支持向量机参数优化研究

支持向量机参数优化研究
支持向量机参数优化研究

支持向量机算法

支持向量机算法 [摘要] 本文介绍统计学习理论中最年轻的分支——支持向量机的算法,主要有:以SVM-light为代表的块算法、分解算法和在线训练法,比较了各自的优缺点,并介绍了其它几种算法及多类分类算法。 [关键词] 块算法分解算法在线训练法 Colin Campbell对SVM的训练算法作了一个综述,主要介绍了以SVM为代表的分解算法、Platt的SMO和Kerrthi的近邻算法,但没有详细介绍各算法的特点,并且没有包括算法的最新进展。以下对各种算法的特点进行详细介绍,并介绍几种新的SVM算法,如张学工的CSVM,Scholkopf的v-SVM分类器,J. A. K. Suykens 提出的最小二乘法支持向量机LSSVM,Mint-H suan Yang提出的训练支持向量机的几何方法,SOR以及多类时的SVM算法。 块算法最早是由Boser等人提出来的,它的出发点是:删除矩阵中对应于Lagrange乘数为零的行和列不会对最终结果产生影响。对于给定的训练样本集,如果其中的支持向量是已知的,寻优算法就可以排除非支持向量,只需对支持向量计算权值(即Lagrange乘数)即可。但是,在训练过程结束以前支持向量是未知的,因此,块算法的目标就是通过某种迭代逐步排除非支持向时。具体的做法是,在算法的每一步中块算法解决一个包含下列样本的二次规划子问题:即上一步中剩下的具有非零Lagrange乘数的样本,以及M个不满足Kohn-Tucker条件的最差的样本;如果在某一步中,不满足Kohn-Tucker条件的样本数不足M 个,则这些样本全部加入到新的二次规划问题中。每个二次规划子问题都采用上一个二次规划子问题的结果作为初始值。在最后一步时,所有非零Lagrange乘数都被找到,因此,最后一步解决了初始的大型二次规划问题。块算法将矩阵的规模从训练样本数的平方减少到具有非零Lagrange乘数的样本数的平方,大减少了训练过程对存储的要求,对于一般的问题这种算法可以满足对训练速度的要求。对于训练样本数很大或支持向量数很大的问题,块算法仍然无法将矩阵放入内存中。 Osuna针对SVM训练速度慢及时间空间复杂度大的问题,提出了分解算法,并将之应用于人脸检测中,主要思想是将训练样本分为工作集B的非工作集N,B中的样本数为q个,q远小于总样本个数,每次只针对工作集B中的q个样本训练,而固定N中的训练样本,算法的要点有三:1)应用有约束条件下二次规划极值点存大的最优条件KTT条件,推出本问题的约束条件,这也是终止条件。2)工作集中训练样本的选择算法,应能保证分解算法能快速收敛,且计算费用最少。3)分解算法收敛的理论证明,Osuna等证明了一个定理:如果存在不满足Kohn-Tucker条件的样本,那么在把它加入到上一个子问题的集合中后,重新优化这个子问题,则可行点(Feasible Point)依然满足约束条件,且性能严格地改进。因此,如果每一步至少加入一个不满足Kohn-Tucker条件的样本,一系列铁二次子问题可保证最后单调收敛。Chang,C.-C.证明Osuna的证明不严密,并详尽地分析了分解算法的收敛过程及速度,该算法的关键在于选择一种最优的工

支持向量机(SVM)原理及

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方 法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机分类器

