直线一级倒立摆的课程设计

直线一级倒立摆的课程设计
直线一级倒立摆的课程设计

第 1 页

目录

摘要 ............................................................................................... 3 1.一阶倒立摆的概述 .. (4)

1.1倒立摆的起源与国内外发展现状 ................................. 4 1.2倒立摆系统的组成 ......................................................... 5 1.3倒立摆的分类: ............................................................. 5 1.4倒立摆的控制方法: ..................................................... 5 1.5本文研究内容及安排 ..................................................... 6 1.6系统内部各相关参数为: ............................................. 6 2.一阶倒立摆数学模型的建立 . (7)

2.1概述 ................................................................................. 7 2.2数学模型的建立 ............................................................. 8 2.3一阶倒立摆的状态空间模型: ................................... 11 2.4实际参数代入: ........................................................... 12 3.定量、定性分析系统的性能 .. (13)

3.1,对系统的稳定性进行分析 ........................................ 13 3.2 对系统的稳定性进行分析: ...................................... 15 4.状态反馈控制器的设计 . (16)

4.1反馈控制结构 ............................................................... 16 4.2单输入极点配置 ........................................................... 17 4.3利用MATLAB 编写程序 ............................................ 19 5.系统的仿真研究,校验与分析 . (22)

5.1使用Matlab 中的SIMULINK 仿真 ............................ 22 6.设计状态观测器,讨论带有状态观测器的状态反馈系统的

第 2 页

性能。 (26)

6.1观测器的设计思路: ................................................... 26 6.2利用MATLAB 进行编程 ............................................ 27 6.3状态观测器的仿真 ....................................................... 29 小结 ............................................................................................. 32 参考文献: (33)

第 3 页

摘要

倒立摆是进行控制理论研究的典型实验平台。倒立摆也是机器人技术,控制理论,计算机控制等多个领域,多种技术的有机结合,其被控系统本身又是一个绝对不稳定,多变量,强耦合的非线性系统。可以作为一个典型的被控对象对其进行研究。最初的研究开始于二十世纪50年代,专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆的一个典型的控制对象,检验新的控制方法是否有较强的处理多变量,非线性和绝对不稳定系统的能力,从而从中找出好的控制方法。

倒立摆不仅仅是一种优秀的教学实验仪器,同时也是进行控制理论研究的理想实验平台。倒立摆的研究不仅具有深刻的理论意义,还有重要的工程背景,在多种控制理论与方法的研究中,特别是在工程实践中,也存在一种可行性的实验问题,使其理论与方法得到有效检验,倒立摆就能为此提供一个从理论通往实践的桥梁,目前,对倒立摆的研究也引起了国内外学者的广泛关注,是控制领域的热门课题之一。

第 4 页

1.一阶倒立摆的概述

1.1倒立摆的起源与国内外发展现状

倒立摆的最初研究开始于二十世纪五十年代,麻省理工学院的控制理论专家根据火箭助推器原理设计出来一级倒立摆实验设备。倒立摆作为一个典型的不稳定,严重非线性例证被正式提出于二十世纪六十年代后期。国内,在倒立摆系统实验平台先后出现了多种控制算法。用状态空间法设计的比例微分控制器来实现单机倒立摆的稳定控制;利用最优状态调节器实现双电机三集倒立摆实物控制;用变结构方法实现倒立摆的控制。用神经网络的自学习模糊控制器的输入输出的对比,引起其他学者的关注,之后不断出现实时学习神经网络的方法来控制倒立摆。

图1 一级倒立摆

第 5 页

1.2倒立摆系统的组成

倒立摆系统由计算机,运动控制卡,伺服机构,传感器和倒立摆本体五部分构成。

1.3倒立摆的分类:

1,根据摆杆数目的不同,可以把倒立摆分为一级,二级和三级倒立摆等

2,根据摆杆间连接形式不同,可以把倒立摆系统分为并联式倒立摆和串联式倒立摆;

