分式及分式方程解法讲义.

分式及分式方程解法讲义.
分式及分式方程解法讲义.

分式及分式方程

一、知识讲解 1.分式

用A ,B 表示两个整式,A ÷B 可以表示成A B 的形式,若B 中含有字母,式子A

B

就叫做分式.

2,当x____时,分式无意义;当x_____时,分式的值为0. 3.分式的基本性质

A B =,A M A A M

B M B B M

?÷=

?÷(其中M 是不等于零的整式) 4.分式的符号法则

a b =a a a b b b

--=-=---. 5.分式的运算

(1)加减法:

,a b a b a c ad bc

c c c b

d bd ±±±=±=

. (2)乘除法:a b ·,c ac a c a d ad

d bd b d b c bc

=÷==

g (3)乘方(a b

)n =n

n a b (n 为正整数)

6.约分

根据分式的基本性质,把分式的分子和分母中公因式约分,叫做约分. 7.通分

根据分式的基本性质,?把异分母的分式化成和原来的分式分别相等的同分母的分式,叫做通分.

易混,易错点分析:

1,在分式通分时最简公分母的确定方法(1)系数取各个分母系数的最小公倍数作为最简公分母的系数.

2,取各个公因式的最高次幂作为最简公分母的因式.(3)如果分母是多项式,则应先把每个分母分解因式,然后判断最简公分母.2,在分式约分时分子分母公因式的判断方法(1)系数取分子,分母系数的最大公约数作为公因式的系数.(2)取各个公因式的最低次幂作为公因式的因式.(3)如果分子,分母是多项式,则应先把分子,分母分解因式,然后判断公因式.

3,分式计算的最后结果必须是最简形式.

重点,难点:1,繁杂形式的分式通分及整式与分式结合形式的通分.2,约分化简. 二、例题解析 例1 填空题:

(1)若分式224

2

x x x ---的值为零,则x 的值为________;

(2)若a ,b 都是正数,且

1a -1b =222,ab a b a b

+-则,则=______. 【解答】解题要点:分式的分子为零,且分母不为0.(1)由x 2

=4,得x=±2,把x=2代入分母,得x 2

-x -2=4-2-2=0,

把x=-2?代入分母,得x 2

-x -2=4+2-2=4≠0,故答案为-2. (2)由整体代换法:把

1a -1b =22b a a b ab a b

-=++化为,b 2-a 2=2ab , 即a 2-b 2

=-2ab ,代入22

22

2ab

ab ab

a b

a b ab =

---中得=

12

,故答案为1

2.

例2 选择题:

(1)已知两个分式:A=

2

411

,422B x x x

=+-+-,其中x ≠±2, 那么A 与B 的关系是( )

A .相等

B .互为倒数

C .互为相反数

D .A 大于B (2)已知23,2

3

4

3a b c a b c a b c

+-=

=

-+则

的值为( )

A .-

57 B .57 C .97 D .-9

7

【解答】(1)B=22

112(2)4

2244

x x x x x x --+-==-+---, ∴A+B=0,A ,B 互为相反数,选C . (2)设234

a b c

===k ,则a=2k ,b=3k ,c=4k , 代入

232399,3377

a b c a b c k a b c

a b c

k +-+-==-+-+中可得

,选C .

例3先化简再求值:

222141

2211

a a a a a a --÷+-+-g ,其中a 满足a 2-a=0. 【解答】原式=

2

1(2)(2)(1)(1)2(1)1

a a a a a a a -+--++-g g =(a -2)(a+1)=a 2

-a -2

由a 2

-a=0得原式=-2

(2011四川南充市,15,6分)先化简,再求值:2

1x x -(x

x 1

--2),其中x =2. 【答案】解:方法一:21(2)1x x x x ---=2212

11

x x x

x x x -?-?--=12(1)(1)(1)(1)x x x x x x x x -?-+-+- =121(1)(1)x x x x -++-=12(1)(1)(1)(1)x x x x x x --+-+-=12(1)(1)x x x x --+-=121(1)(1)(1)(1)x x x

x x x x ----=

+-+- =

(1)(1)(1)x x x -++-=1

1

x --

当x =2时,1

1

x --=121--=-1 方法二:21(2)1x x x x ---=212()1x x x x x x ---=2

121

x x x x x --?-=1(1)(1)x x x x x --?+- =

(1)(1)(1)x x x x x -+?

+-=1

1

x -- 当x =2时,1

1

x -

-=121--=-1. 分式方程

一、知识点.