支持向量机分类器 1 支持向量机的提出与发展 支持向量机( SVM, support vector machine )是数据挖掘中的一项新技术,是借助于最优化方法来解决机器学习问题的新工具,最初由V.Vapnik 等人在1995年首先提出,近几年来在其理论研究和算法实现等方面都取得了很大的进展,开始成为克服“维数灾难”和过学习等困难的强有力的手段,它的理论基础和实现途径的基本框架都已形成。 根据Vapnik & Chervonenkis的统计学习理论 ,如果数据服从某个(固定但未知的)分布,要使机器的实际输出与理想输出之间的偏差尽可能小,则机器应当遵循结构风险最小化 ( SRM,structural risk minimization)原则,而不是经验风险最小化原则,通俗地说就是应当使错误概率的上界最小化。SVM正是这一理论的具体实现。与传统的人工神经网络相比, 它不仅结构简单,而且泛化( generalization)能力明显提高。 2 问题描述 2.1问题引入 假设有分布在Rd空间中的数据,我们希望能够在该空间上找出一个超平面(Hyper-pan),将这一数据分成两类。属于这一类的数据均在超平面的同侧,而属于另一类的数据均在超平面的另一侧。如下图。 比较上图,我们可以发现左图所找出的超平面(虚线),其两平行且与两类数据相切的超平面(实线)之间的距离较近,而右图则具有较大的间隔。而由于我们希望可以找出将两类数据分得较开的超平面,因此右图所找出的是比较好的超平面。 可以将问题简述如下: 设训练的样本输入为xi,i=1,…,l,对应的期望输出为yi∈{+1,-1},其中+1和-1分别代表两类的类别标识,假定分类面方程为ω﹒x+b=0。为使分类面对所有样本正确分类并且具备分类间隔,就要求它满足以下约束条件: 它追求的不仅仅是得到一个能将两类样本分开的分类面,而是要得到一个最优的分类面。 2.2 问题的数学抽象 将上述问题抽象为: 根据给定的训练集

支持向量机算法学习总结

题目:支持向量机的算法学习 姓名: 学号: 专业: 指导教师:、 日期:2012年6 月20日

支持向量机的算法学习 1. 理论背景 基于数据的机器学习是现代智能技术中的重要方面,研究从观测数据 (样本) 出发寻找规律,利用这些规律对未来数据或无法观测的数据进行预测。迄今为止,关于机器学习还没有一种被共同接受的理论框架,关于其实现方法大致可以分为三种: 第一种是经典的(参数)统计估计方法。包括模式识别、神经网络等在内,现有机器学习方法共同的重要理论基础之一是统计学。参数方法正是基于传统统计学的,在这种方法中,参数的相关形式是已知的,训练样本用来估计参数的值。这种方法有很大的局限性,首先,它需要已知样本分布形式,这需要花费很大代价,还有,传统统计学研究的是样本数目趋于无穷大时的渐近理论,现有学习方法也多是基于此假设。但在实际问题中,样本数往往是有限的,因此一些理论上很优秀的学习方法实际中表现却可能不尽人意。 第二种方法是经验非线性方法,如人工神经网络(ANN。这种方法利用已知样本建立非线性模型,克服了传统参数估计方法的困难。但是,这种方法缺乏一种统一的数学理论。 与传统统计学相比,统计学习理论( Statistical Learning Theory 或SLT) 是一种专门研究小样本情况下机器学习规律的理论。该理论针对小样本统计问题建立了一套新的理论体系,在这种体系下的统计推理规则不仅考虑了对渐近性能的要求,而且追求在现有有限信息的条件下得到最优结果。V. Vapnik 等人从六、七十年代开始致力于此方面研究[1] ,到九十年代中期,随着其理论的不断发展和成熟,也由于神经网络等学习方法在理论上缺乏实质性进展,统计学习理论开始受到越来越广泛的重视。 统计学习理论的一个核心概念就是VC维(VC Dimension)概念,它是描述函数集或学习机器的复杂性或者说是学习能力(Capacity of the machine) 的一个重要指标,在此概念基础上发展出了一系列关于统计学习的一致性(Consistency) 、收敛速度、推广性能(GeneralizationPerformance) 等的重要结论。 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy) 和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以