3根据运动轨道的不同,可以把倒立摆系统分为倾斜轨道倒立摆和水平轨道倒立摆;

4根据控制电机的不同,可以把倒立摆分为多电机倒立摆和单电机倒立摆

5根据摆杆与小车的连接方式不同,可以把倒立摆分为刚性摆和柔性摆

6根据运动方式不同,可以把倒立摆分为平面倒立摆,直线倒立摆和旋转倒立摆。

1.4倒立摆的控制方法:

1)PID 控制:该方法出现的最早,首先是对倒立摆系统进行力学分析,并在牛顿定律基础上得到运动方程,然后在平衡点附近对其进行线性化求出传递函数,最后在要求系统的特征方程应有全部左半平面的根的条件下,设计闭环系统控制器。

2)状态反馈控制:极点配置法是在动态特性和稳态特性都满

第 6 页

足的条件下,将多变量闭环倒立摆系统极点配置在期望的位置上,来设计状态反馈控制器

3)线性二次型最优控制(LQR )

LQR 最优控制是通过寻找最佳状态反馈控制规律使期望的性能指标达到最小。

1.5本文研究内容及安排

倒立摆的控制算法多种多样,各种方法都有其各自的领域及重点,通过算法的比较,可以看出它们彼此之间的一些优缺点。

本课程设计的被控对象采用固高公司生产的GIP-100-L 型一阶倒立摆系统,选取稳定控制算法中的状态反馈极点配置设计,在分析了倒立摆的受力情况后,建立理论模型,由此推倒出系统的状态方程,并且对系统的性能进行定量、定性分析。配制出理想极点,设计状态反馈控制器,使得当在小车上施加1N 的脉冲信号时,闭环系统的响应满足性能指标要求。对设计的系统进行仿真研究、校验与分析,设计状态观测器,讨论带有状态观测器的状态反馈系统的性能。

1.6系统内部各相关参数为:

M 小车质量 0.5 Kg ;m 摆杆质量0.2 Kg ;b 小车摩擦系数0.1 N/m/sec ; l 摆杆转动轴心到杆质心的长度0.3 m ;I 摆杆惯量0.006 kg*m*m ;T 采样时间0.005秒。

第 7 页

2.一阶倒立摆数学模型的建立

2.1概述

倒立摆系统其本身是自不稳定系统,实验建模存在一些问题和困难,在忽略掉一些次要的因素后,倒立摆系统是一个典型的运动的刚体系统,可以再惯性坐标系中运用经典力学对它进行分析,来建立系统动力学方程。

在忽略掉了空气阻力和各种摩擦力之后,可以讲一阶倒立摆系统抽象成小车和均匀杆组成的系统,一阶倒立摆系统的结构示意图如下:

图2 一阶倒立摆系统的结构示意图

定义的参数为:M 小车质量

m 摆杆质量 b 小车摩擦系数

第 8 页

I 摆杆惯量 F 加在小车上的力

x 小车位置

φ 摆杆与垂直向上方向的夹角 l 摆杆转动轴心到杆质心的长度

θ 摆杆与垂直向下方向的夹角(摆杆初始位置为竖直向下)

得到小车和摆杆的受力图:

图3 小车和摆杆的受力图

2.2数学模型的建立

运用牛顿定理分析受力得到下列方程

(2-1)

由摆杆水平方向的受力进行分析可以得到下面等式:

第 9 页

(2-2)

求导得到:

(2-3)

代入第一个方程得到:

(2-4)

在摆杆垂直方向上的合力进行分析得到方程:

(2-5)

即:

(2-6)

力矩平衡方程:

(2-7)

又因为θ为摆杆与垂直向下方向的夹角(摆杆初始位置为竖直向下),φ为摆杆与垂直向上方向的夹角,由θ和φ关系

合并这两

第 10 页

个方程,约去 P 和 N ,得到第二个运动方程:

(2-8)

微分方程的建立: 因为

,假设φ <<1弧度,则可以进行近似处理:

错误!未找到引用源。来实现线性化。

用上述近似进行线性化得直线一阶倒立摆的微分方程为:

一阶倒立摆的传递函数模型: 对上式进行拉普拉斯变换,得:

推导传递函数时假设初始条件为 0。

由于输出为角度φ,求解方程组的第一个方程,可得:

(2-9)

(2-10)

(2-11)

(2-12)

第 11 页

如果令错误!未找到引用源。,则有:

把上式代入方程组(2-1)的第二个方程,得:

整理后得到传递函数:

其中

2.3一阶倒立摆的状态空间模型:

设系统状态空间方程为:

方程组(2-9)对错误!未找到引用源。解代数方程,得到解如下:

(2-14)

(2-13)

(2-15)

(2-16)

第 12 页

整理后得到系统状态空间方程:

2.4实际参数代入:

GIP-100-L 型一阶倒立摆系统,系统内部各相关参数为:

M 小车质量 0.5 Kg ;

m 摆杆质量0.2 Kg ; b 小车摩擦系数0.1 N/m/sec ;

l 摆杆转动轴心到杆质心的长度0.3 m ;

I 摆杆惯量0.006 kg*m*m ; T 采样时间0.005秒。 将上述参数代入得实际模型:

(2-17)

(2-18)

(2-19)

第 13 页

摆杆角度和小车位移的传递函数:

摆杆角度和小车所受外界作用力的传递函数:

以外界作用力作为输入的系统状态方程:

3.定量、定性分析系统的性能

3.1,对系统的稳定性进行分析

在MATLAB 中运行以下程序:

A=[ 0 1 0 0; 0 -0.181818 2.672727 0; 0 0 0 1; 0 -0.454545 31.181818 0];

B=[ 0 1.818182 0 4.545455]'; C=[ 1 0 0 0; 0 0 1 0]; D=[ 0 0 ]';

(2-21)

(2-22)

(2-20)

第 14 页

[z,p,k]=ss2zp(A,B,C,D) z =

-4.9497 0.0000 + 0.0000i 4.9497 0.0000 - 0.0000i p =

0 -5.6041 -0.1428 5.5651 k =

1.8182 4.5455

>> impulse(A,B,C,D )

第 15 页

1

234x 10

27

T o : O u t (1)

024681012

12345

x 1028T o : O u t (2)

Impulse Response

Time (sec)

A m p l i t u d e

图4 系统脉冲响应

由图可得,系统在单位脉冲的输入作用下,小车的位移和摆杆的角度都是发散的,同时,由以上程序的零极点得极点有一个大于零,因此系统不稳定。

3.2 对系统的稳定性进行分析:

A=[ 0 1 0 0; 0 -0.181818 2.672727 0; 0 0 0 1; 0 -0.454545 31.181818 0];

B=[ 0 1.818182 0 4.545455]'; C=[ 1 0 0 0; 0 0 1 0]; D=[ 0 0 ]'; >> Qc=ctrb(A,B); >> Qo=obsv(A,C); >> rank(Qc)

第 16 页

ans = 4

>> rank(Qo) ans = 4

因此系统为完全能观测和完全能控的。

4.状态反馈控制器的设计

4.1反馈控制结构

设系统为Cx

y Bu

Ax x =+=?

,其中x ,u ,y 分别为n 维状态变量,m

维输入向量和p 维输出向量;A,B,C 分别为n*n ,n*m ,p*n 矩阵

当将系统的控制量u 取成状态变量的线性函数u=v+Kx 称之为线性直接状态反馈,其中v 为m 维参考输入向量,K 为m*n 矩阵,成为反馈增益矩阵。

得到采用状态反馈后闭环系统的状态空间方程为:

Cx

y Bv x BK A x =++=?

