基于粒子群优化的多路径规划方法研究

基于粒子群优化的多路径规划方法研究
基于粒子群优化的多路径规划方法研究

基于多目标粒子群算法的多约束组合优化问题研究

基于多目标粒子群算法的多约束组合优化问题研究组合优化问题在金融投资、资源分配等领域有着重要的应用,其求解方法一直是人们研究的重点。实际工程应用中的组合优化问题往往具有多个约束条件且在很多情况下问题规模较大,传统的优化算法由于需要遍历整个解空间,因此无法在多项式时间内完成求解。 元启发式算法将随机搜索算法与局部搜索算法相结合,同时从目标空间中的多个位置开始搜索,且目标是尽可能获得更好的解,被认为更适合用来求解具有多个约束的组合优化问题。遗传算法、粒子群算法、蚁群算法等都是常见的元启发式算法。 其中粒子群优化算法通过种群中个体之间的相互协作使得整个种群逐渐向问题的最优解靠近并最终收敛,其由分散到集中的寻优方式以及参数设置少、收敛快等特点使得该算法在解决多约束组合优化问题方面得到了广泛的应用。在解决多约束组合优化问题的过程中,如何妥善处理约束条件也是一个需要我们重点关注的问题。 根据对已有约束处理方法优缺点的分析,本文采用约束转目标的方法将多约束优化问题转化为具有三个以上目标的多目标优化问题,并结合粒子群算法对其进行求解。为了搜索到质量更高的最优解,本文提出一种改进的多目标粒子群优化算法IMaOPSO,以违反约束度来维护外部档案,以拥挤度和种群中个体与理想点的距离作为两个指标寻找种群的全局最优。 并且加入扰动变异算子来扩大粒子的搜索区域,使参与变异的粒子个数随算法迭代次数的增加而减少,在保证算法开发能力的同时避免其陷入局部最优。此外,针对多约束组合优化问题目标空间复杂、问题规模大的情况,在IMaOPSO算法

的基础上提出了一种基于多种群协同进化的多目标粒子群算法,使用多个种群分别搜索不同的区域,并且改进了算法的速度更新机制以及在算法中设计了一个替换算子,以提高算法的收敛性。 最后,以不同规模的多背包问题为算例验证了所提算法的有效性。

基于粒子群优化算法的图像分割

安康学院 学年论文(设计) 题目_____________________________________________ 学生姓名_______________ 学号_____________________________ 所在院(系)_______________________________________ 专业班级__________________________________________________ 指导教师_____________________________________________ 年月曰

基于粒子群优化算法的图像分割 (作者:) () 指导教师: 【摘要】本文通过对粒子群优化算法的研究,采用Java编程,设计出一套用于图像分割的系统。 基于粒子群优化算法的图像分割系统,可以将一幅给定的图像进行分割,然后将分割结果保存。图像分割的目的是将感兴趣的区域从图像中分割出来,从而为计算机视觉的后续处理提供依据。图像分割的方法有多种,阈值法因其实现简单而成为一种有效的图像分割方法。而粒子群优化(PSO)算法是一类随机全局优化技术,它通过粒子间的相互作用发现复杂搜索空间中的最优区域缩短寻找阈值的时间。因此,基于粒子群优化算法的图像分割以粒子群优化算法为寻优工具,建立具有自适应和鲁棒性的分割方法。从而可以在最短的时间内,准确地确定分割阈值。 关键词:粒子群优化(PSO,图像分割,阈值法,鲁棒性 Abstract T his paper based on the particle swarm optimizati on algorithm, desig ns a set of system for image segme ntati on using Java program min g. Image segme ntati on system based on particle swarm optimizati on algorithm, the image can be a given segmentation, and then the segmentation results would be saved. Image segmentation is the purpose of the interested area from the image, thus providing the basis for the subsequent processing of computer vision. There are many methods of image segmentation, threshold method since its simple realization, becomes a kind of effective method in image segmentation. Particle swarm optimization (PSO) algorithm is a stochastic global optimization technique; it finds optimal regions of complex search spaces for threshold time shorte ned through the in teractio n betwee n particles. Therefore, particle swarm optimization algorithm of image segmentation based on particle swarm optimization algorithm based on optimizati on tools; establish segme ntati on method with adaptive and robust. Therefore, it is possible for us in the shortest possible time to accurately determ ine the segme ntati on threshold. Key word s: PSO, image segmentation, threshold method, robust. 1引言 1.1研究的背景和意义 技术的不断向前发展,人们越来越多地利用计算机来获取和处理视觉图像信息。据统计,人类