1.分式方程的概念

分母中含有未知数的有理方程叫做分式方程. 2.解分式方程的基本思想方法 分式方程???→去分母

换元

整式方程. 3.解分式方程时可能产生增根,因此,求得的结果必须检验 4.列分式方程解应用题的步骤和注意事项 列分式方程解应用题的一般步骤为:

①设未知数:若把题目中要求的未知数直接用字母表示出来,则称为直接设未知数,否则称间接设未知数;

②列代数式:用含未知数的代数式把题目中有关的量表示出来,必要时作出示意图或列成表格,帮助理顺各个量之间的关系;

③列出方程:根据题目中明显的或者隐含的相等关系列出方程; ④解方程并检验; ⑤写出答案.

注意:由于列方程解应用题是对实际问题的解答,所以检验时除从数学方面进行检验外,

还应考虑题目中的实际情况,凡不符合条件的一律舍去. 二、例题解析 例1 解方程:

2x x ++22x x +-=284

x -. 【分析】由分式方程的概念可知,此方程是分式方程,因此根据其特点应选择其方法是──去分母法,并且在解此方程时必须验根. 【解答】去分母,得x (x -2)+(x+2)=8. x 2

-2x+x 2

+4x+4=8 整理,得x 2

+x -2=0. 解得x 1=-2,x 2=1.

经检验,x 1=1为原方程的根,x 2=-2是增根. ∴原方程的根是x=1.

【点评】去分母法解分式方程的具体做法是:把方程的分母分解因式后,找出分母的最简公分母;然后将方程两边同乘以最简公分母,将分式方程化成整式方程.注意去分母时,不要漏乘;最后还要注意解分式方程必须验根,并掌握验根的方法. 例2 已知关于x 的方程2x 2

-kx+1=0的一个解与方程21

1x x

+-=4的解相同. (1)求k 的值;

(2)求方程2x 2

-kx+1=0的另一个解. 【分析】解分式方程必验根. 【解答】(1)∵

21

1x x

+-=4, ∴2x+1=4-4x ,

∴x=

12

. 经检验x=12是原方程的解.把x=12

代入方程2x 2

-kx+1=0,解得k=3.

(2)解2x 2

-3x+1=0,得x 1=12

,x 2=1.

∴方程2x 2

-kx+1=0的另一个解为x=1.

【点评】分式方程与一元二次方程“珠联壁合”,旨在通过分式方程的解来确定一元二次方程的待定系数,起到通过一题考查多个知识点的目的.

课后作业

一 选择(36分)

1 下列运算正确的是( ) A -40

=1 B (-3)-1

=

3

1 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -1

2 分式

2

8,9,12z

y

x xy z x x z y -+-的最简公分母是( ) A 72xyz 2

B 108xyz

C 72xyz

D 96xyz 2

3 用科学计数法表示的树-3.6×10-4

写成小数是( )

A 0.00036

B -0.0036

C -0.00036

D -36000 4 如果把分式

y

x x

232-中的x,y 都扩大3倍,那么分式的值( )

A 扩大3倍

B 不变

C 缩小3倍

D 扩大2倍 5 若分式

6

522+--x x x 的值为0,则x 的值为( )

A 2

B -2

C 2或-2

D 2或3 6 计算??

?

??-+÷??? ??-+

1111112

x x 的结果是( ) A 1 B x+1 C

x x 1+ D 1

1

-x 7 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①

3172=-x x ②72-x=3x ③x+3x=72 ④372=-x

x

上述所列方程,正确的有( )个A 1 B 2 C 3 D 4

8 在m

a y x xy x x 1

,3,3,21,

21,12+++π中,分式的个数是( ) A 2 B 3 C 4 D 5 9 若分式方程

x

a x

a x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 10 若

3,111--+=-b

a a

b b a b a 则的值是( ) A -2 B 2 C 3 D -3

11 把分式方程

12121=----x

x

x ,的两边同时乘以x-2,约去分母,得( ) A 1-(1-x)=1 B 1+(1-x)=1 c 1-(1-x)=x-2 D 1+(1-x)=x-2 12 已知

k b

a c

c a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限 二 填空(21分)

1 写出一个分母至少含有两项且能够约分的分式

2 ()a b

ab ab a 233222

2=++ 3 7m

=3,7n

=5,则7

2m-n

=

4 一组按规律排列的式子:()0,,,,4

11

38252≠--

ab a b a b a b a b K ,其中第7个式子是 第n 个式子是

5 ()231200841

-+??

?

??--+-=

6 方程

04142=----x

x x 的解是 7 若2

22

2,2b

a b ab a b a ++-=则= 三 化简(12分)

1 ()d cd b a c

ab 23

4322222-?-÷

2 1

1

1122----÷-a a a a a a

3 ??

?

??---÷--225262x x x x

四 解下列各题(8分)

1 已知b

ab a b ab a b a ---+=-2232,311求

的值 2 若0

,61-=+求 的值

五 (5)先化简代数式()()n m n m mn

n m n m n m n m -+÷???

? ??+---+222222,然后在取一组m,n 的值代

入求值

六 解方程(12分) 1 12332-=-x x 2 1

4

12112

-=-++x x x

七 (7)2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款 4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?