)(

第 17 页

得出结论引入状态反馈后系统的输出方程没有变化,状态反馈将开环系统方程式中的系数矩阵A ,变成了闭环系统状态方程中的(A+BK ),特征方程从]det[A I -λ变为了)](det[BK A I +-λ,可以看出状态反馈后闭环系统的系统特征跟不仅与系统本身的结构参数有关,而且与状态反馈增益矩阵K 有关,正是利用这一点进行配置。

4.2单输入极点配置

控制系统的品质很大程度上取决于系统的闭环极点在复平面上的位置,因此在对系统进行综合讨论是,往往给出一组期望的极点,或根据时域指标提出一组期望的极点,所谓极点配置问题就是通过对反馈增益矩阵的设计,使闭环系统的极点处于复平面所期望的位置,以获得理想的动态特性。

由于用状态反馈对系统进行极点配置只涉及系统的状态方程,与输出方程无关,因此设系统的状态方程为

bu Ax x +=?

其中,

)

....,,(321n A λλλλ=是由n 个复数组成的集合,如果A

中的复数总是共轭成对出现,则称A 为对称复数集合,对于任意对称复数集合,如果存在状态反馈

U=kx+v

其中,k 为1*n 常数阵,再次反馈作用下,闭环系统为

bv x bk A x ++=?

)(

的极点集合为A ,即

第 18 页

A bk A =+)(σ

责成系统用状态反馈能任意配置极点,k 称为反馈增益阵 设计状态反馈控制器 设计要求:

当在小车上施加1N 的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度

由s

t s 4≤得,

s n t =ξω4

.又因为%

17.3)(2

1≤-

∧∧-ξξπ

e

所以得到85.0=ξ,

18.185.011

===ξωn 又因为配置极点

2

12,1∧-±-=ξωξωn n j K ,

n

K ξω)10~5(4,3-=

所以得到期望的闭环极点为:63.012,1j ±-=λ,

94,3-=λ 因

113

15.1874.11820))()()((23443223144321++++=++++=----s s s s a s a s a s a s s s s s λλλλ

由系统的特征方程:

432124

43210

000.181818

2.672727

00010

0.45454531.181818

0.18181831.181818 4.454545s

s sI A s a s a s as a s s

s s s s

-+--=

=++++--=+--

第 19 页

求变换阵T ,因为

],,,[3

2B A B A AB B Q c =,得到 3192.318856

.1418264.05454

.48856.1418264

.05454

.404285.42088.123306.08182.12088.123306.08182.10

------=

c Q

于是根据公式有

00

1

00118.00118.018.31118.018.3145.4---=

R

所以得到变换矩阵T

2200.00009

.0000

.00012

.0000.0220.0000.0000.0009.0000.00224.0000.0000.0009.0000.00224.0-----=

T

所以得到

]

8.19,6.149,6.191,113[],,,[11223344=----=a d a d a d a d k

所以求得状态反馈增益为 kT K =

K =[-2.5401 -4.3012 33.9233 6.0805] 因此所求的状态反馈为

U=kx+v=[-2.54 -4.30 33.92 6.08]x+v

4.3利用MATLAB 编写程序

A=[ 0 1 0 0; 0 -0.181818 2.672727 0; 0 0 0 1; 0 -0.454545

第 20 页

31.181818 0];

B=[ 0 1.818182 0 4.545455]';C=[ 1 0 0 0; 0 0 1 0];D=[ 0 0 ]'; J=[-9 0 0 0;0 -9 0 0;0 0 -1+0.63i 0;0 0 0 -1-0.63i]; pa=poly(A);pj=poly(J); Qc=[B A*B A^2*B A^3*B];

F=[pa(4) pa(3) pa(2) 1;pa(3) pa(2) 1 0;pa(2) 1 0 0;1 0 0 0]; T=Qc*F

K=[pj(5)-pa(5) pj(4)-pa(4) pj(3)-pa(3) pj(2)-pa(2)]*inv(T) Ac=[(A-B*K)];Bc=B;Cc=C;Dc=D; sys=ss(Ac,Bc,Cc,Dc); Tc=0:0.005:5;