基于改进粒子群算法的优化策略

收稿日期:2009-12-13 基金项目:国家自然科学基金资助项目(60674021) 作者简介:卢 峰(1982-),男,辽宁抚顺人,东北大学博士研究生;高立群(1949-),男,辽宁沈阳人,东北大学教授,博士生导师 第32卷第9期2011年9月东北大学学报(自然科学版)Journal of Northeastern U niversity(Natural Science)Vol 32,No.9Sep.2011 基于改进粒子群算法的优化策略 卢 峰,高立群 (东北大学信息科学与工程学院,辽宁沈阳 110819) 摘 要:为提高传统粒子群算法的搜索速度和搜索精度,提出了一种改进的自适应粒子群优化算法 将正则变化函数和慢变函数引入传统位置更新和速度更新公式当中,形成两种新的更新机制:搜索算子和开发算子 在算法运行的初始阶段,种群中大部分个体将按照搜索算子进行更新,搜索算子将有助于种群遍历整个解空间;随着迭代次数的增加,按照搜索算子进行更新的个体将逐渐减少,而按照开发算子进行更新的个体将逐渐增多,开发算子将有效地克服陷入局部最优解的问题 通过典型测试函数的仿真实验,新算法在加快收敛速度同时,提高了算法的全局搜索能力 关 键 词:进化算法;粒子群算法;全局优化;慢变函数;自适应 中图分类号:T G 273 文献标志码:A 文章编号:1005 3026(2011)09 01221 04 Novel Optimization Mechanism Based on Improved Particle Swarm Optimization L U Feng ,GAO L i qun (School of Information Science &Engineering,Northeaster n U niv ersity,Shenyang 110819,China.Corresponding author :LU F eng,E mail:feng.lu.lf @g https://www.360docs.net/doc/c91693622.html,) Abstract :To accelerate searching speed and optimization accuracy of traditional PSO,an improved particle swarm optimization (PSO )algorithm w as presented.Regularly vary ing function and slow ly varying function were introduced in the position and velocity update formula.New mechanisms such as explorative operator and exploitative operator are formulated.At the beginning,most elements will be updated by explorative operator in the entire search space sufficiently.Within the iterations,more and more particles w ill be handled by ex ploitative operator,which are useful to overcome the deceptions of multiple local optima.It can be seen from the simulation results of the standard benchm ark test functions that the proposed algorithm not only accelerates the convergence process,but also improves g lobal optim ization ability. Key words:evolutionary algorithms;particle sw arm optimization;global optimization;slow ly v arying function;self adaptive 20世纪90年代初,产生了模拟自然生物群体行为的优化方法,被称为群智能优化方法 Dorigo 等人通过模拟蚂蚁的寻径行为,提出了蚁群优化算法(ant colony optimization)[1] ;Eberhart 等人基于对鸟群、鱼群的模拟,提出了粒子群优化算法(particle sw arm optim ization )[2] 作为一种群智能优化方法的代表,粒子群算法通过个体间的协作来寻找最优解,每个个体都被赋予一个随机速度并在整个解空间中搜索,通 过个体之间的合作与竞争来实现个体进化 由于粒子群优化算法运算简单,易于实现,具有良好的解决非线性、不可微和多峰值复杂优化问题的能力,已被广泛应用于科学和工程实际领域[3-5] 但是,粒子群优化算法是根据全体粒子和自身的搜索经验向着最优解的方向进化,在进化后期收敛速度将变得缓慢,同时算法在收敛到一定精度时,容易陷入停滞,无法继续进化更新,因此,存在早熟和陷入局部极值点的现象

用粒子群算法求解多目标优化问题的Pareto解

粒子群算法程序 tic D=10;%粒子群中粒子的个数 %w=0.729;%w为惯性因子 wmin=1.2; wmax=1.4; c1=1.49445;%正常数,成为加速因子 c2=1.49445;%正常数,成为加速因子 Loop_max=50;%最大迭代次数 %初始化粒子群 for i=1:D X(i)=rand(1)*(-5-7)+7; V(i)=1; f1(i)=X(i)^2; f2(i)=(X(i)-2)^2; end Loop=1;%迭代计数器 while Loop<=Loop_max%循环终止条件 %对粒子群中的每个粒子进行评价 for i=1:D k1=find(1==Xv(i,:));%找出第一辆车配送的城市编号 nb1=size(k1,2);%计算第一辆车配送城市的个数 if nb1>0%判断第一辆车配送城市个数是否大于0,如果大于0则 a1=[Xr(i,k1(:))];%找出第一辆车配送城市顺序号 b1=sort(a1);%对找出第一辆车的顺序号进行排序 G1(i)=0;%初始化第一辆车的配送量 k51=[]; am=[]; for j1=1:nb1 am=find(b1(j1)==Xr(i,:)); k51(j1)=intersect(k1,am);%计算第一辆车配送城市的顺序号 G1(i)=G1(i)+g(k51(j1)+1);%计算第一辆车的配送量 end k61=[]; k61=[0,k51,0];%定义第一辆车的配送路径 L1(i)=0;%初始化第一辆车的配送路径长度 for k11=1:nb1+1 L1(i)=L1(i)+Distance(k61(k11)+1,k61(k11+1)+1);%计算第一辆车的配送路径长度end else%如果第一辆车配送的城市个数不大于0则 G1(i)=0;%第一辆车的配送量设为0 L1(i)=0;%第一辆车的配送路径长度设为0 end

