常用金相组织图片总结

常用金相组织图片总结
常用金相组织图片总结

一汽车钢板弹簧金相组织分级图(×500)

图1 回火屈氏体(1级) 图 2 回火屈氏体+少量贝氏体(2级)

图3 回火屈氏体+少量铁素体(3级) 图4 回火屈氏体+少量贝氏体+少量铁素体(4级)

图5 回火屈氏体+铁素体+屈氏体(5级)

二马氏体组织

a板条状马氏体B针状马氏体c片状马氏体加残余奥氏体

三莱氏体

四粒状贝氏体

五索氏体

汽车钢板弹簧金相组织及缺陷组织——黎方英

1、原材料金相组织及缺陷组织分析

材料:60Si2Mn 钢.处理情况:热轧状原材料.

组织分析:图1 a) ,金相组织为铁素体和片层珠光体.正常原材料组织. 图1 b) ,弹簧扁钢表面的脱碳. 图1 c) ,d) ,金相组织为带状铁素体和珠光体. 严重带状组织一般热处理工艺难以消除. 图1 e) ,弹簧扁钢表面的划痕,原材料表面缺陷. 图1 f) ,弹簧扁钢表面的碎裂,原材料表面缺陷的废品.

a)500×b)100×

c)100×d)100×

e)100×f)100×

图1 原材料金相组织及缺陷组织分析

2、60Si2Mn 钢板弹簧正常淬火和回火组织分析:

处理情况:图2 a) ,860 ℃加热保温后油冷淬火. 图2b) ,860 ℃加热保温后油冷淬火,460 ℃回火.

组织分析:图2 a) ,金相组织为中等针状淬火马氏体.淬火获得马氏体,是达到强韧化的重要基础. 图2 b) ,金相组织为中等回火屈氏体.

a)500×b)500×

图2 汽车钢板弹簧正常淬火组织和回火组织分析

3、淬火加热温度低形成的缺陷组织如图3

材料:50CrVA 钢. 侵蚀剂:4 %硝酸酒精溶液.

处理情况:加热保温后油冷淬火,460 ℃回火.

组织分析:图3 a) ,金相组织为回火屈氏体,未溶解的铁素体和未溶解的碳化物. 图3 b) ,金相组织为回火屈氏体,未溶解的铁素体和片状珠光体.

a)500×b)500×

图3 淬火加热温度低形成的缺陷组织

4、淬火加热温度高形成的缺陷组织如图4.

材料:图4 a) 、图4 c) ,60Si2Mn 钢;图4 b) ,50CrVA 钢.

处理情况:图4 b) ,加热保温后油冷淬火;图4 a) 、图4c) ,加热保温后油冷淬火,460 ℃回火.

组织分析:图4 a) ,金相组织为回火屈氏体和上贝氏体,最大晶粒度超过1 级. 图4 b) ,金相组织为淬火马氏体和残余奥氏体. 图4 c) ,金相组织为回火屈氏体,表层有一层全脱碳铁素体层,并有沿晶界向内伸展的裂纹,裂纹内充满氧化物.

a)500×b)500×

c)100×

图4 淬火加热温度高形成的缺陷组织

5、淬火冷却速度不够形成的缺陷组织如图5.

材料:图5 a),60Si2Mn 钢;图5 b) ,50CrV4 钢.

处理情况:图5 a),加热保温后油冷淬火,460 ℃回火;图5 b) ,加热保温后超速油冷淬火.

组织分析:图5 a),金相组织为回火屈氏体和上贝氏体. 图5 b) ,金相组织为淬火马氏体,残余奥氏体,析出铁素体,析出屈氏体和上贝氏体.

a)500×b)500×

图5 淬火冷却速度不够形成的缺陷组织

6 .回火缺陷组织如图6.

材料:60Si2Mn钢.侵蚀剂:4%硝酸酒精溶液.

处理情况:860℃加热保温淬火,460℃回火.

组织分析:图6 a) ,金相组织为回火屈氏体,心部少量回火马氏体,心部硬度值为49 HRC。图6 b),金相组织为回火索氏体,硬度值37HRC.图6c),金相组织为带状的回火屈氏体

a)500×b)500×

c)500×

图6 回火缺陷组织

金相分析 概述

第一讲金相分析技术之概述 1.1金相分析技术 金相分析技术是指用光学金相显微镜,观察,记录,分析,金属材料的微观组织结构的技术。 铁碳合金根据含碳量的不同分为亚共析钢,共析钢,过共析钢,白口铸铁等。不同成分的钢,它们的金相组织各不相同。另外成分相同的钢,根据热处理状态不同,它的组织结构也各不相同。组织不同,材料的性能也不相同。所以,成分,热处理状态等,决定了材料的组织,材料的组织结构,又决定着材料的各种性能。可见,研究材料组织结构的重要作用。 金属材料的结构,可分为:原子结构、晶体结构、组织结构和宏观结构。 我们所研究的主要是金属材料。要对这些材料进行合理地,有效地使用,充分发挥它们的潜力,必须要了解和掌握它们的某种或某些性能。为了达到这个目的,必须对材料进行测试。实际上金相分析技术应该是材料测试的一种。往往和其它测试手段共同进行,综合分析。 1.2材料的测试技术 材料的测试,从它的根本意义来说,它是属于信息技术的具体的应用。因为它是通过采用一定的方法,将材料的某种性能有关的内涵信息,进行提取,分离,输出,转换,处理,显示,记录,分析等等。经过这样一些过程,从而得到,我们所要探求的,真实的性能特征。 然后,将这些处理后的信息反馈到生产现场或实验室,对生产或实验进行指导或进行控制。 例如:最简单的是金属的拉伸试验……….。 近年来,由于近代物理,化学,光学,声学,及微电子,材料科学,计算机,自动控制等学科的迅速发展,提供了很多敏感元件,转换元件,检测器件,显示和记录装置等器材和技术,这样不仅使以前的测试方法和仪器有了很大的改进和更新。同时也开发了一些新的设备解决了以前所不能解决的问题。 如:硬度计。便携式,现场金相分析仪,高温金相分析仪及可以看到原子的扫描遂道电子显微镜,原子力显微镜,快速金相显微镜,可以看到动态变化的显微镜等等。 现在的检测技术要求:是向着快速,简便,精确,自动化,多功能,低费用的方向发展。 例如:以前化学分析到现在的光谱分析 以前洗相照相到现在的电脑,打印机输出。 1.2.1关于材料测试的重要意义: 我们可以从实际应用中的一些例子看出 1、在设计新的设备,或新的构件时就必须选用合适的材料,这就必须提供材料 有关的性能数据,特别需要提供设备或构件实际服役的性能,来作为设计的依据。如航空母舰的钢板。飞机发动机的材料。 2、在合成和制备新材料或制定新工艺时,要对材料的性能进行比较,筛选,和 确定最佳方案。如焊接工艺评定。 3、在工业生产中,对投产的原材料的质量,必须进行检查,用来了解它是不是 符合规格,用来保证产品的质量。如压力容器的生产。 4、在生产加工过程中要对各道工序前后的材料半成品,成品的性能进行监控,