[y,Tc,X]=impulse(sys,Tc); plot(Tc,X(:,1),'--');hold on; plot(Tc,X(:,2),'-.');hold on; plot(Tc,X(:,3),':');hold on; plot(Tc,X(:,4),'-')

legend('小车位置曲线','小车速度曲线','摆杆角度曲线','摆杆速度曲线')

T =

-44.5455 -0.0000 1.8182 0 -0.0000 -44.5455 -0.0000 1.8182 -0.0000 -0.0000 4.5455 0

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

最优化方法课程设计实验报告_倒立摆

倒立摆控制系统控制器设计实验报告

成员:陈乾睿 2220150423 郑文 2220150493 学院:自动化 倒立摆控制系统控制器设计实验 一、实验目的和要求 1、目的 (1)通过本设计实验,加强对经典控制方法(LQR控制器、PID控制器)和智能控制方法(神经网络、模糊控制、遗传算法等)在实际控制系统中的应用研究。(2)提高学生有关控制系统控制器的程序设计、仿真和实际运行能力. (3)熟悉MATLAB语言以及在控制系统设计中的应用。 2、要求 (1)完成倒立摆控制系统的开环系统仿真、控制器的设计与仿真以及实际运行结果 (2)认真理解设计内容,独立完成实验报告,实验报告要求:设计题目,设计的具体内容及实验运行结果,实验结果分析、个人收获和不足,参考资料。程序

清单文件。 二、实验内容 倒立摆控制系统是一个典型的非线性系统,其执行机构具有很多非线性,包括:死区、电机和带轮的传动非线性等。 本设计实验的主要内容是设计一个稳定的控制系统,其核心是设计控制器,并在MATLAB/SIMULINK环境下进行仿真实验,并在倒立摆控制实验平台上实际验证。 算法要求:使用LQR以外的其它控制算法。 三、倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的应用开发前景。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:非线性,不确定性,耦合性,开环不稳定性,约束限制。 经过相关论文和文献的查询,我们决定采用模糊控制的方法进行倒立摆的控制。

一级倒立摆的课程设计

第 1 页 目录 摘要............................................................................................... 3 1.一阶倒立摆的概述.. (4) 1.1倒立摆的起源与国内外发展现状................................. 4 1.2倒立摆系统的组成......................................................... 5 1.3倒立摆的分类:............................................................. 5 1.4倒立摆的控制方法:..................................................... 5 1.5本文研究内容及安排..................................................... 6 1.6系统内部各相关参数为:............................................. 6 2.一阶倒立摆数学模型的建立. (7) 2.1概述................................................................................. 7 2.2数学模型的建立............................................................. 8 2.3一阶倒立摆的状态空间模型:....................................11 2.4实际参数代入:........................................................... 12 3.定量、定性分析系统的性能.. (13) 3.1,对系统的稳定性进行分析........................................ 13 3.2 对系统的稳定性进行分析:...................................... 15 4.状态反馈控制器的设计. (16) 4.1反馈控制结构............................................................... 16 4.2单输入极点配置........................................................... 17 4.3利用MATLAB 编写程序 ............................................ 20 5.系统的仿真研究,校验与分析. (22) 5.1使用Matlab 中的SIMULINK 仿真............................ 22 6.设计状态观测器,讨论带有状态观测器的状态反馈系统的

倒立摆实验报告

倒立摆实验报告 机自82 组员:李宗泽 李航 刘凯 付荣

倒立摆与自动控制原理实验 一.实验目的: 1.运用经典控制理论控制直线一级倒立摆,包括实际系统模型的建立、根轨迹分析和控制器设计、频率响应分析、PID 控制分析等内容. 2.运用现代控制理论中的线性最优控制LQR 方法实验控制倒立摆 3.学习运用模糊控制理论控制倒立摆系统 4.学习MATLAB工具软件在控制工程中的应用 5.掌握对实际系统进行建模的方法,熟悉利用MATLAB 对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,非常直观的感受控制器的控制作用。 二. 实验设备 计算机及等相关软件 固高倒立摆系统的软件 固高一级直线倒立摆系统,包括运动卡和倒立摆实物 倒立摆相关安装工具 三.倒立摆系统介绍 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种