参考答案

一 CACBB CCBCA DB

二 1 如1

12-+x x ,2 3b , 3 59 , 4 -()n

n n a b

a b 1

37201,--, 5 2, 6 3,7 53 三 1

ac 1 , 2 1-a a , 3 3

2

+-x 四 1 提示:将所求式子的分子、分母同时除以ab 。值为53

2

241,01,10,241,324112

2-=-∴<-∴<<±=-=-??? ?

?

+=??? ??-x x x x x x x x x x x Θ

五 化简得m+n ,当m=2,n=1时m+n=3

六 1 x=-7 ,2 x=1是增根,原方程无解 七 设第一天捐款x 人,由题意得方程

50

6000

4800+=

x x 解得 x=200,经检验x=200是符合题意的解,所以两天捐款人数为x+(x+50)=450 人均捐款4800÷x=24。答 (略)

八年级数学下册《分式第二讲分式方程》知识点及典型例习题.doc

【知识要点】 1. 分式方程的概念以及解法 ; 2. 分式方程产生增根的原因 3. 分式方程的应用题 【主要方法】 2. 1. 分式方程主要是看分母是否有外未知数 ; 解分式方程的关健是化分式方程为整式方程 ; 方程两边同乘以最简公分 母. 3. 解分式方程的应用题关健是准确地找出等量关系, 恰当地设末知数 . 2019-2020 年八年级数学下册《分式第二讲 分式方程》知识点和典型例习题 题型一:用常规方法解分式方程 【例 1】解下列分式方程 ( 1) 1 3 ;( 2) 2 1 0 ;( 3) x 1 4 1 ;( 4) 5 x x 5 x 1 x x 3 x x 1 x 2 1 x 3 4 x 提示易出错的几个问题: ①分子不添括号;②漏乘整数项;③约去相同因式至使漏根; ④忘 记验根 . 题型二:特殊方法解分式方程 【例 2】解下列方程 ( 1) x 4 x 4 4 ; ( 2) x 7 x 9 x 10 x 6 x 1x x 6 x 8 x 9 x 5 提示:( 1)换元法,设 x y ;( 2)裂项法, x 7 1 1 . x 1 x 6 x 6 【例 3】解下列方程组 1 1 1 (1) x y 2 1 1 1 (2) y z 3 1 1 1 (3) z x 4 题型三:求待定字母的值 【例 4】若关于 x 的分式方程 2 1 m 有增根,求 m 的值 . x 3 x 3

【例 5】若分式方程 2 x a 1的解是正数,求 a 的取值范围 . x 2 提示: 2 a 0 且 x 2 , a 2 且 a 4 . x 3 题型四:解含有字母系数的方程 【例 6】解关于 x 的方程 x a c b x d (c d 0) 提示:( 1) a, b, c, d 是已知数;( 2) c d 0 . 题型五:列分式方程解应用题 练习: 1.解下列方程: ( 1) x 1 2x 0 ; (2) x 2 4 ; x 1 1 2x x 3 x 3 ( 3) 2x 3 2 ; (4) 7 3 1 7 x 2 x 2 x 2 x 2 x x x 2 x 2 1 ( 5) 5x 4 2x 5 1 (6) 1 1 1 1 2x 4 3x 2 2 x 1 x 5 x 2 x 4 ( 7) x x 9 x 1 x 8 x 2 x 7 x 1 x 6 2.解关于 x 的方程: ( 1) 1 1 2 (b 2a) ;( 2) 1 a 1 b (a b) . a x b a x b x 3.如果解关于 x 的方程 k 2 x 会产生增根,求 k 的值 . x 2 x 2 4.当 k 为何值时,关于 x 的方程 x 3 (x k 2) 1 的解为非负数 . x 2 1)( x 5.已知关于 x 的分式方程 2a 1 a 无解,试求 a 的值 . x 1 (二)分式方程的特殊解法 解分式方程,主要是把分式方程转化为整式方程,通常的方法是去分母,并且要检验, 但对一些特殊的分式方程,可根据其特征,采取灵活的方法求解,现举例如下: 一、交叉相乘法 例 1.解方程: 1 x 3 x 2 二、化归法 例 2.解方程: 1 2 0 1 x 2 x 1

分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 责编:杜少波 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 【高清课堂分式方程的解法及应用知识要点】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程;

分式方程解法的标准

分式方程解法的标准 一,内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即 分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根. 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: 将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等. 为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去. 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公 分母为0. 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数 式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊

分式方程的概念-解法及应用

分式方程的解法及应用 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ● 分式方程的概念以及解法; ● 分式方程产生增根的原因; ● 分式方程的应用题。 重点难点: ● 重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量 关系. ● 难点:检验分式方程解的原因,实际问题中数量关系的分析. 学习策略: ● 经历“实际问题——分式方程——整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培 养数学的应用意识。 二、学习与应用 (一)什么叫方程?什么叫方程的解? 答:含有 的 叫做方程. 使方程两边相等的 的值,叫做方程的解. (二)分式的基本性质: 分式的分子与分母同乘(或除以)同一个 ,分式的值不变,这个性质叫做分式的基本性质.用式子表示是: M B M A B A M B M A B A ÷÷=??=,(其中M 是不等于0的整式). “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 (除数不能为0),所得的结果仍是等式。 (四)解下列方程:(1)9-3x =5x +5; (2)5 2221+-=--y y y 知识点一:分式方程的定义 里含有未知数的方程叫分式方程。 要点诠释: (1)分式方程的三个重要特征:①是 ;②含有 ;③分母里含 有 。 (2)分式方程与整式方程的区别就在于分母中是否含有 (不是一般 的字母系数),分母中含有未知数的方程是 ,不含有未知数的方程是 方程,如:关于x 的方程 x x =-21和12723+=-x x 都是 方程,而关于x 的方程x x a =-21和d c b x =+1都是 方程。 知识点二:分式方程的解法 (一)解分式方程的基本思想 把分式方程化为 方程,具体做法是“去分母”,即方程两边同乘最简公分 母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 (二)解分式方程的一般方法和步骤 (1) ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个 方程。 (3) :把整式方程的根代入最简公分母,使最简公分母不等于零的根是 原方程的根,使最简公分母等于零的根是原方程的 。 注:分式方程必须 ;增根一定适合分式方程转化后的整式方程, 知识要点——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补 充填在右栏。详细内容请参看网校资源ID :#tbjx5#233542

分式方程的解法与技巧_知识精讲

分式方程的解法与技巧 【典型例题】 1. 局部通分法: 例1. 解方程:x x x x x x x x -----=-----34456778 分析:该方程的特点是等号两边各是两个分式,相邻两个分式的分子与分子,分母与分母及每个分式的分子与分母都顺序相差1,象这类通常采取局部通分法。 解:方程两边分别通分并化简,得: 145178()()()() x x x x --=-- 去分母得:()()()()x x x x --=--4578 解之得:x =6 经检验:x =6是原分式方程的根。 点拨:此题如果用常规法,将出现四次项且比较繁,而采用局部通分法,就有明显的优越性。 但有的时候采用这种方法前需要考虑适当移项,组合后再进行局部通分。 2. 换元法: 例2. 解方程: 7643165469222x x x x x x ----+=--+ 分析:此方程中各分式的分母都是含未知数x 的二次三项式,且前两项完全相同,故可考虑用换元法求解。令或或或k x x k x x k x x =--=-+=-+222646569 k x x =-26均可。 解:设,则原方程可化为:k x x =-+265 793144k k k --=-+ 去分母化简得:20147111602k k --= ∴()()k k -+=1220930 ∴,k k ==-129320 当时,k x x =--=126702 ()()x x -+=710 解之得:,x x 1217=-=

当时,k x x =--+=-93206593202 2012019302x x -+= 解此方程此方程无解。 经检验:,是原分式方程的根。x x 1217=-= 点拨:换元法解分式方程,是针对方程实际,正确而巧妙地设元,达到降次,化简的目的,它是解分式方程的又一重要的方法,本题还有其它的设法,同学们可自己去完成。 3. 拆项裂项法: 例3. 解方程: 12442212x x x x ++-+-= 分析:这道题虽然可用通分去分母的常规解法,但若将第二项拆项、裂项,则更简捷。 解:原方程拆项,变形为: ()()()()12222222221x x x x x x ++++-+---= 裂项为: 122222221x x x x ++-++--= 化简得:321x += 解之得:x =1 经检验:x =1是原分式方程的解。 4. 凑合法: 例4. 解方程:x x x x 4143412 +-=--- 分析:观察此方程的两个分式的分母是互为相反数,考虑移项后易于运算合并,能使运算过程简化。 解:部分移项得: x x x x 4143412=--+--- ∴x x x x 4143412=------ ∴x 412= ∴x =2 经检验:x =2是原分式方程的根。

分式方程的解法及应用(提高)

分式方程的解法及应用(提高) 一、目标与策略 明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: ●了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. ●会列出分式方程解简单的应用问题. 学习策略: ●解分式方程去分母是关键; ●解分式方程的应用注意找等量关系,最后要验根. 二、学习与应用 1.一艘轮船在静水中的速度是20km/h,水流速度为v km/h,则轮船顺流航行的速度为,逆流航行的速度为 ,顺流航行100km所用的时间为,逆流航行60km所用的时间为 . 2. 解方程 21101 1 36 x x ++ -=时,去分母,去括号后为 . 3.将方程 11111 24396 x x x x +++=去分母后得到方程________. 要点一、分式方程的概念 分母中含有的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含 有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一 般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有 未知数的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 “凡事预则立,不预则废”.科学地预习才能使我们上课听讲更有目的性和针对 要点梳理——预习和课堂学习 认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听课学习.课堂笔记或者其它补充填在右栏.预习和课堂学习更多知识点解析请学习网校资源 ID:#45981#405285 知识回顾——复习 学习新知识之前,看看你的知识贮备过关了吗?