支持向量机参数设置详解

程序中SVM 的参数: TestSVM_Parameter.svm_type=C_SVC; TestSVM_Parameter.kernel_type= RBF; TestSVM_Parameter.degree=3.0; TestSVM_Parameter.coef0=1; TestSVM_Parameter.gamma=1; TestSVM_Parameter.cache_size=40; TestSVM_Parameter.eps=0.01; TestSVM_Parameter.C=1.0; TestSVM_Parameter.shrinking=1; TestSVM_Parameter.nr_weight=0; TestSVM_Parameter.weight=NULL; TestSVM_Parameter.weight_label=NULL; SVM 参数含义: int svm_type :SVM 问题类型: 0: C_SVC: 多类别识别问题,求解问题 ,,min b w ξ 1 12l t i i C ξ=+∑w w 1: NU_SVC :多类别识别问题,求解问题 ,,,min b ρw ξ 1 112l t i i l νρξ=-+∑w w 2: ONE_CLASS :两类别识别问题,求解问题 ,,,min b ρw ξ 1 112l t i i l ρξν=-+∑w w 3: EPSILON_SVR :回归分析,求解问题 *,,,min b w ξξ *1112l l t i i i i C C ξξ==++∑∑w w 4: NU_SVR :回归分析,求解问题 *,,,,min b εw ξξ ()*112l t i i i C νεξξ=??+++ ???∑w w int kernel_type :核函数类型: 0: LINEAR ,线性,(),t K =x y x y 1: POL Y ,多项式,()(),d t K C γ=+x y x y 2: RBF ,径向基函数,()()2,exp K γ=--x y x y 3: SIGMOID ,Sigmoid 函数,()( ),tanh t K C γ=+x y x y double degree :多项式核函数参数 double gamma :多项式、径向基函数和Sigmoid 函数的参数 double coef0:多项式和Sigmoid 函数的参数

基于支持向量机的模式识别

基于支持向量机的模式识别 摘要 随着人工智能和机器学习学科的不断发展,传统的机器学习方法已经不能适应学科的快速发展。而支持向量机(Support Vector Machine,SVM)则是根据统计学习理论提出的一种新型且有效的机器学习方法,它以结构风险最小化和VC 维理论为基础,适当的选择函数子集和决策函数,使学习机器的实际风险最小化,通过对有限的训练样本进行最小误差分类。支持向量机能够较好的解决小样本、非线性、过学习和局部最小等实际问题,同时具有较强的推广能力。支持向量机的样本训练问题实质是求解一个大的凸二次规划问题,从而所得到的解也是全局最优的,通常也是唯一的解。 本文以支持向量机理论为基础,对其在模式识别领域的应用进行系统的研究。首先运用传统的增式支持向量机对历史数据分类,该分类结果表明对于较复杂的数据辨识时效果不佳。然后运用改进后的增式支持向量机对历史数据进行分类,再利用支持向量机具有的分类优势对数据进行模式识别。 本文对传统增式支持向量机算法和改进增式支持向量机算法进行了仿真对比,仿真结果体现了改进增式支持向量机算法的优越性,改进增式支持向量机算法减少了训练样本集的样本数量,优化了时间复杂度和空间复杂度,提高了分类效率。该方法应用于模式识别领域中能明显提高系统的准确率。 关键词:支持向量机;模式识别;多类分类;增式算法

Pattern Recognition Based on Support Vector Machine Abstract With the discipline of artificial intelligence and machine learning continues to evolve, traditional machine learning methods can not adapt to the rapid development of disciplines. The support vector machine (Support Vector Machine, SVM) is based on statistical learning theory a new and effective machine learning method, which to base on the structural risk minimization and the VC dimension theory, a function subset of appropriate choice and decision-making function of appropriate choice, the learning machine to minimize the actual risk, through the limited training samples for minimum error classification. SVM can solve the small sample, nonlinear, over learning and local minimum practical issues, but also it has a strong outreach capacity. Sample training problems of Support Vector Machines to solve really a large convex quadratic programming problems, and to the global optimal solution is also obtained, usually the only solution. This paper based on support vector machine theory, its application in the field of pattern recognition system. First, by using the traditional incremental support vector machine classification of historical data, the classification results show that the data for the identification of more complex when the results are poor. And then improved by the use of incremental Support Vector Machines to classify the historical data, and then use the classification of Support Vector Machine has advantages for data pattern recognition. This type of traditional incremental Support Vector Machine and improved incremental Support Vector Machine algorithm was simulated comparison, simulation results demonstrate the improved incremental Support Vector Machine algorithm by superiority, improved incremental Support Vector Machine algorithm reduces the set of training samples number of samples,and to optimize the time complexity and space complexity, improving the classification efficiency. The method is applied to pattern recognition can significantly improve the accuracy of the system. Key words: Support Vector Machine; Pattern Recognition; Multi-class Classification; Incremental Algorithm