技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。 倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆环形倒立摆,平面倒立摆和复合倒立摆等,本次实验采用的是直线一级倒立摆。 倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性: 1) 非线性2) 不确定性3) 耦合性4) 开环不稳定性5) 约束限制 倒立摆控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,需要给系统设计控制器,本小组采用的控制方法有:PID 控制、双PID 控制、LQR控制、模糊PID控制、纯模糊控制 四.直线一级倒立摆的物理模型: 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励

一级倒立摆

摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。 本文围绕一级倒立摆系统,采用模糊控制理论研究倒立摆的控制,先是理论上的计算,然后建模,最后在MATLAB/Simulink下仿真,验证了可行性。 关键词:倒立摆,模糊控制,MATLAB仿真 第一章绪论 1.1 倒立摆系统的重要意义 倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。在控制过程中,它能有效地反映诸如可镇定性、鲁棒性、随动性以及跟踪等许多控制中的关键问题,是检验各种控制理论的理想模型。迄今人们已经利用经典控制理论、现代控制理论以及各种智能控制理论实现了多种倒立摆系统的控制稳定。倒立摆主要有:有悬挂式倒立摆、平行倒立摆、环形倒立摆、平面倒立摆;倒立摆的级数有一级、二级、三级、四级乃至多级;倒立摆的运动轨道可以是水平的,也可以是倾斜的:倒立摆系统己成为控制领域中不可或缺的研究设备和验证各种控制策略有效性的实验平台。同时倒立摆研究也具有重要的工程背景:如机器人的站立与行走类似双倒立摆系统;火箭等飞行器的飞行过程中,其姿态的调整类似于倒立摆的平衡等等。因此对倒立摆控制机理的研究具有重要的理论和实践意义。

1.2 倒立摆系统的控制方法 自从倒立摆产生以后,国内外的专家学者就不断对它进行研究,其研究主要集中在下面两个方面: (1)倒立摆系统的稳定控制的研究 (2)倒立摆系统的自起摆控制研究 而就这两方面而言,从目前的研究情况来看,大部分研究成果又都集中在第一方面即倒立摆系统的稳定控制的研究。目前,倒立摆的控制方法可分如下几类: (1)线性理论控制方法 将倒立摆系统的非线性模型进行近似线性化处理获得系统在平衡点附近的线性化模型,然后再利用各种线性系统控制器设计方法得到期望的控制器。如1976年Mori etc的把倒立摆系统在平衡点附近线性化利用状念空间的方法设计比例微分控制器。1980年,Furuta etc基于线性化方法,实现了二级倒立摆的控制。1984年,Furuta首次实现双电机三级倒立摆实物控制。1984年,wattes研究了LQR(Linear Quadratic Regulator)方法控制倒立摆。这类方法对一、二级的倒立摆(线性化后误差较小、模型较简单)控制时,可以解决常规倒立摆的稳定控制问题。但对于像非线性较强、模型较复杂的多变量系统(三、四级以及多级倒立摆)线性系统设计方法的局限性就十分明显了。 (2)预测控制和变结构控制方法 由于线性控制理论与倒立摆系统多变量、非线性之间的矛盾使人们意识到针对多变量、非线性对象,采用具有非线性特性的多变量控制解决多变量、非线性系统的必由之路。人们先后开展了预测控制、变结构控制和自适应控制的研究。预测控制是一种优化控制方法,强调实模型的功能而不是结构。变结构控制是一种非连续控制,可将控制对象从任意位置控制到滑动曲面上,仍然保持系统的稳定性和鲁棒性,但是系统存在颤抖。预测控制、变结构控制和自适应控制在理论上有较好的控制效果,但由于控制方法复杂,成本也高,不易在快速变化的系统上实时实现。 (3)智能控制方法

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

自动控制原理课程设计(倒立摆)