常见金相组织

定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体

钢铁中常见的金相组织

钢铁中常见的金相组织区别简析 钢铁中常见的金相组织 1.奥氏体-碳与合金元素溶解在γ-fe中的固溶体,仍保持γ-fe的面心立方晶格。晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体间的空隙处 2.铁素体-碳与合金元素溶解在a-fe中的固溶体。亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 3.渗碳体-碳与铁形成的一种化合物。在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状。过共析钢冷却时沿acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状。铁碳合金冷却到ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状。 4.珠光体-铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物。 珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。在a1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体。 5.上贝氏体-过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间。过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶。 6.下贝氏体-同上,但渗碳体在铁素体针内。过冷奥氏体在350℃~ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细。 7.粒状贝氏体-大块状或条状的铁素体内分布着众多小岛的复相组织。过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳奥氏体在随后的冷却过程中,

金属材料常见金相组织的名称和特征

金属材料常见金相组织的名称和特征 名称定义特征 奥氏体 碳与合金元素溶解在γ-Fe中 的固溶体,仍保持γ-Fe的面心立 方晶格 晶界比较直,呈规则多边形;淬火钢中残余奥氏 体分布在马氏体针间的空隙处 铁素体碳与合金元素溶解在a-Fe中的固 溶体 亚共析钢中的慢冷铁素体呈块状,晶界比较圆 滑,当碳含量接近共析成分时,铁素体沿晶粒边界析 出 渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体 铁碳合金中共析反应所形成 的铁素体与渗碳体的机械混合 物 珠光体的片间距离取决于奥氏体分解时的过冷 度。过冷度越大,所形成的珠光体片间距离越小在 A1~650℃形成的珠光体片层较厚,在金相显微镜下放 大400倍以上可分辨出平行的宽条铁素体和细条渗碳 体,称为粗珠光体、片状珠光体,简称珠光体在 650~600℃形成的珠光体用金相显微镜放大500倍,从 珠光体的渗碳体上仅看到一条黑线,只有放大1000倍 才能分辨的片层,称为索氏体在600~550℃形成的珠 光体用金相显微镜放大500倍,不能分辨珠光体片层, 仅看到黑色的球团状组织,只有用电子显微镜放大 10000倍才能分辨的片层称为屈氏体 上贝氏体 过饱和针状铁素体和渗碳体 的混合物,渗碳体在铁素体针间 过冷奥氏体在中温(约350~550℃)的相变产物, 其典型形态是一束大致平行位向差为6~8od铁素体板 条,并在各板条间分布着沿板条长轴方向排列的碳化 物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称 轴,由于方位不同,羽毛可对称或不对称,铁素体羽 毛可呈针状、点状、块状。若是高碳高合金钢,看不 清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳 低合金钢,羽毛很清楚,针粗。转变时先在晶界处形 成上贝氏体,往晶内长大,不穿晶 下贝氏体同上,但渗碳体在铁素体针内 过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细

金相组织定义和特征

金相组织定义和特征文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

一、金相组织的定义及特征区别 (一)金相:指金属组织中化学成分、晶体结构和物理性能相同的组成,其中包括固溶体、金属化合物及纯物质。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。 (二)各种金相组织特征: 1、奥氏体碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe 的面心立方晶格晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处 2、铁素体碳与合金元素溶解在a-Fe中的固溶体亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出 3、渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 4、 珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体在650~600℃形成的珠光体

用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 5、上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶 6、下贝氏体同上,但渗碳体在铁素体针内过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细 7、粒状贝氏体大块状或条状的铁素体内分布着众多小岛的复相组织过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚形成时是由条状铁素体合并而成的块状铁素体和小岛状富碳奥氏体组成,富碳