支持向量机(SVM)原理及应用概述

支持向量机(SVM )原理及应用 一、SVM 的产生与发展 自1995年Vapnik (瓦普尼克)在统计学习理论的基础上提出SVM 作为模式识别的新方法之后,SVM 一直倍受关注。同年,Vapnik 和Cortes 提出软间隔(soft margin)SVM ,通过引进松弛变量i ξ度量数据i x 的误分类(分类出现错误时i ξ大于0),同时在目标函数中增加一个分量用来惩罚非零松弛变量(即代价函数),SVM 的寻优过程即是大的分隔间距和小的误差补偿之间的平衡过程;1996年,Vapnik 等人又提出支持向量回归 (Support Vector Regression ,SVR)的方法用于解决拟合问题。SVR 同SVM 的出发点都是寻找最优超平面(注:一维空间为点;二维空间为线;三维空间为面;高维空间为超平面。),但SVR 的目的不是找到两种数据的分割平面,而是找到能准确预测数据分布的平面,两者最终都转换为最优化问题的求解;1998年,Weston 等人根据SVM 原理提出了用于解决多类分类的SVM 方法(Multi-Class Support Vector Machines ,Multi-SVM),通过将多类分类转化成二类分类,将SVM 应用于多分类问题的判断:此外,在SVM 算法的基本框架下,研究者针对不同的方面提出了很多相关的改进算法。例如,Suykens 提出的最小二乘支持向量机 (Least Square Support Vector Machine ,LS —SVM)算法,Joachims 等人提出的SVM-1ight ,张学工提出的中心支持向量机 (Central Support Vector Machine ,CSVM),Scholkoph 和Smola 基于二次规划提出的v-SVM 等。此后,台湾大学林智仁(Lin Chih-Jen)教授等对SVM 的典型应用进行总结,并设计开发出较为完善的SVM 工具包,也就是LIBSVM(A Library for Support Vector Machines)。LIBSVM 是一个通用的SVM 软件包,可以解决分类、回归以及分布估计等问题。 二、支持向量机原理 SVM 方法是20世纪90年代初Vapnik 等人根据统计学习理论提出的一种新的机器学习方法,它以结构风险最小化原则为理论基础,通过适当地选择函数子集及该子集中的判别函数,使学习机器的实际风险达到最小,保证了通过有限训练样本得到的小误差分类器,对独立测试集的测试误差仍然较小。 支持向量机的基本思想:首先,在线性可分情况下,在原空间寻找两类样本的最优分类超平面。在线性不可分的情况下,加入了松弛变量进行分析,通过使用非线性映射将低维输