分式方程的概念及解法

分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于的方程和 都是分式方程,而关于的方程和都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。 (3)验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根。 规律方法指导 1.一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解,否则,这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 1、下列各式中,是分式方程的是() A.B.C.D. 举一反三:

解分式方程的特殊方法与技巧

分式方程意义及解法 一、内容综述: 1.解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程.即分式方程整式方程 2.解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根。所以,必须验根。 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解. 检验根的方法: (1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。 (2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去.注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0.

用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程; (ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程. 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答. 注意: (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。 (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。 (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。

分式方程的概念解法及应用

分式方程的概念,解法及应用 目标认知 学习目标: 1.使学生理解分式方程的意义,掌握可化为一元一次方程的分式方程的一般解法. 2.在学生掌握了分式方程的一般解法和分式方程验根方法的基础上,使学生进一步掌握可化为一元一 次方程的分式方程的解法,使学生熟练掌握解分式方程的技巧. 3.通过学习分式方程的解法,使学生理解解分式方程的基本思想是把分式方程转化成整式方程,把未 知问题转化成已知问题,从而渗透数学的转化思想. 4.能够利用分式方程解决实际问题,能从实际问题中抽象出数量关系,体会方程与实际问题的联系; 5.通过实际问题的解决,使分析问题和解决问题的能力得到培养和训练,进一步体验“问题情景——建立模型——求解——解释和应用”的过程; 重点: 分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象出数量关系. 难点: 检验分式方程解的原因,实际问题中数量关系的分析. 知识要点梳理

要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1.分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2.分式方程与整式方程的区别就在于分母中是否含有未知数(不是一般的字母系数),分母中含有未知数的方程是分式方程,不含有未知数的方程是整式方程,如:关于 的方程和 都是分式方程,而关于

的方程和 都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 2.解分式方程的一般方法和步骤 (1)去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个整式方程。

分式方程解题技巧(提高)

分式方程解题技巧 例一, 一般结构的分式方程 解方程:x x x x x ++-=-2227115 解:(分解因式以便确定最简公分母)原方程变形为: ) 1(7)1)(1(1)1(5++-+=-x x x x x x )1(7)1(5-+=+x x x 4=x 检验:把4=x 代入0)1)(1(≠-+x x x 所以4=x 是原方程的解。 例1:解方程:) 4)(1(52)3)(2(1)2)(1(1+++=+++++x x x x x x x 分析:一般解法,最简公分母为)4)(3)(2)(1(++++x x x x ,此题直接去分母较为复杂。经观察发现,左边分母两个因式的差等与分子,右边分母两个因式的和等与分子。故考虑将分式拆开。 解:原方程变形为: 4 11131212111+++=+-+++-+x x x x x x 4 132+=+-x x 2 7-=x 经检验27- =x 是原方程的根。 例2:解方程:

20 7245361121330163223223+++++=+++++x x x x x x x x x x 分析:经观察发现直接去分母计算量非常可观,而且分母用公式法或十字相乘法都不能分解成两个因式的积。但是,同时也发现分子的最高次项的次数都比分母的最高次项高。我们知道假分数可以转化为带分数,故考虑将假分式变为真分式。 解:原方程变形为: 20 72522134222+++++=+++++x x x x x x x x 20 725213422+++=+++x x x x x x 解得:5=x 经检验5=x 是原方程的根。 例3:解方程:02)1(2122=++-+x x x x 分析:此题借用关系式2)1(122 2-+=+x x x x 较为简单。 解:原方程变形为:0)1 (2)1 (2=+-+x x x x 设x x y 1+= 则022=-y y 0=y 或2 当0=y 时,01=+x x ,则方程无解。 当2=y 时,21=+ x x ,即0122=+-x x ,则1=x 经检验:1=x 是原方程的解。 例4:解方程:5 26423234=+-+-+x x x x 分析:根据题目特点,利用下面关系式解题较为简单, 若c c x x 11+=+(c 为常数),则X=C 或c 1。

(完整版)分式方程的解法及应用(基础)

分式方程及应用 【典型例题】 类型一、判别分式方程 1、下列方程中,是分式方程的是( ). A .3214312x x +--= B .124111x x x x x -+-=+-- C .21305x x += D .x a x a b +=,(a ,b 为非零常数) 类型二、解分式方程 2、 解分式方程(1) 10522112x x +=--;(2)225103x x x x -=+-. 举一反三: 【变式】解方程:21233x x x -=---. . 类型三、分式方程的增根 3、m 为何值时,关于x 的方程 223242 mx x x x +=--+会产生增根? 举一反三: 【变式】如果方程11322x x x -+=--有增根,那么增根是________. (二)分式方程的特殊解法 一、交叉相乘法 例1.解方程:231+= x x 二、化归法 例2.解方程: 01 2112=---x x 三、左边通分法