金相分析介绍

有色合金彩色金相技术的研究与应用 朱锦艳王凤花 (太原重型机械集团公司,太原030024) 摘要:本文应用化学沉积着色法对铜、铝合金及双金属焊接接头的显微组织进行了上千次的着色试验。结果表明:彩色金相能够清晰地显示一般金相方法看不到的组织细节和特殊的相,其色彩鲜艳、分辩率高,给人们提供了很有意义的信息。同时还系统地介绍了化学沉积试剂的应用方法和试验操作技巧。 关键词:金相技术;着色;衬度;组织鉴别 O 引言 光学金相技术对揭示合金内部组织的奥秘起了十分重要的作用。随着科学技术的高速发展,普遍的金相方法限于其反着能力,已满足不了人类对金属材料微观世界的进一步探讨。由于电子金相技术的蓬勃兴起,使材料的研究进入一个新领域.作为基础的光学金相技术依然是解决生产实际问题所不可缺少的重要手段。人们为了提高光学金相的测试水平,必须从提高组织中各相间衬度入手,由此发展了一种崭新的显示方法——彩色金相。基于人眼对彩色差异的特殊敏感,利用彩色衬度来区分合金组织更为准确可靠,彩色金相已成为光学金相发展的方向。本文应用彩色金相的原理和方法对铝、铜合金等有色金属的显微组织进行了大量的试验和探讨工作,积累了较丰富的实践操作经验和技术,并研制出一册《有色合金彩色金相图谱》。 1 彩色金相原理及方法 彩色金相主要是通过物理或化学的方法,使试样表面形成一层干涉膜,利用光的薄膜干涉效应,使合金的显微组织产生鲜明的彩色衬度,以此来提高光学金相的鉴别能力。彩色金相显示合金组织的方法主要从两方面着手:一是改变样品表面状况的彩色侵蚀着色法、化学沉积着色法、热染法和真空蒸镀法等;二是不改变样品表面状况的纯光学方法,有偏光干涉法和分色法等,这些方法各有特点和局限性。本试验基于有色合金的特点及实验条件,主要选用化学沉积干涉膜着色法。 化学沉积着色的机理是,根据电化学原理,金属试样浸入到化学沉积试剂中时,必然会发生一系列的电化学过程,试样表面上的各区域按它们各自的稳定电位与试样综合稳定电位之差值,分为不同的阴极区域和阳极区域。如果选用了合适的试剂,则该试剂有能力,使不同区域上沉积不同厚度的干涉膜。不同的合金相其化学常数不同或膜的厚度不同,利用多重反射与薄膜干涉效应,使各相之间或位向与成份不同的晶体之间产生不同的干涉色,从而产生彩色图象,以达到辩认组织的目的。

金相分析软件介绍

金相分析软件介绍 检验类别模块名称功能说明 1、金属平均晶粒度【001】金属平均晶粒度测定… GB 6394-2002 自动评级【010】铸造铝铜合金晶粒度测定…GB 10852-89 【019】珠光体平均晶粒度测定…GB 6394-2002 【062】金属的平均晶粒度评级…ASTM E112 【074】黑白相面积及晶粒度评级…BW 2003-01 【149】彩色试样图像平均晶粒度测定…GB 6394-2002 辅助评级【304】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(面积法)自动评级【305】钨、钼及其合金的烧结坯条、棒材晶粒度测试方法(切割线法)自动评级【322】铜及铜合金_平均晶粒度测定方法…YS/T 347-2004 自动评级【328】彩色试样图像平均晶粒度测定方法2 2、非金属夹杂物显微评定【002】非金属夹杂物显微评定…GB 10561-89 自动评级【252】钢中非金属夹杂物含量的测定标准评级图显微检验法…GB/T 10561-2005/ISO 4967:1998 3、贵金属氧化亚铜金相检验【003】贵金属氧化亚铜金相检验…GB 3490-83 自动评级 4、脱碳层深度测定【004】脱碳层深度测定…GB 224-87 辅助评级 5、铁素体晶粒延伸度测定【005】铁素体晶粒延伸度测定…GB 4335-84 自动评级 6、工具钢大块碳化物评级【006】工具钢大块碳化物评级…GB 4462-84 自动评级 7、不锈钢相面积含量测定【007】不锈钢相面积含量测定…GB 6401-86 自动评级 8、灰铸铁金相【008】铸铁共晶团数量测定…GB 7216-87 自动评级【056】贝氏体含量测定…GB 7216-87 【058】石墨分布形状…GB 7216-87 比较评级 【059】石墨长度…GB 7216-87 辅助评级【065】珠光体片间距…GB 7216_87 【066】珠光体数量…GB 7216_87 自动评级【067】灰铸铁过冷石墨含量…SS 2002-01 【185】碳化物分布形状…GB 7216-87 比较评级 【186】碳化物数量…GB 7216-87 自动评级 【187】磷共晶类型…GB 7216-87 比较评级【188】磷共晶分布形状…GB 7216-87 【189】磷共晶数量…GB 7216-87 自动评级

常见金相组织名词解释

常见金相组织名词解释——全面的特征描述,想不明白都难。 奥氏体 定义:碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格 特征:奥氏体是一般钢在高温下的组织,其存在有一定的温度和成分范围。有些淬火钢能使部分奥氏体保留到室温,这种奥氏体称残留奥氏体。奥氏体一般由等轴状的多边形晶粒组成,晶粒内有孪晶。在加热转变刚刚结束时的奥氏体晶粒比较细小,晶粒边界呈不规则的弧形。经过一段时间加热或保温,晶粒将长大,晶粒边界可趋向平直化。铁碳相图中奥氏体是高温相,存在于临界点A1温度以上,是珠光体逆共析转变而成。当钢中加入足够多的扩大奥氏体相区的化学元素时,Ni,Mn等,则可使奥氏体稳定在室温,如奥氏体钢。 铁素体

定义:碳与合金元素溶解在a-Fe中的固溶体 特征:亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出。 渗碳体

定义:碳与铁形成的一种化合物 特征:渗碳体不易受硝酸酒精溶液的腐蚀,在显微镜下呈白亮色,但受碱性苦味酸钠的腐蚀,在显微镜下呈黑色。渗碳体的显微组织形态很多,在钢和铸铁中与其他相共存时呈片状、粒状、网状或板状。 ?在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状 ?过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状 ?铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 珠光体