南京航空航天大学 课程名称:自动化控制原理课程设计 专业:探测制导与控制技术 时间:2016.6.20-2016.6.25

一、实验目的 1、 学会用SIMULINK 软件分析复杂的控制系统。 2、 会用状态反馈进行控制系统设计。 3、 了解状态观测器的实现。 二、实验设备 1、 计算机和打印机。 2、 实际倒立摆系统。 三、实验原理 假设原系统的状态空间模型为 BU AX X += ,若系统是完全能控的,则引入状态反馈调节器KX R U -= 这时,闭环系统的状态空间模型为???=+-= CX Y BR X BK A X )( 设计任务是要计算反馈K ,使A-BK 的特征值和期望的极点P 相同。通过将倒立摆线性数学模型输入到MATLAB 中,使用K=place(A,B,P)函数算出反馈矩阵反馈增,K 和期望极点向量P 应与状态变量X 具有相同的维数。。 本系统可令输入R=0,即只讨论初始值对系统的作用。 倒立摆系统模型如下: 1、倒立摆线性模型: ? ? ??????? ??? ----=3444.16254.42122.822122.822760.07062.38751.168751.6510000100A ????????????-=5125.62184.500B ??????=00100001C ? ?? ???=00D 2、倒立摆非线性模型: ) (cos 00144.00061.02120 01θθθ--+= ? ?B A 2121121222)sin(2.1)cos(2.1sin 2.61? ? ? ?? ? ?-----=θθθθθθθθθθ 其中: ? ?---++=11212110]0168.0)cos()sin(00144.0[sin 2979.00236.0θθθθθθθu A 2221212210])sin()[cos(0012.0sin )cos(0734.0? ? ---+--=θθθθθθθθθB

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

倒立摆的设计报告

摘要:倒立摆是进行控制理论研究的典型实验平台。由于倒立摆系统的控制策略和杂技运动员顶杆平衡表演的技巧有异曲同工之处,极富趣味性,而且许多抽象的控制理论概念如系统稳定性、可控性和系统抗干扰能力等等,都可以通过倒立摆系统实验直观的表现出来,因此在欧美发达国家的高等院校,它已成为必备的控制理论教学实验设备。学习自动控制理论的学生通过倒立摆系统实验来验证所学的控制理论和算法,非常的直观、简便,在轻松的实验中对所学课程加深了理解。 本论文在自动控制原理校正的基本思想上,通过采用根轨迹校正法,频域法,分别对倒立摆系统进行校正,使之满足性能要求。 关键词:倒立摆,自动控制,根轨迹,频域法 1、引言 倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。 法控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=-2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

倒立摆课程设计

摘要 倒立摆系统作为一个具有绝对不稳定、高阶次、多变量、强祸合 的典型的非线性系统,是检验新的控制理论和方法的理想模型,所以 本文选择倒立摆系统作为研究对象具有重要的理论意义和应用价值。 相对于其他研究倒立摆系统的控制方法,Backstepping方法最大的优点是不必对’系统进行线性化,可以直接对系统进行递推性的控制器设计,保留了被控对象中有用的非线性项,使得控制设计更接近实际情况,而且所设计的控制器具有很强的鲁棒性。 本文主要利用Backstepping方法设计了直线型一级倒立摆系统控制器并基于/ MATLAB Simulink对系统进行了离线仿真。本文所作的主要工作或要达到的主要目的是: (一)建立直线型一级倒立摆系统的数学模型,并利用Backstepping方法设计了该倒立摆系统的控制器,然后对闭环系统进行了数值仿真并与其他方法进行了数值仿真分析比较。与当前的倒立摆研究成果相比,具有研究方法新颖、控制效果好的特点。 (二)本文利用所设计的非线性控制器在/ MATLAB Simulink环境下对系统进行了离线仿真分析,并与固高公司提供的算法进行了仿真效果比较。 关键词:倒立摆系统,Backstepping, / MATLAB Simulink,实时控制