例3:解方程: 87178=----x x x 四、分子对等法 例4.解方程:)(11b a x b b x a a ≠+=+ 五、观察比较法 例5.解方程: 417425254=-+-x x x x 六、分离常数法 例6.解方程: 87329821+++++=+++++x x x x x x x x 七、分组通分法 例7.解方程:4 1315121+++=+++x x x x (三)分式方程求待定字母值的方法 例1.若分式方程 x m x x -=--221无解,求m 的值。 例2.若关于x 的方程 11122+=-+-x x x k x x 不会产生增根,求k 的值。 例3.若关于x 分式方程 432212-=++-x x k x 有增根,求k 的值。 例4.若关于x 的方程 1151221--=+-+-x k x x k x x 有增根1=x ,求k 的值。 . 类型四、分式方程的应用 例、甲、乙两班参加绿化校园植树活动,已知乙班每小时比甲班多种2棵树,甲 班种60棵树所用的时间与乙班种66棵树所用的时间相等.求甲、乙两 班每小时各种多少棵树? 举一反三:

分式方程的解法

分式方程的解法 多年的教学,总结了一下分式方程的解法,供大家参考,希望对大家有所帮助。 方法1:计算法 例 解方程 32 223=-++x x x 解:移项,得 ()() ()()是原方程的根时, 检验:当计算,得 4,022440 164022164-032 223=≠-+===+-=-++=--++x x x x x x x x x x x x 原理:分式的值为0,分子为0,分母不为0.方法是把所有的项集中于方程左边,右边为0 ,从而利用分式的值为0求出未知数。 方法2:分式相等法 例 解方程 32 223=-++x x x 解:原方程化为 ()()()()()()()() ()()()() 4 16 412344322322232222322222322=-=--=+--+=++--+-+=-+++-x x x x x x x x x x x x x x x x x x x 经检验,x=4是原方程的解。 原理:两分式相等,分母相等,分子也相等。 方法3:等式性质法 例 解方程 32 223=-++x x x 解:方程两边同乘()()22-+x x 得 ()()()() 4 16 412 3443223222322=-=--=+--+=++-x x x x x x x x x x 经检验,x=4是原方程的解。 原理:利用等式性质,去分母化为整式方程。方法2结合方法3,降低去分母的难度。

方法4:比例式法 例 解方程 41 5+=x x 解:两外项的乘积等于两內项的乘积 () 5 55 54154-==-+=+=x x x x x x 经检验,x=-5是原方程的解。

分式方程的解法及应用(提高)导学案+习题【含标准答案】

分式方程的解法及应用(提高) 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母 系数).分母中含有未知数的方程是分式方程,分母中不含有未知数的 方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方程 的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方程 不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解 方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程 中没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程; (5)验根,检验是否是增根; (6)写出答案.

56分式方程的解法及应用(提高)知识讲解

分式方程的解法及应用(提高) 【学习目标】 1. 了解分式方程的概念和检验根的意义,会解可化为一元一次方程的分式方程. 2. 会列出分式方程解简单的应用问题. 【要点梳理】 要点一、分式方程的概念 分母中含有未知数的方程叫分式方程. 要点诠释:(1)分式方程的重要特征:①是等式;②方程里含有分母;③分母中含有未知数. (2)分式方程和整式方程的区别就在于分母中是否有未知数(不是一般的字母系数).分母中含有未知数的方程是分式方程,分母中不含有未知数 的方程是整式方程. (3)分式方程和整式方程的联系:分式方程可以转化为整式方程. 要点二、分式方程的解法 解分式方程的基本思想:将分式方程转化为整式方程.转化方法是方程两边都乘以最简公分母,去掉分母.在去分母这一步变形时,有时可能产生使最简公分母为零的根,这种根叫做原方程的增根.因为解分式方程时可能产生增根,所以解分式方程时必须验根. 解分式方程的一般步骤: (1)方程两边都乘以最简公分母,去掉分母,化成整式方程(注意:当分母是多项式时,先分解因式,再找出最简公分母); (2)解这个整式方程,求出整式方程的解; (3)检验:将求得的解代入最简公分母,若最简公分母不等于0,则这个解是原分式方程的解,若最简公分母等于0,则这个解不是原分式方程的解,原分式方程无解. 要点三、解分式方程产生增根的原因 方程变形时,可能产生不适合原方程的根,这种根叫做原方程的增根. 产生增根的原因:去分母时,方程两边同乘的最简公分母是含有字母的式子,这个式子有可能为零,对于整式方程来说,求出的根成立,而对于原分式方程来说,分式无意义,所以这个根是原分式方程的增根. 要点诠释:(1)增根是在解分式方程的第一步“去分母”时产生的.根据方程的同解原理,方程的两边都乘以(或除以)同一个不为0的数,所得方程是原方 程的同解方程.如果方程的两边都乘以的数是0,那么所得方程与原方 程不是同解方程,这时求得的根就是原方程的增根. (2)解分式方程一定要检验根,这种检验与整式方程不同,不是检查解方程过程中是否有错误,而是检验是否出现增根,它是在解方程的过程中 没有错误的前提下进行的. 要点四、分式方程的应用 分式方程的应用主要就是列方程解应用题. 列分式方程解应用题按下列步骤进行: (1)审题了解已知数与所求各量所表示的意义,弄清它们之间的数量关系; (2)设未知数; (3)找出能够表示题中全部含义的相等关系,列出分式方程; (4)解这个分式方程; (5)验根,检验是否是增根; (6)写出答案. 【典型例题】