定义:铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物 特征:珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小。 ?在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体。 ?在650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体。 ?在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 上贝氏体

关于金相组织的基本知识

关于金相组织的基本知识

首先金相人员进行试样组织分析时候,必须了解铁碳相图Fe-C(Fe-Fe?C)的意义和特点,以及点、线、区的之间意义;大家可以参考资料铁碳相图的原理和知识基础。 图中ABCD为液相线,AHJECF为固相线; 相图中有五个单相区,它们是:ABCD以上--液相区(用L符号表示); AHNA--固溶体区(用θ表示) NJESGN—奥氏体区(用A或表示)

GPQG—铁素体区(用F表示) DFKZ—渗碳体区(用Fe3C或Cm表示) 相图中有七个两相区,分别是:L+γ,L+δ,L+Fe3C,γ+δ,γ+α,γ+Fe3C, α+Fe3C 鉄碳相图中的特性点; A点 1538℃w(C) 0% 纯铁的熔点; B 点 1495℃w(C)0.53% 包晶转变时液态合金的成分; C点 1148℃w(C) 0.43% 共晶点; D 点 1227℃w(C)6.69% 渗碳体的熔点; E点 1148℃w(C) 2.11% 碳在γ-Fe中的最大溶解度;G点912℃w(C) 0% α-Fe<=>γ-Fe 转变温度; H点 1495℃w(C) 0.09% 碳在γ-Fe中的最大溶解度;J点 1495 w(C)包晶点; K点 727 ℃w(C) 6.69% 渗碳体的成分; M 点 700 w(C) 0%纯铁的磁性转变点; N点 1394 ℃w(C) 0% γ-Fe<=>δ-Fe的转变温度; P 点 727℃w(C) 0.0218% 碳在α-Fe中的最大溶解度; S点 727℃w(C) 0.77% 共析点; Q点 600℃w(C) 0.0057% 600℃时碳在α-Fe中的溶解度; 相图中还有两条磁性转变线:MO线(770℃)为铁素体的磁性 转变线; 230℃虚线为渗碳体的磁性转变线。 Fe-Fe3C相图上有3条水平线,即HJB-包晶转变线;ECF-共晶转变线;PSK- 共析转变线 HJB-包晶线:在1495℃恒温下,碳的质量分数为0.53%的液相与碳的质量 分数为0.09%的的δ铁素体发生包晶反应,形成碳的质量分数为0.17%的奥氏体, 其反应式为:LB+δh<=>γj 共晶转变线(ECF线):发生在1148℃的恒温中,由碳的质量分数为4.3%的 液相转变为碳的质量分数2.11%的奥氏体和渗碳体[w(C)=6.69%]所组成的混合物,称为莱氏体,用Ld表示;反应式为:Ld<=>γE+Fe3C。

常用金相组织图片总结

一汽车钢板弹簧金相组织分级图(×500) 图1 回火屈氏体 (1级) 图 2 回火屈氏体+少量贝氏体(2级) 图3 回火屈氏体+少量铁素体 (3级) 图4 回火屈氏体+少量贝氏体+少量铁素体(4级) 图5 回火屈氏体+铁素体+屈氏体(5级) 二马氏体组织 a板条状马氏体 B针状马氏体 c片状马氏体加残余奥氏体

三莱氏体 四粒状贝氏体 五索氏体

汽车钢板弹簧金相组织及缺陷组织——黎方英 1、原材料金相组织及缺陷组织分析 材料:60Si2Mn 钢.处理情况:热轧状原材料. 组织分析:图1 a) ,金相组织为铁素体和片层珠光体.正常原材料组织. 图1 b) ,弹簧扁钢表面的脱碳. 图1 c) ,d) ,金相组织为带状铁素体和珠光体. 严重带状组织一般热处理工艺难以消除. 图1 e) ,弹簧扁钢表面的划痕,原材料表面缺陷. 图1 f) ,弹簧扁钢表面的碎裂,原材料表面缺陷的废品. a)500× b)100× c)100× d)100× e)100× f)100× 图1 原材料金相组织及缺陷组织分析

2、60Si2Mn 钢板弹簧正常淬火和回火组织分析: 处理情况:图2 a) ,860 ℃加热保温后油冷淬火. 图2b) ,860 ℃加热保温后油冷淬 火,460 ℃回火. 组织分析:图2 a) ,金相组织为中等针状淬火马氏体.淬火获得马氏体,是达到强韧化的重要基础. 图2 b) ,金相组织为中等回火屈氏体. a)500× b)500× 图2 汽车钢板弹簧正常淬火组织和回火组织分析 3、淬火加热温度低形成的缺陷组织如图3 材料:50CrVA 钢. 侵蚀剂:4 %硝酸酒精溶液. 处理情况:加热保温后油冷淬火,460 ℃回火. 组织分析:图3 a) ,金相组织为回火屈氏体,未溶解的铁素体和未溶解的碳化物. 图3 b) ,金相组织为回火屈氏体,未溶解的铁素体和片状珠光体. a)500× b)500× 图3 淬火加热温度低形成的缺陷组织 4、淬火加热温度高形成的缺陷组织如图4. 材料:图4 a) 、图4 c) ,60Si2Mn 钢;图4 b) ,50CrVA 钢. 处理情况:图4 b) ,加热保温后油冷淬火;图4 a) 、图4c) ,加热保温后油冷淬火,460 ℃回火. 组织分析:图4 a) ,金相组织为回火屈氏体和上贝氏体,最大晶粒度超过1 级. 图4 b) ,金相组织为淬火马氏体和残余奥氏体. 图4 c) ,金相组织为回火屈氏体,表层有一层全脱碳铁素