目录 1.倒立摆系统的简介 (1) 1.1倒立摆系统的研究背景 (1) 1.2倒立摆系统的研究历史、现状及发展趋势 (2) 1.3倒立摆的主要控制方法 (4) 2.一级倒立摆数学模型 (6) 2.1一级倒立摆系统的组成 (6) 2.2一级倒立摆系统数学模型的建立 (7) 3.系统控制器的设计和闭环系统的数值仿真 (9) 4.直线型一级倒立摆系统的Simulink模型和离线仿真 (12) 4.1基于线性控制器对线性系统的离线仿真 (12) 4.2基于线性控制器对非线性系统的离线仿真 (15) 4.3基于非线性控制器对非线性系统的离线仿真 (16) 5.模型的优点 (18) 6.结论和展望 (19) 7.参考文献 (20)

一级直线倒立摆系统模糊控制器设计---实验指导书

一级直线倒立摆系统模糊控制器设计 实验指导书

目录 1 实验要求................................................................................. . (3) 1.1 实验准备................................................................................. . (3) 1.2 评分规则................................................................................. . (3) 1.3 实验报告容................................................................................. .. (3) 1.4 安全注意事项................................................................................. .. (3) 2 倒立摆实验平台介绍................................................................................. .. (4) 2.1 硬件组成................................................................................. . (4) 2.2 软件结构................................................................................. . (4) 3 倒立摆数学建模(预习 容) .............................................................................. (6) 4 模糊控制实验................................................................................. (8) 4.1 模糊控制器设计(预习容)............................................................................... (8) 4.2 模糊控制器仿真................................................................................. (12) 4.3 模糊控制器实时控制实验................................................................................. .. (12) 5 附录:控制理论中常用的MATLAB 函

环形一级倒立摆设计.

1 绪论 随着计算机技术和通信技术的飞速发展,控制理论的研究不断深入,自动 控制技术在农业、工业、军队和家庭等社会各领域得到了广泛应用,对于提高 劳动生产率做出了重要贡献。 倒立摆是一种理想的控制对象平台,它结构简单、成本较低,可以有效地 检验众多控制方法的有效性。对倒立摆系统这样一个典型的多变量、快速、非 线性和自然不稳定系统的研究,无论在理论上和方法上都具有重要意义。这不 仅因为其级数增加而产生的控制难度是人类对其控制能力的有力挑战,更是因 为在实现其稳定控制的过程中,众多的控制理论和方法被不断应用,新的控制 理论和方法因而层出不穷。各种控制理论和方法都可以在倒立摆这个控制对象 平台上加以实现和检验,并可以促成控制理论和方法相互间的有机结合,进而 使得这些新方法、新理论可以应用到更加广泛的受控对象中。 1.1 倒立摆系统的分类 随着倒立摆系统控制方法研究的不断深入,倒立摆系统的种类也逐渐发展 为多种形式。目前研究的倒立摆大多为在二维空间仁即平面)内摆动的摆。 考虑倒立摆的不同结构形式,倒立摆系统可以分为以下几种类型 1)小车倒立摆系统仁或称为“直线倒立摆系统”) 小车倒立摆系统主要由小车和摆杆两部分构成。其中,摆杆可以是一级、 两级、三级、四级甚至多级。摆杆的级数越多,控制难度越大,而摆杆的长度 也可能是变化的。控制目标一般是通过给小车施加一个水平方向的力,使小车 在期望的位置上稳定,而摆杆达到竖直向上的动态平衡状态。 2)旋转倒立摆系统仁或称为“环形倒立摆系统”) 旋转倒立摆系统是在小车倒立摆系统的基础上发展起来的。与小车倒立摆不同,旋转倒立摆将摆杆安装在与电机转轴相连的水平旋臂上,通过电机带动 旋臂在水平面的转动来控制摆杆的倒立,摆杆可以在垂直平面内旋转。旋转倒 立摆将小车倒立摆的平动控制改为旋转控制,使得整个系统更为复杂和不稳定,增加了控制的难度。

相关文档
最新文档