基于MATLAB的粒子群优化算法的应用示例

对于函数f=x*sin(x)*cos(2*x)-2*x*sin(3*x),求其在区间[0,20]上该函数的最大值。 ?初始化种群 已知位置限制[0,20],由于一维问题较为简单,因此可以取初始种群N 为50,迭代次数为100,当然空间维数d 也就是1。 位置和速度的初始化即在位置和速度限制内随机生成一个N×d 的矩阵,对于此题,位置初始化也就是在0~20内随机生成一个50×1的数据矩阵,而对于速度则不用考虑约束,一般直接在0~1内随机生成一个50×1的数据矩阵。 此处的位置约束也可以理解为位置限制,而速度限制是保证粒子步长不超限制的,一般设置速度限制为[-1,1]。 粒子群的另一个特点就是记录每个个体的历史最优和种群的历史最优,因此而二者对应的最优位置和最优值也需要初始化。其中每个个体的历史最优位置可以先初始化为当前位置,而种群的历史最优位置则可初始化为原点。对于最优值,如果求最大值则初始化为负无穷,相反地初始化为正无穷。 每次搜寻都需要将当前的适应度和最优解同历史的记录值进行对比,如果超过历史最优值,则更新个体和种群的历史最优位置和最优解。 ?速度与位置的更新

速度和位置更新是粒子群算法的核心,其原理表达式和更新方式如下: 每次更新完速度和位置都需要考虑速度和位置的限制,需要将其限制在规定范围内,此处仅举出一个常规方法,即将超约束的数据约束到边界(当位置或者速度超出初始化限制时,将其拉回靠近的边界处)。当然,你不用担心他会停住不动,因为每个粒子还有惯性和其他两个参数的影响。 代码如下: clc;clear;close all; %% 初始化种群 f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式figure(1);ezplot(f,[0,0.01,20]); N = 50; % 初始种群个数 d = 1; % 空间维数 ger = 100; % 最大迭代次数 limit = [0, 20]; % 设置位置参数限制 vlimit = [-1, 1]; % 设置速度限制 w = 0.8; % 惯性权重 c1 = 0.5; % 自我学习因子 c2 = 0.5; % 群体学习因子 for i = 1:d

基于粒子群优化算法的神经网络在

基于粒子群优化算法的神经网络在农药定量构效关系建模中的应用 张丽平 俞欢军3 陈德钊 胡上序 (浙江大学化工系,杭州310027) 摘 要 神经网络模型能有效模拟非线性输入输出关系,但其常规训练算法为BP 或其它梯度算法,导致训练时间较长且易陷入局部极小点。本实验探讨用粒子群优化算法训练神经网络,并应用到苯乙酰胺类农药的定量构效关系建模中,对未知化合物的活性进行预测来指导新药的设计和合成。仿真结果表明,粒子群优化算法训练的神经网络不仅收敛速度明显加快,而且其预报精度也得到了较大的提高。关键词 粒子群优化算法,神经网络,定量构效关系  2004201204收稿;2004207225接受 本文系国家自然科学基金资助项目(N o.20276063) 1 引 言 药物定量构效关系(QS AR )是研究药物生理活性和药物分子结构参数间的量变规律并建立相应的 数学模型,进而研究药物的作用机理,从而用于预测未知化合物的生物活性,探讨药物的作用机理,指导新药的设计和合成,在药物和农药的研究与设计中已经显示出广阔的应用前景1。以往QS AR 的建模方法大多基于统计原理,局限于线性模型,只进行简单的非线性处理,由此所建立的模型很难契合实际构效关系,并且其处理过程都比较繁琐2。神经网络通过学习将构效关系知识隐式分布在网络之中,适用于高度非线性体系。 在药物QS AR 中采用神经网络(NN )始于20世纪80年代末3,此后得到迅速的发展,目前已发展为除多重线性回归和多元数据分析之外的第3种方法4。通常多层前传网络采用BP 算法,通过误差反传,按梯度下降的方向调整权值。其缺点是可能陷入局部极小点,且对高维输入收敛速度非常缓慢。 粒子群优化算法(particle swarm optimization ,PS O )是K ennedy 等5源于对鸟群、鱼群和人类社会行为的研究而发展的一种新的进化型寻优技术。PS O 已成为进化寻优算法研究的热点,其最主要特点是简单、收敛速度快,且所需领域知识少。本实验拟将该方法初始化前传神经网络为苯乙酰胺类农药建立良好适用的QS AR 模型。 2 苯乙酰胺类农药的Q SAR 问题 苯乙酰胺类化合物是除草农药,其除草活性与其分子结构密切相关。所有的N 2(12甲基212苯乙基)苯乙酰胺都可用相应的羧酸酰胺通过霍夫曼反应生成。N 2(12甲基212苯乙基)苯乙酰胺的基本结构式为 : 其中X 为Me 、F 、Cl 、OMe 、CF 3和Br 等,Y 为Me 、Cl 、F 和Br 等,由不同的X 和Y 取代基可构成不同的化合物。常用以下7个理化参数描述化合物的分子组成和结构:log P 、log 2P (疏水性参数及其平方项)、 σ(电性效应参数)、E s (T aft 立体参数)、MR (摩尔折射度),1χ、2 χ(分子连接性指数)。于是这类化合物的QS AR 就转化为上述理化参数与除草活性间的关系。为研究这种关系,选用具有代表性的50个化合物, 他们的活性值取自文献1,见表1。 第32卷2004年12月分析化学(FE NXI H UAX UE ) 研究报告Chinese Journal of Analytical Chemistry 第12期1590~1594