实验三-偏光、暗场在金相分析中的应用

实验三偏光、暗场在金相分析中的应用(验证性) 一、实验目的及要求 1.了解偏振光和暗场的基本原理。 2.学会偏振光和暗场的操作方法和分析方法。 3.了解偏振光和暗场在钢中非金属夹杂物分析及多相合金的组织鉴别方面的应用。 二、实验原理 暗场和偏振光是金相分析方面应掌握的一种基本的分析手段,它们主要应用在一些组织、晶粒的鉴别,晶粒取向,形变织构的研究,特别是在非金属夹杂物的研究分析方面使用较广。 1、暗场 1)暗场与明场的区别 明场:入射光束通过物镜垂直照射到试样表面,反射光进入物镜成像。 暗场:入射光束绕过物镜,以极大的角度斜射到试样表面,散射光(漫射光)进入物镜成像。这样的光束是靠暗场折光反射镜和环形反射镜获得。 2)暗场的操作 使用暗场照明时的步骤: (a)孔径光栏、视场光栏都要开大; (b)将暗场遮光反射镜插入光路。入射光中插入暗场遮光反射镜后,使入射光变成环形光环。 (c)将暗场聚光镜套在物镜外面。入射光环不通过物镜,而经暗场聚光镜反射之后,以极大的倾斜角照射到试样表面,实现倾斜光照明。 (d)要将光路中明场用的平面半反射镜拉出来,它已不起作用。这样,使入射光不能

进入物镜,提高了成像质量。暗场环形反射镜已固定在光路里,将暗场遮光反射镜造成的环形光束反射到置于外面的“暗场聚光镜”表面上,然后以极大的倾斜角反射到试样表面上。 倾斜光照射到试样表面平坦部位反射光会以相同的角度反射回去,这部分反射光不能到达物镜,视场内是暗黑的。而使光线产生漫反射的凹凸处、透明夹杂物处等,因漫反射使部分光线可到达物镜,在视场内观察到是明亮的,因此形成在暗黑的基体上有部分明亮的映像。因此称这种照明方式为暗场照明。 3)暗场照明的特点及应用 (1)暗场照明提高了显微镜的实际分辨能力和衬度 暗场采用倾斜光照明,充分利用了物镜的孔径角,而且暗色基体衬度好,实际的分辨能力提高了。 例如取一含有珠光体的试样,在明场观察时,有许多珠光体领域由于细密使物镜分辨不清的片层。而转换成暗场照明,同一部位的片层状清晰可见,这说明暗场下,物镜的实际分辨能力提高了。 另外,钢中有许多超显微的粒子,明场时无法辨认,有的可见隐约小点。但若用暗场照明,由于消除了跌加在这些微粒散射光成像的亮背景,从而加强了这些粒子衍射象的衬度可看到在暗黑的基体上分布着很多小亮点,有的还呈现出各种色彩,使小质点清晰可辨。就像晚上可看到星星一样,我们虽不能分辨这些粒子的细节,却可察觉到这些微粒子的存在。 (2)鉴别钢中的夹杂物和固有色彩 明场观察时,金属基体反射光很强,夹杂物处的反射光或漫射光或汇合,其固有色彩被掩盖。暗场照明,透明、半透明夹杂物由于内反射的结果,在暗场下是明亮的,同时还可以观察到它的固有色彩。一般情况下,暗场下越明亮,其透明度越好。例Al2O3等氧化物。明场下为暗黑色。暗场为白亮色,说明其透明度很好,色彩也呈现出来了。不透明的夹杂物,

金相组织及特点

金相组织就是指材料的显微组织 有关金相组织与特性: 铁索体(F) 1.组织:碳在a 铁中的固溶体 2.特性:呈体心立方晶格。 溶碳能力最小,最大为0.02%;硬度和强度很低,HB=80~120、sb=250N/mm2;而塑性和韧性很好,d=50%、?=70~80%。因此,含铁素体多的钢材(软钢)中用来做可压、挤、冲板与耐冲击震动的机件。这类钢有超低碳钢,如:0Cr13、1Cr13、硅钢片等。 奥氏体 1.组织:碳在? 铁中的固溶体 2.特性:呈面心立方晶格。 最高溶碳量为 2.06%,在一般情况下,具有高的塑性,但强度和硬度低 (HB=170~220),奥氏体组织除了在高温转变时产生以外,在常温时亦存在于不锈钢、高铬钢和高锰钢中,如奥氏体不锈钢等 渗碳体(C) 1.组织:铁和碳的化合物(Fe3C) 2.特性:呈复杂的八面体晶格。 含碳量为 6.67%、硬度很高、HRC70~75、耐磨,但脆性很大。因此,渗碳体不能单独应用,而总是与铁素体混合在一起。 碳在铁中溶解度很小,所以在常温下,钢铁组织内大部分的碳都是以渗碳体或其他碳化物形式出现。 珠光体(P) 1.组织:铁素体片和渗碳体片交替排列的层状显微组织,是铁素体与渗碳体机械混合物(共析体)。 2.特性:是过冷奥氏体进行共析反应的直接产物。 其片层组织的粗细随奥氏体过冷程度不同,过冷程度越大,片层组织越细性质也不同。 奥氏体在约 600℃分解成的组织称为细珠光体(有的叫一次索氏体),在 500~600℃分解转变成用光学显微镜不能分辨其 片层状的组织称为极细珠光体(有的一次屈氏体),它们的硬度较铁素体和奥氏体高,而较渗碳体低,其塑性较铁素体和 奥氏体低而较渗碳体高。正火后的珠光体比退火后的珠光体组织细密,弥散度大,故其力学性能较好,但其片状渗碳体在 钢材承受负荷时会引起应力集中,故不如索氏体。 莱氏体(L) 1.组织:奥氏体与渗碳体的共晶混合物 2.特性:铁合金溶液含碳量在2.06%以上时,缓慢冷到1130℃便凝固出莱氏体。当温度到达共析温度莱氏体中的奥氏转变为珠光体。因此,在723℃以下莱氏体是珠光体与渗碳体机械混合物(共晶混合)。

