀强磁场垂直穿过环平面,环的最高点A 处用铰链连接长度为2a 、电阻为r 的导体棒AB ,AB 由水平位置紧贴环面摆下,当摆到竖直位置时,B 点的线速度为v ,则此时A 、B 两端的电压大小为( ) A.1 3B 0av B.1 6B 0av C.2 3 B 0av D.B 0av [解题指导] 当AB 棒摆到竖直位置时,画出等效电路图,明确A 、B 两端电压是路端电压而不是电源电动势. [解析] 棒摆到竖直位置时整根棒处在匀强磁场中,切割磁感线的长度为2a ,导体 棒切割磁感线产生的感应电动势E =B 0·2a ·v ,而v =v A +v B 2,得E =B 0·2a ·0+v 2 =B 0av . 外电路的总电阻R = r ·r r +r =r 2,根据闭合电路欧姆定律I =E R +r ,得总电流I =2B 0av 3r .A 、B 两端

高中物理-法拉第电磁感应定律教案

高中物理-法拉第电磁感应定律教案 教学目标:知识与技能1、知道什么是感应电动势。2、了解什么是磁通量以及磁通量的变化量和磁通量的变化率。3、在实验基础上,了解法拉第电磁感应定律内容及数学表达式,学会用该定律分析与解决一些简单的问题。4、培养类比推理和通过观察、实验、归纳寻找物理规律的能力。 过程与方法通过推导到线切割磁感线时的感应电动势公式t n E ??Φ=,掌握运用理论知识探究问题的方法 情感态度与价值观从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想;了解法拉第探索科学的方法,学习他的执著的科学探究精神 教学重点:法拉第电磁感应定律 教学难点:磁通量的理解 教具:磁铁、螺线管、电流表、学生电源、电键、滑动变阻器、小螺线管A 、大螺线管B 教学过程: 一、感应电动势 说明:既然在闭合电路中产生了感应电流,这个电路中就一定有电动势。我们把电磁感应现象中产生的电动势叫做感应电动势。在闭合电路里,产生感应电动势的那部分导体相当十电源。在同一个电路中,感应电动势越大,感应电流越大。那么,感应电动势的大小跟什么因素有关呢?请看实验 演示实验:实验装置:图3 .1-2 和图3.1-3 实验过程:在图3.1 -2中,使导体捧以不同的速度切割磁感线,砚察电流表指针偏转的幅度。 实验结论:在导线切割磁感线的过程中,切割速度越大,感应电动势越大 实验过程:在图3.1-3 中,使磁铁以不同的速度插入线圈和从线圈中抽出,观察电流表指针偏转的幅度。 实验结论:在磁铁插入和从线圈中拔出的过程中,插入和拔出的速度越大,感应电动势越大 说明:导体捧以较大的速度切割磁感线,和磁体以较大的速度插入线圈和从线圈中抽出,都使线圈中的磁通量发生变化,且磁通量变化的速度比较大 说明:许多实验都表明,感应电动势的大小跟磁通变化的快慢有关。我们用磁通

相关文档
最新文档