支持向量机参数优化的一种新方法

小型微型计算机系统JournalofChineseComputerSystems2008年1月第1期V01.29No.12008 支持向量机参数优化的一种新方法 肇莹,刘红星,高敦堂 (南京大学电子科学与工程系。江苏南京210093) E-mail:xwhzy@sohu.com 摘要:支持向量机(SVM)的性能与SVM参数的选择有关.SVM参数的优化需要一个准则,本文提出了一种以原空间中样本到分类面的最短代数距离最大为准则的SVM参数优化方法.该方法旨在使SVM分类面在原空间中使样本“平分秋色”,更能体现SVM分类器的结构风险最一1、化的原则.算法简单、几何直观性好、易于实现.通过在双螺旋线样本和Iris样本集上所作测试证明了该方法的有效性. 关键词:支持向量机;参数优化 中图分类号:TPl8文献标识码:A文章编号:1000—1220(2008)01—0102—04 ANewMethodforSVMHyper—parametersOptimization ZHAOYing,LIUHong-xing,GAODun—tang (ElectronicScienceandEngineeringDepartment,NanjingUniversity,Nanjing210093,China) Abstract:TheperformanceofSupportVectorMachine(SVM)isdeterminedbyitshyper—parameters.Optimizingthehyper—parametersneedsacriterion.ThispaperpresentsanewSVMhyper—parametersoptimizationmethod,inwhichmaximizingtheminimumalgebraicdistancefromsamplestothecIass—separatinghyper—surfaceininput spaceistakenasthecriterion.The main purposeofthismethodisto’legand leg’thewholeoriginalinputspaceforallthesamples,anditsustainsthestructural riskminimizationprinciplebetter.Themethodissimple,geometricintuitiveandcanbeimplemented easily.Thefeasibilityofthemethodisdisplayedthroughexperimentsontwoclassicalbenchmarkclassificationproblems--TwoSpiralsProblem(TSP)andIrissamples. Keywords:SVM;hyper-parameteroptimization 1引言 支持向量机(SVM)的泛化性能不仅与核函数形式有关,而且与核函数的参数有关.图1是核函数选定为RBF形式、即K。,z,)一exp(一jL掣),而其核函数参数y分别取不同值时,双螺线问题(TSP)的SVM分类结果.图(a)中,y取值过大,使得样本在变换域空间中线性不可分;图(b)中,y (a)y一20时的SVM分类情况(b)y=0.01时的SVM分类情况 图1对TSP问题,选用RBF核函数 Fig.1ForTSPwithRBFkernelfunctionselected 收稿日期:2006—09?20收修改稿日期:2006—12—27基金项目;国家自然科学基金项目(60275041)资助.作者简介:肇莹,女,1973年生,博士研究生,讲师,研究方向为模式识别与人工智能}刘红星,男,1968年生,博士,教授,研究方向为模式识别与人工智能;高敦堂,男,1941 年生,教授,研究方向为人工智能.  万方数据

基于支持向量机的故障诊断

基于支持向量机的故障诊断 摘要 在化工生产过程中,为了准确检测故障,减少机械的损失和人员的伤亡,提出了支持向量机算法。支持向量机是基于统计学理论的方法,具有较强的逼近能力和泛化能力。但是在最近几年中,一种基于主元分析的过程监控方法已在工业过程中得到应用,主元分析方法通过正常工况下的历史数据建立的统计模型能很好地检测过程的异常变化和故障的发生。本文主要就这两种方法展开运用。在实际生产过程中,一方面,主元分析方法故障诊断能力有限;另一方面,存在着大量的历史数据,既有正常工况下的数据,又有故障数据,如何充分利用各种类别数据,提高故障诊断能力,具有十分重要的意义。 本文首先运用传统支持向量机算法对历史数据进行分类,分类结果表明该方法对于简单的数据比较容易区分,但是在数据复杂,可辨性较低的情况下,效果不明显。然后运用改进了的传统支持向量机算法对历史数据进行分类,即运用主元分析方法提取各数据的主要特征,再利用支持向量机具有的分类优势对过程数据进行在线诊断,从而提高故障诊断能力。 本文对传统支持向量机算法和改进支持向量机算法进行了仿真比较,仿真结果体现了改进支持向量机算法的优越性;改进支持向量机算法提高了传统支持向量机算法分类的正确率。该种方法在实际工程中能够提高系统的诊断性能,减少不必要的损失。 关键词:支持向量机;故障诊断;主元分析方法;田纳西-伊斯曼过程;

Fault Diagnosis Based on Support Vector Machine Abstract In order to detect faults accurately, reduce mechanical lossesand casualties in the chemical production process, the algorithm of support vector machines was proposed. Based on the statistics theories, support vector machine is a method of approximation ability and generalization ability. Recently, a new method of process monitoring based on principal component analysis is applied in industrial production process. The statistical model built by principal component analysis method using historic data could detect unusual changes and faults happening in the process accurately. This research is on the application of these two methods. In the actual production process, principal component analysis has certain limitations in diagnosing fault. Besides, the vast volume of historical data was collected in both normal and unusual conditions. It is of great importance to make full use of the data to improve the capacity of fault diagnosis. Firstly, this paper classified the historical data by applying the traditional support vector machine algorithm. The results showed that traditionalmethod works well on simple data sets. However, it showed insignificant effects under a complex and low-differentiability condition. In succession, an advanced approach was used to improve the traditional method, which was approached to enhance the ability of fault diagnosis by using principal component analysis to extract the main features of the data, then with the use of support vector machine which has the advantages of online diagnostic on process data to classify. In this paper, the traditional support vector machine algorithm and advanced support vector machine algorithm were compared in simulation process, the results indicates the superiority of the advanced method which improved the correctness of the traditional one on classification. It could also improve the diagnostic performance in the actual process and reduce unnecessary losses consequently. Key words: Support Vector Machine; Fault Diagnosis; Principal Component Analysis; Tennessee Eastman Process