常用金相组织图片总结

汽车钢板弹簧金相组织分级图 (X 500) 图5回火屈氏体+铁素体 + 屈氏体(5级) 二马氏体组织 图4回火屈氏体+少量贝氏体+少量铁素体(4级)图1 回火屈氏体(1级) 图3 回火屈氏体+少量铁素体(3级) 图2 回火屈氏体+少量贝氏体(2级)

三莱氏体 四粒状贝氏体 五索氏体

汽车钢板弹簧金相组织及缺陷组织一一黎方英 1原材料金相组织及缺陷组织分析材料:60Si2Mn钢.处理情况:热轧状原材料? 组织分析:图1 a),金相组织为铁素体和片层珠光体?正常原材料组织?图1 b),弹簧扁钢表 面的脱碳?图1 c) ,d),金相组织为带状铁素体和珠光体?严重带状组织一般热处理工艺难 以消除?图1 e),弹簧扁钢表面的划痕,原材料表面缺陷?图1 f),弹簧扁钢表面的碎裂,原材料表面缺陷的废品? a)500 x b)100 x c)100 x d)100 x e)100 x f)100 x 图1 原材料金相组织及缺陷组织分析

2、60Si2Mn钢板弹簧正常淬火和回火组织分析: 处理情况:图2 a) ,860 C加热保温后油冷淬火.图2b) ,860 C加热保温后油冷淬 火,460 C回火. 组织分析:图2 a),金相组织为中等针状淬火马氏体?淬火获得马氏体,是达到强韧化的重要基础?图2 b),金相组织为中等回火屈氏体? a) 500 x b)500 x 图2 汽车钢板弹簧正常淬火组织和回火组织分析 3、淬火加热温度低形成的缺陷组织如图3 材料:50CrVA钢?侵蚀剂:4 %硝酸酒精溶液. 处理情况:加热保温后油冷淬火,460 C回火? 组织分析:图3 a),金相组织为回火屈氏体,未溶解的铁素体和未溶解的碳化物?图3 b),金相组织为回火屈氏体,未溶解的铁素体和片状珠光体? 4、淬火加热温度高形成的缺陷组织如图 4. 材料:图 4 a)、图4 c) ,60Si2Mn 钢;图 4 b) ,50CrVA 钢? 处理情况:图4 b),加热保温后油冷淬火;图4 a)、图4c),加热保温后油冷淬火,460 C回火. 组织分析:图4 a),金相组织为回火屈氏体和上贝氏体,最大晶粒度超过1级?图4 b),金相组织为淬火马氏体和残余奥氏体?图4 c),金相组织为回火屈氏体,表层有一层全脱碳铁素 a)500 x b)500 x 图3 淬火加热温度低形成的缺陷组织

金相组织定义和特征

一、金相组织的定义及特征区别 (一)金相:指金属组织中化学成分、晶体结构和物理性能相同的组成,其中包括固溶体、金属化合物及纯物质。金相组织是反映金属金相的具体形态,如马氏体,奥氏体,铁素体,珠光体等等。(二)各种金相组织特征: 1、奥氏体碳与合金元素溶解在γ-Fe中的固溶体,仍保持γ-Fe的面心立方晶格晶界比较直,呈规则多边形;淬火钢中残余奥氏体分布在马氏体针间的空隙处 2、铁素体碳与合金元素溶解在a-Fe中的固溶体亚共析钢中的慢冷铁素体呈块状,晶界比较圆滑,当碳含量接近共析成分时,铁素体沿晶粒边界析出 3、渗碳体碳与铁形成的一种化合物在液态铁碳合金中,首先单独结晶的渗碳体(一次渗碳体)为块状,角不尖锐,共晶渗碳体呈骨骼状过共析钢冷却时沿Acm线析出的碳化物(二次渗碳体)呈网结状,共析渗碳体呈片状铁碳合金冷却到Ar1以下时,由铁素体中析出渗碳体(三次渗碳体),在二次渗碳体上或晶界处呈不连续薄片状 4、 珠光体铁碳合金中共析反应所形成的铁素体与渗碳体的机械混合物珠光体的片间距离取决于奥氏体分解时的过冷度。过冷度越大,所形成的珠光体片间距离越小在A1~650℃形成的珠光体片层较厚,在金相显微镜下放大400倍以上可分辨出平行的宽条铁素体和细条渗碳体,称为粗珠光体、片状珠光体,简称珠光体在