分式方程的概念-解法及应用

分式方程的解法及应用 一、目标与策略 爭抡明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数! 学习目标: 分式方程的概念以及解法; 分式方程产生增根的原因; 分式方程的应用题。 重点难点: 重点:分式方程转化为整式方程的方法及其中的转化思想,用分式方程解决实际问题,能从实际问题中抽象岀数量 关系. 难点:检验分式方程解的原因,实际问题中数量关系的分析. 学习策略: 经历“实际问题一一分式方程一一整式方程”的过程,发展分析问题、解决问题的能力,渗透数学的转化思想,培养数学的应用意识。 二、学习与应用 “凡事预则立,不预则废”。科学地预习才能使我们上课听讲更有目的性和针对 知识回顾一一复习 学习新知识之前,看看你的知识贮备过关了吗?*答:含有的叫做方程. 使方程两边相等的............... …的值,叫做方程的解. (二)分式的基本性质: 分式的分子与分母同乘(或除以)同一个,分式的值不变,这个性质叫做分式的基本性质?用式子表示是: A A M A A M(其中M是不等于0的整式)

(三)等式的基本性质:等式的两边都乘(或除以)同一个数或 ................... (除数不能为0),所得的结果仍是等式。 (四)解下列方程:(1)9—3x= 5x+ 5; (2)y y 12 y 2 2 5 I -- 知识要点一一预习和课堂学习■认真阅读、理解教材,尝试把下列知识要点内容补充完整,带着自己预习的疑惑认真听 课学习。请在虚线部分填写预习内容,在实线部分填写课堂学习内容。课堂笔记或者其它补w 充填在右栏。详细内容请参看网校资源ID : #tbjx5#233542 - 知识点一:分式方程的定义 .......... 里含有未知数的方程叫分式方程。 要点诠释: (1)分式方程的三个重要特征:①是_______________ ;②含有 ____________ ;③分母里含 (2 )分式方程与整式方程的区别就在于分母中是否含有__________________ (不是一般 的字母系数),分母中含有未知数的方程是__________________ ,不含有未知数的方程是 _ 方程,女口:关于X的方程1 2 x和—卫7都是_____________ 方程,而关于X的 x x 2 2x 1 方程Lx 2 x和x 1d都是_______________________ 方程。 a be 粒:|知识点二:分式方程的解法 (一)解分式方程的基本思想 把分式方程化为_________ 方程,具体做法是“去分母”,即方程两边同乘最简公分 母,将分式方程转化为整式方程,然后利用整式方程的解法求解。 (二)解分式方程的一般方法和步骤 (1)________ ,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2)解这个______ 方程。 (3) _____ :把整式方程的根代入最简公分母,使最简公分母不等于零的根是 原方程的根,使最简公分母等于零的根是原方程的 ________________ 。 注:分式方程必须_____________ ;增根一定适合分式方程转化后的整式方程,