支持向量机数据分类预测

支持向量机数据分类预测 一、题目——意大利葡萄酒种类识别 Wine数据来源为UCI数据库,记录同一区域三种品种葡萄酒的化学成分,数据有178个样本,每个样本含有13个特征分量。50%做为训练集,50%做为测试集。 二、模型建立 模型的建立首先需要从原始数据里把训练集和测试集提取出来,然后进行一定的预处理,必要时进行特征提取,之后用训练集对SVM进行训练,再用得到的模型来预测试集的分类。 三、Matlab实现 3.1 选定训练集和测试集 在178个样本集中,将每个类分成两组,重新组合数据,一部分作为训练集,一部分作为测试集。 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集 train_wine = [wine(1:30,:);wine(60:95,:);wine(131:153,:)]; % 相应的训练集的标签也要分离出来 train_wine_labels = [wine_labels(1:30);wine_labels(60:95);wine_labels(131:153)]; % 将第一类的31-59,第二类的96-130,第三类的154-178做为测试集 test_wine = [wine(31:59,:);wine(96:130,:);wine(154:178,:)]; % 相应的测试集的标签也要分离出来 test_wine_labels = [wine_labels(31:59);wine_labels(96:130);wine_labels(154:178)]; 3.2数据预处理 对数据进行归一化: %% 数据预处理 % 数据预处理,将训练集和测试集归一化到[0,1]区间 [mtrain,ntrain] = size(train_wine); [mtest,ntest] = size(test_wine); dataset = [train_wine;test_wine]; % mapminmax为MATLAB自带的归一化函数 [dataset_scale,ps] = mapminmax(dataset',0,1); dataset_scale = dataset_scale';

基于支持向量机的分类方法

基于支持向量机的分类方法 摘要:本文首先概述了支持向量机的相关理论,引出了支持向量机的基本模型。当训练集的两类样本点集重合区域很大时,线性支持向量分类机就不适用了,由此介绍了核函数相关概念。然后进行了核函数的实验仿真,并将支持向量机应用于实例肿瘤诊断,建立了相应的支持向量机模型,从而对测试集进行分类。最后提出了一种支持向量机的改进算法,即根据类向心度对复杂的训练样本进行预删减。 1、支持向量机 给定训练样本集1122{[,],[,], ,[,]}()l l l T a y a y a y Y =∈Ω?L ,其中n i a R ∈Ω=,Ω是输入空间,每一个点i a 由n 个属性特征组成,{1,1},1,,i y Y i l ∈=-=L 。分类 就是在基于训练集在样本空间中找到一个划分超平面,将不同的类别分开,划分超平面可通过线性方程来描述: 0T a b ω+= 其中12(;;;)d ωωωω=K 是法向量,决定了超平面的方向,b 是位移项,决定 了超平面与原点之间的距离。样本空间中任意点到超平面的距离为|| |||| T a b r ωω+=。 支持向量、间隔: 假设超平面能将训练样本正确分类,即对于[,]i i a y T ∈,若1i y =+,则有 0T i a b ω+>,若1i y =-,则有0T i a b ω+<。则有距离超平面最近的几个训练样本点使得 11 11 T i i T i i a b y a b y ωω?+≥+=+?+≤-=-? 中的等号成立,这几个训练样本点被称为支持向量;两个异类支持向量到超平面 的距离之和2 |||| r ω=被称为间隔。 支持向量机基本模型: 找到具有最大间隔的划分超平面,即 ,2max ||||..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这等价于 2 ,||||min 2..()1,1,2,...,b T i i s t y a b i m ωωω+≥= 这就是支持向量机(SVM )的基本模型。 支持向量机问题的特点是目标函数2 ||||2 ω是ω的凸函数,并且约束条件都是 线性的。