650~600℃形成的珠光体用金相显微镜放大500倍,从珠光体的渗碳体上仅看到一条黑线,只有放大1000倍才能分辨的片层,称为索氏体在600~550℃形成的珠光体用金相显微镜放大500倍,不能分辨珠光体片层,仅看到黑色的球团状组织,只有用电子显微镜放大10000倍才能分辨的片层称为屈氏体 5、上贝氏体过饱和针状铁素体和渗碳体的混合物,渗碳体在铁素体针间过冷奥氏体在中温(约350~550℃)的相变产物,其典型形态是一束大致平行位向差为6~8od铁素体板条,并在各板条间分布着沿板条长轴方向排列的碳化物短棒或小片;典型上贝氏体呈羽毛状,晶界为对称轴,由于方位不同,羽毛可对称或不对称,铁素体羽毛可呈针状、点状、块状。若是高碳高合金钢,看不清针状羽毛;中碳中合金钢,针状羽毛较清楚;低碳低合金钢,羽毛很清楚,针粗。转变时先在晶界处形成上贝氏体,往晶内长大,不穿晶 6、下贝氏体同上,但渗碳体在铁素体针内过冷奥氏体在350℃~Ms的转变产物。其典型形态是双凸透镜状含过饱和碳的铁素体,并在其内分布着单方向排列的碳化物小薄片;在晶内呈针状,针叶不交叉,但可交接。与回火马氏体不同,马氏体有层次之分,下贝氏体则颜色一致,下贝氏体的碳化物质点比回火马氏体粗,易受侵蚀变黑,回火马氏体颜色较浅,不易受侵蚀。高碳高合金钢的碳化物分散度比低碳低合金钢高,针叶比低碳低合金钢细 7、粒状贝氏体大块状或条状的铁素体内分布着众多小岛的复相组织过冷奥氏体在贝氏体转变温度区的最上部的转变产物。刚

常见金相组织要点

1 工业纯铁退火铁素体白色等轴多边形晶粒为铁素体,深色线为晶界。 2 20钢退火低碳钢平衡组织白色晶粒为铁素体,深色块状为珠光体,高倍可 见珠光体中的层状结构。 3 45钢退火中碳钢平衡组织同上,但珠光体增多。 4 65钢退火高碳钢平衡组织占大部分的深色组织为珠光体,白色为铁素体。 5 T8钢退火共析钢平衡组织组织全部为层状珠光体,它是铁素体和渗碳体的 共析组织。 6 T12钢退火过共析钢平衡组织基体为层状珠光体,晶界上的白色为二次渗碳 体。 7 亚共晶白口铁铸态变态莱氏体+珠光体基体为黑白相间分布的变态莱氏 体,黑色树枝状为初晶奥氏体转变成的珠光体。 8 共晶白口铁铸态变态莱氏体白色为渗碳体(包括共晶渗碳体和二次渗碳 体),黑色圆粒及条状为珠光体。 9 过共晶白口铁铸态变态莱氏体+渗碳体基体为黑白相间分布的变态莱氏 体,白色板条状为一渗碳体 10 T8钢正火索氏体索氏体是细珠光体,片层间距小 11 T8钢快冷正火屈氏体屈氏体为极细珠光体,光学显微镜下难以分辨其层状 结构,灰白色块状、针状为淬火马氏体。 12 65Mn 等温淬火上贝氏体羽毛球为上贝氏体,基体为索氏体或淬火马氏体 和残余奥氏体。 13 65Mn 等温淬火下贝氏体黑色针状为下贝氏体,白色基体为淬火马氏体和 残余奥氏体。 14 20钢淬火低碳马氏体成束的板条状为低碳马氏体 15 T12 淬火高碳马氏体深色针片状组织为马氏体,白色为残余奥氏体 16 45钢淬火中碳马氏体黑色针叶状互成120度夹角的针状马氏体,其余为板 条状马氏体 17 T10钢球化退火球化体基体为铁素体,白色颗粒状为渗碳体。 18 T12 正火正火组织白色呈针状、细网络状分布的为渗碳体,其余为片层状 珠光体。 19 15钢渗碳后退火渗碳组织表层为过共析组织(网状渗碳体+珠光体),由表 向内含碳量逐渐减少,铁素体增多。 20 45钢渗硼渗硼组织表层为硼化物层(呈锯齿状)和过渡层,心部为45钢基 体组织。 21 40Cr 软氮化软氮化组织表层为白亮色的氮化合物和含氮的扩散层,心部为 40Cr基体组织 22 高速钢铸态共晶莱氏体+屈氏体+马氏体骨骼状组织为共晶莱氏体,基体

金相组织分析

实验三碳钢的非平衡组织及常用金属材料显微组织观察 实验目的概述实验内容实验方法实验报告思考题 一、实验目的 1. 观察碳钢经不同热处理后的显微组织。 2. 熟悉碳钢几种典型热处理组织——M、T、S、M回火、T回火、S回火等组织的形态及特征。 3. 熟悉铸铁和几种常用合金钢、有色金属的显微组织。 4. 了解上述材料的组织特征、性能特点及其主要应用。 TOP 二、概述 1. 碳钢热处理后的显微组织 碳钢经退火、正火可得到平衡或接近平衡组织,经淬火得到的是不平衡组织。因此,研究热处理后的组织时,不仅要参考铁碳相图,而且更主要的是参考钢的等温转变曲线(C曲线)。 为了简便起见,用C曲线来分析共析钢过冷奥氏体在不同温度等温转变的组织及性能(见表3-1)。 在缓慢冷时(相当于炉冷,见图2-3中的V 1)应得到100%的珠光体;当冷却速度增大到V 2 。时(相当于空冷), 得到的是较细的珠光体,即索氏体或屈氏体;当冷却速度增大到V3时(相当于油冷),得到的为屈氏体和马 氏体;当冷却速度增大至V 4、V 5 ,(相当于水冷),很大的过冷度使奥氏体骤冷到马氏体转变开始点(Ms)后, 瞬时转变成马氏体。其中与C曲线鼻尖相切的冷却速度(V 4 )称为淬火的临界冷却速度。