分式方程的概念及解法

变式】方程 中,x 为未知量,a,b 为已知数,且 ,则这个方程是( ) 分式方程的概念,解法 知识要点梳理 要点一:分式方程的定义 分母里含有未知数的方程叫分式方程。 要点诠释: 1 .分式方程的三个重要特征:①是方程;②含有分母;③分母里含有未知量。 2 .分式方程与整式方程的区别就在于分母中是否含有未知数 ( 不是一般的字母系数 ) ,分母中含有未知 数的方程是分式方程,不含有未知数的方程是整式方程,如:关于 的方程 都是分式方程,而关于 的方程 和 都是整式方程。 要点二:分式方程的解法 1. 解分式方程的其本思想 把分式方程化为整式方程,具体做法是“去分母”,即方程两边同乘最简公分母,将分式方程转化 为整式方程,然后利用整式方程的解法求解。 2 .解分式方程的一般方法和步骤 (1) 去分母,即在方程的两边都乘以最简公分母,把原方程化为整式方程。 (2) 解这个整式方程。 (3) 验根:把整式方程的根代入最简公分母,使最简公分母不等于零的根是原方程的根,使最简公 分母 等于零的根是原方程的增根。 注:分式方程必须验根;增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方 程的分母为零。 3. 增根的产生的原因: 对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的 值为零的值,即分式方程本身就隐含着分母不为零的条件。当把分式方程转化为整式方程以后,这种限制 取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许 值之外的值,那么就会出现增根。 规律方法指导 1 .一般地,解分式方程时,去分母后所得整式方程有可能使原方程中分母为 0,因此应如下检验:将 整式方程的解代入最简公分母,如果最简公分母的值不为 0,则整式方程的解是原分式方程的解,否则, 这个解不是原分式方程的解. 经典例题透析: 类型一:分式方程的定义 举一反三:1、下列各式中,是分式方程的是( A . C . 和 B . D .

解分式方程的特殊方法与技巧

解分式方程的特殊方法与技巧 分式方程意义及解法 一、内容综述: 1(解分式方程的基本思想 在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程“转化”为整式方程(即分式方程整式方程 2(解分式方程的基本方法 (1)去分母法 去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程(但要注意,可能会产生增根。所以,必须验根。 产生增根的原因: 当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解( 检验根的方法: (1)将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等。 (2)为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根。必须舍去( 注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公分母为0( 用去分母法解分式方程的一般步骤: (i)去分母,将分式方程转化为整式方程;

(ii)解所得的整式方程; (iii)验根做答 (2)换元法 为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决(辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法(换元法是解分式方程的一种常用技巧,利用它可以简化求解过程( 用换元法解分式方程的一般步骤: (i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; (ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值; (iii)把辅助未知数的值代回原设中,求出原未知数的值; (iv)检验做答( 注意: (1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊方法。它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程。 (2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法。 (3)无论用什么方法解分式方程,验根都是必不可少的重要步骤。 二、例题精析: 例1(解分式方程:。 分析:解分式方程的思路是把方程去分母化为整式方程。 解:方程两边都乘以x(x+2),约去分母,得

培优专题分式方程及其应用(含答案)

12、分式方程及其应用 【知识精读】 1. 解分式方程的基本思想:把分式方程转化为整式方程。 2. 解分式方程的一般步骤: (1)在方程的两边都乘以最简公分母,约去分母,化成整式方程; (2)解这个整式方程; (3)验根:把整式方程的根代入最简公分母,看结果是否等于零,使最简公分母等于零的根是原方程的增根,必须舍去,但对于含有字母系数的分式方程,一般不要求检验。 3. 列分式方程解应用题和列整式方程解应用题步骤基本相同,但必须注意,要检验求得的解是否为原方程的根,以及是否符合题意。 下面我们来学习可化为一元一次方程的分式方程的解法及其应用。 【分类解读】 例1. 解方程:x x x --+=121 1 分析:首先要确定各分式分母的最简公分母,在方程两边乘这个公分母时不要漏乘,解完后记着要验根 解:方程两边都乘以()()x x +-11,得 x x x x x x x x x 22221112123 2 32--=+---=--∴== ()()(), 即, 经检验:是原方程的根。 例2. 解方程x x x x x x x x +++++=+++++12672356 分析:直接去分母,可能出现高次方程,给求解造成困难,观察四个分式的分母发现()()()()x x x x ++++6723与、与的值相差1,而分子也有这个特点,因此,可将分母的值相差1的两个分式结合,然后再通分,把原方程两边化为分子相等的两个分式,利用分式的等值性质求值。

解:原方程变形为: x x x x x x x x ++-++=++-++67562312 方程两边通分,得 1671236723836 9 2 ()()()() ()()()() x x x x x x x x x x ++=++++=++=-∴=-所以即 经检验:原方程的根是x =- 92。 例3. 解方程:121043323489242387161945 x x x x x x x x --+--=--+-- 分析:方程中的每个分式都相当于一个假分数,因此,可化为一个整数与一个简单的分数式之和。 解:由原方程得:3143428932874145 - -++-=--++-x x x x 即2892862810287x x x x ---=--- 于是,所以解得:经检验:是原方程的根。 189861810878986810871 1()()()() ()()()() x x x x x x x x x x --=----=--== 例4. 解方程:612444444 0222 2y y y y y y y y +++---++-=2 分析:此题若用一般解法,则计算量较大。当把分子、分母分解因式后,会发现分子与分母有相同的因式,于是可先约分。 解:原方程变形为:62222222022 2 ()()()()()()()y y y y y y y y ++-+--++-= 约分,得62222202 y y y y y y +-+-++-=()()

相关文档
最新文档