支持向量机(SVM)算法推导及其分类的算法实现

支持向量机算法推导及其分类的算法实现 摘要:本文从线性分类问题开始逐步的叙述支持向量机思想的形成,并提供相应的推导过程。简述核函数的概念,以及kernel在SVM算法中的核心地位。介绍松弛变量引入的SVM算法原因,提出软间隔线性分类法。概括SVM分别在一对一和一对多分类问题中应用。基于SVM在一对多问题中的不足,提出SVM 的改进版本DAG SVM。 Abstract:This article begins with a linear classification problem, Gradually discuss formation of SVM, and their derivation. Description the concept of kernel function, and the core position in SVM algorithm. Describes the reasons for the introduction of slack variables, and propose soft-margin linear classification. Summary the application of SVM in one-to-one and one-to-many linear classification. Based on SVM shortage in one-to-many problems, an improved version which called DAG SVM was put forward. 关键字:SVM、线性分类、核函数、松弛变量、DAG SVM 1. SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本、非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中。支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息在模型的复杂性(即对特定训练样本的学习精度,Accuracy)和学习能力(即无错误地识别任意样本的能力)之间寻求最佳折衷,以期获得最好的推广能力。 对于SVM的基本特点,小样本,并不是样本的绝对数量少,而是与问题的复杂度比起来,SVM算法要求的样本数是相对比较少的。非线性,是指SVM擅长处理样本数据线性不可分的情况,主要通过松弛变量和核函数实现,是SVM 的精髓。高维模式识别是指样本维数很高,通过SVM建立的分类器却很简洁,只包含落在边界上的支持向量。

用于分类的支持向量机

文章编号:100228743(2004)0320075204 用于分类的支持向量机 黄发良,钟 智Ξ (1.广西师范大学计算机系,广西桂林541000;  2.广西师范学院数学与计算机科学系,广西南宁530001) 摘 要:支持向量机是20世纪90年代中期发展起来的机器学习技术,建立在结构风险最小化原理之上的支持向量机以其独有的优点吸引着广大研究者,该文着重于用于分类的支持向量机,对其基本原理与主要的训练算法进行介绍,并对其用途作了一定的探索. 关键词:支持向量机;机器学习;分类 中图分类号:TP181 文献标识码:A 支持向量机S VM (Support Vector Machine )是AT&T Bell 实验室的V.Vapnik 提出的针对分类和回归问题的统计学习理论.由于S VM 方法具有许多引人注目的优点和有前途的实验性能,越来越受重视,该技术已成为机器学习研究领域中的热点,并取得很理想的效果,如人脸识别、手写体数字识别和网页分类等. S VM 的主要思想可以概括为两点:(1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分,从而使得高维特征空间采用线性算法对样本的非线性特征进行线性分析成为可能;(2)它基于结构风险最小化理论之上在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界. 1 基本原理 支持向量机理论最初来源于数据分类问题的处理,S VM 就是要寻找一个满足要求的分割平面,使训练集中的点距离该平面尽可能地远,即寻求一个分割平面使其两侧的margin 尽可能最大. 设输入模式集合{x i }∈R n 由两类点组成,如果x i 属于第1类,则y i =1,如果x i 属于第2类,则y i =-1,那么有训练样本集合{x i ,y i },i =1,2,3,…,n ,支持向量机的目标就是要根据结构风险最小化原理,构造一个目标函数将两类模式尽可能地区分开来,通常分为两类情况来讨论,(1)线性可分,(2)线性不可分. 1.1 线性可分情况 在线性可分的情况下,就会存在一个超平面使得训练样本完全分开,该超平面可描述为: w ?x +b =0(1) 其中,“?”是点积,w 是n 维向量,b 为偏移量. 最优超平面是使得每一类数据与超平面距离最近的向量与超平面之间的距离最大的这样的平面.最优超平面可以通过解下面的二次优化问题来获得: min <(w )= 12‖w ‖2(2) Ξ收稿日期:2004202206作者简介:黄发良(1975-),男,湖南永州人,硕士研究生;研究方向:数据挖掘、web 信息检索. 2004年9月 广西师范学院学报(自然科学版)Sep.2004 第21卷第3期 Journal of G u angxi T eachers Education U niversity(N atural Science Edition) V ol.21N o.3