亚共析钢的C 曲线与共析钢相比,只是在其上部多了一条铁素体先析出线,当奥氏体缓慢冷却时(相当于炉冷,如图2-3中V 1:),转变产物接近平衡组织,即珠光体和铁素体。随着冷却速度的增大,即V 3>V 2>V ,时,奥氏体的过冷度逐渐增大,析出的铁素体越来越少,而珠光体的量逐渐增加,组织变得更细,此时析出的少量铁素体多分布在晶粒的边界上。因此,V 1的组织为铁素体+珠光体;V 2的组织为铁素体+索氏体; V 3,的组织为铁素体+屈氏体。当冷却速度为V 4,时,析出很少量的网状铁素体和屈氏体(有时可见到少量贝氏体),奥氏体则主要转变为马氏体和屈氏体(如图3-3);当冷却速度V 5,超过临界冷却速度时,钢全部 转变为马氏体组织(如图3-6,3-7)。 过共析钢的转变与亚共析钢相似,不同之处是后者先析出的是铁素体,而前者先析出的是渗碳体。 ① 珠光体(P ) 珠光体的组织形态主要有两种:片状珠光体和颗粒状珠光体。片状珠光体由一片片相互交错排列的铁素体和渗碳体所组成形成珠光体的先行条件是事先形成均匀的奥氏体,而后缓慢冷却在A1以下附近温度形成。片状珠光体似手指纹的层状结构,它是一层铁素体和一层渗碳体的机械混合物(见图3-1)。颗粒状珠光体是在铁素体的基体上分布着细小颗粒状的渗碳体的球化组织(见图3-2)。 图3-1片状珠光体500×4%硝酸酒精 图3-2 颗粒状珠光体500×4%硝酸酒精 ② 索氏体(s) 是铁素体与渗碳体的机械混合物。其片层比珠光体更细密,在高倍(700倍以上)显微放大时才能分辨(见图3-3)。 ③ 屈氏体(T) 也是铁素体与渗碳体的机械混合物,片层比索氏体还细密,在一般光学显微镜下也无法分辨,只能看到如墨菊状的黑色形态。当其少量析出时,沿晶界分布,呈黑色网状,包围着马氏体;当析出量较多时,呈大块黑色团状,只有在电子显微镜下才能分辨其中的片层(见图3-4)。 图3-3 索氏体500×4%硝酸酒精 图3-4 屈氏体+马氏体500×4%硝酸酒精

断口金相分析

断口金相分析 一、实验目的 1、掌握断口宏观分析的方法,了解断口宏观分析的意义及典型宏观断口的形貌特征。 2、了解扫描电镜在断口分析中的应用,识别几种常见断口的微观形貌。 二、实验设备及试样 1、实验设备:低倍体式显微镜、扫描电子显微镜。 2、试样:铸铁及低碳钢拉伸断口、氢脆断口、疲劳断口、系列冲击断口,过热过烧断口等等。 四、实验内容 钢材或金属构件断裂后,破坏部分的外观形貌通称断口。断裂是金属材料在不同情况下当局部破断发展到临界裂纹尺寸,剩余截面不能承受外界载荷时发生的完全破断现象。由于金属材料中的裂纹扩展方向总是遵循最小阻力路线,因此断口一般也是材料中性能最弱或零件中应力最大的部位。断口型貌十分真实地记录了裂纹的起因、扩展和断裂的过程,因此它不仅是研究断裂过程微观机制的基础,同时也是分析断裂原因的可靠依据。断口分析中分宏观断口分析与微观断口分析两类,它们各有特点,相互补充,是整个断口分析中互相关联的两个阶段。(一)宏观断口分观 宏观断口分析:用肉眼、放大镜、低倍实体显微镜来观察断口形貌特征,断裂源的位置、裂纹扩展方向以及各种因素对断口形貌特征的影响称断口宏观分析。从断裂机理可知,任何断裂过程总是包括裂纹形成,缓慢扩展、快速扩展至瞬时断裂几个阶段。通过宏观断口分析人们可以看到,由于材质不同,受载情况不同,上述各断裂阶段在断口上留下的痕迹也不相同,因此我们掌握了常见宏观录了裂纹的起因、扩展和断裂的过程,因此它不仅是研究断裂过程微观机制的基断口特征以后,就可在事故分析中根据宏观断口特征来推测断裂过程和断裂原 因,本实验主要观察下列几种断口: a)拉伸试样断口:材料为:低碳钢、铸铁。 断口特征:低碳钢拉伸断口外形呈杯锥状,整个断口可分三个区,中心部位为灰色纤维区,纤维区四周为辐射状裂纹扩展区,边缘是剪切唇区,剪切唇与拉伸应力轴交角为 45°。铸铁拉伸试样断口为结晶状断口,呈光亮的金属光泽,断口平齐。 b)疲劳断口 断口特征:轴类零件多在交变应力下工作,发生疲劳断裂后宏观断口上常可看到光滑区和粗糙区两部分,前者为疲劳裂纹形成和扩展区,有时可见贝纹线,蛤壳状或海滩波纹状花样,这种特征迹线是机器开动和停止时,或应力幅发生突变时疲劳裂纹扩展过程中留下的痕迹,是疲劳宏观断口的重要特征。断口中粗糙区为疲劳裂纹达到临界尺寸后的失稳破断区,它的特征与静载拉伸断口中的放射区及剪切唇相同,对于脆性材料此区为结晶状的脆性断口。 c)氢脆断口 试样:含镍、铬等元素的铸钢断口 断口特征:由于材料中含有过量的氢,沿某些薄弱部位聚集,造成很大压应力从而形成裂纹,断口往往是灰白色基体上显现出白色的亮区,或者呈现以材料内部缺陷为核心的银白色斑点,称为鱼眼型白点。 d)冲击断口 试样:作系列冲击试验后的断口(注意保存于干燥器中) 断口特征:冲击断口上一般也可以观察到三个区,缺口附近为裂纹源,然后是纤维区、放射区、二次纤维区及剪切唇,剪切唇沿缺口的其它三侧分布。温度降低时冲击试样断口上各区的比例

相关文档
最新文档