改进粒子群算法的目标函数变化分类动态优化

龙源期刊网 https://www.360docs.net/doc/c91693622.html, 改进粒子群算法的目标函数变化分类动态优化 作者:苏玉孔国利 来源:《现代电子技术》2017年第07期 摘要:由于优化问题的目标函数和约束条件都随着时间而改变导致其最优值也发生改变,提出一种基于改进粒子群算法的目标函数变化分类动态优化算法。首先对动态优化问题进行定义,明确问题的研究对象,提出对目标函数随时间变化程度分类的思想,通过对变化的函数进行监测的方法将其分为剧烈变化、中等程度变化和弱变化三种类型,并针对不同的强度变化对粒子群算法采用不同的改进策略,最后将不同的策略融入计算。通过采用移动多峰问题进行测试,结果表明,提出的改进粒子群优化算法能监测目标函数变化,并能随时跟踪到最优解,平均离线误差相对于标准粒子群算法更小,性能更稳定。 关键词:粒子群算法;动态优化;目标函数时变分类;移动峰问题 中图分类号: TN911.1?34; TP301.6 文献标识码: A 文章编号: 1004?373X(2017)07?0175?04 Dynamic optimization of objective function changing classification based on improved particle swarm optimization SU Yu, KONG Guoli (College of Information Engineering, Zhongzhou University, Zhengzhou 450001,China) Abstract: The objective function and constraint condition for the optimization problem are changed with time, and may change its optimal value. A dynamic optimization of the objective function changing classification based on improved particle swarm optimization is proposed. The dynamic optimization problem is defined to determine the study object of the problem. The classification thought that the objective function is changed with the time varying degree is put forward. The varying function is divided into the types of drastic change, medium grade change and weak change with the monitoring method. Different strategies are adopted for the particle swarm optimization according to the different intensity changes, and integrated for computation. The algorithm was tested with the moving multi?peak problem. The test results show that the improved particle swarm optimization can monitor the changes of the objective function, track the optimal solution momentarily, its average offline error is smaller than that of the standard particle swarm optimization algorithm, and the performance is more stable.

动态多目标粒子群优化算法研究及应用

目录 摘要............................................................................................................................... I Abstract .............................................................................................................................. III 1绪论.. (1) 1.1 课题研究背景 (1) 1.2 多目标粒子群算法的研究现状与发展 (1) 1.3 多目标优化问题研究 (3) 1.3.1 多目标优化问题描述 (4) 1.3.2 多目标优化问题的研究发展 (4) 1.3.3 多目标优化问题的性能度量 (5) 1.3.4 多目标优化算法的性能测试问题 (6) 1.4 几种典型的多目标优化算法 (7) 1.4.1 多目标进化算法(MOEA) (7) 1.4.2 多目标粒子群算法(MOPSO) (7) 1.4.3 蚁群算法 (7) 1.4.4 模拟退火算法 (8) 1.5 论文的主要研究内容及章节安排 (9) 1.5.1 论文主要研究内容 (9) 1.5.2 论文章节安排 (9) 2 多目标粒子群优化算法的基础理论 (11) 2.1 粒子群算法介绍 (11) 2.1.1 粒子群算法起源 (11) 2.1.2 粒子群算法的具体描述 (11) 2.2 基本粒子群算法 (12) 2.2.1 算法原理 (12) 2.2.2 粒子群算法的流程: (13) 2.3 几种典型的多目标粒子群算法 (14) 2.3.1 CMOPSO (14)

相关文档
最新文档