支持向量机训练算法综述_姬水旺

收稿日期:2003-06-13 作者简介:姬水旺(1977)),男,陕西府谷人,硕士,研究方向为机器学习、模式识别、数据挖掘。 支持向量机训练算法综述 姬水旺,姬旺田 (陕西移动通信有限责任公司,陕西西安710082) 摘 要:训练SVM 的本质是解决二次规划问题,在实际应用中,如果用于训练的样本数很大,标准的二次型优化技术就很难应用。针对这个问题,研究人员提出了各种解决方案,这些方案的核心思想是先将整个优化问题分解为多个同样性质的子问题,通过循环解决子问题来求得初始问题的解。由于这些方法都需要不断地循环迭代来解决每个子问题,所以需要的训练时间很长,这也是阻碍SVM 广泛应用的一个重要原因。文章系统回顾了SVM 训练的三种主流算法:块算法、分解算法和顺序最小优化算法,并且指出了未来发展方向。关键词:统计学习理论;支持向量机;训练算法 中图分类号:T P30116 文献标识码:A 文章编号:1005-3751(2004)01-0018-03 A Tutorial Survey of Support Vector Machine Training Algorithms JI Shu-i wang,JI Wang -tian (Shaanx i M obile Communicatio n Co.,Ltd,Xi .an 710082,China) Abstract:Trai n i ng SVM can be formulated into a quadratic programm i ng problem.For large learning tasks w ith many training exam ples,off-the-shelf opti m i zation techniques quickly become i ntractable i n their m emory and time requirem ents.T hus,many efficient tech -niques have been developed.These techniques divide the origi nal problem into several s maller sub-problems.By solving these s ub-prob -lems iteratively,the ori ginal larger problem is solved.All proposed methods suffer from the bottlen eck of long training ti me.This severely limited the w idespread application of SVM.T his paper systematically surveyed three mains tream SVM training algorithms:chunking,de -composition ,and sequenti al minimal optimization algorithms.It concludes with an illustrati on of future directions.Key words:statistical learning theory;support vector machine;trai ning algorithms 0 引 言 支持向量机(Support Vector M achine)是贝尔实验室研究人员V.Vapnik [1~3]等人在对统计学习理论三十多年的研究基础之上发展起来的一种全新的机器学习算法,也使统计学习理论第一次对实际应用产生重大影响。SVM 是基于统计学习理论的结构风险最小化原则的,它将最大分界面分类器思想和基于核的方法结合在一起,表现出了很好的泛化能力。由于SVM 方法有统计学习理论作为其坚实的数学基础,并且可以很好地克服维数灾难和过拟合等传统算法所不可规避的问题,所以受到了越来越多的研究人员的关注。近年来,关于SVM 方法的研究,包括算法本身的改进和算法的实际应用,都陆续提了出来。尽管SVM 算法的性能在许多实际问题的应用中得到了验证,但是该算法在计算上存在着一些问题,包括训练算法速度慢、算法复杂而难以实现以及检测阶段运算量大等等。 训练SVM 的本质是解决一个二次规划问题[4]: 在约束条件 0F A i F C,i =1,, ,l (1)E l i =1 A i y i =0 (2) 下,求 W(A )= E l i =1A i -1 2 E i,J A i A j y i y j {7(x i )#7(x j )} = E l i =1A i -1 2E i,J A i A j y i y j K (x i ,x j )(3)的最大值,其中K (x i ,x j )=7(x i )#7(x j )是满足Merce r 定理[4]条件的核函数。 如果令+=(A 1,A 2,,,A l )T ,D ij =y i y j K (x i ,x j )以上问题就可以写为:在约束条件 +T y =0(4)0F +F C (5) 下,求 W(+)=+T l -12 +T D +(6) 的最大值。 由于矩阵D 是非负定的,这个二次规划问题是一个凸函数的优化问题,因此Kohn -Tucker 条件[5]是最优点 第14卷 第1期2004年1月 微 机 发 展M icr ocomputer Dev elopment V ol.14 N o.1Jan.2004

相关文档
最新文档