高等数学第十一章 第二十六讲 正项级数的比值判别法习题

高等数学第十一章 第二十六讲 正项级数的比值判别法习题

《高等数学》课程课时教案

1

正项级数的常用审敛法和推广比值审敛法的比较

正项级数的常用审敛法和推广比值审敛法的比较 摘 要 数项级数是数的加法从有限代数和到无限和的自然推广.由于无限次相加,许多有限次相加的性质便在计算无限和时发生了改变.首先,有限次相加的结果总是客观存在的,而无限次相加则可能根本不存在有意义的结果。 这就是说,一个级数可能是收敛或发散的.因而,判断级数的敛散性问题常常被看作级数的首要问题。 在通常的微积分学教程中,审敛正项级数的敛散性有许多有效的方法,比如达朗贝尔审敛法,拉贝审敛法等,本文就达朗贝尔审敛法和拉贝审敛法与几个新审敛法进行一些适当的比较总结,另对其应用做一些举例验证。 关键词 数学分析 正项级数 推广比值审敛法 一.预备知识 1.正项级数的定义 如果级数1n n x ∞ =∑的各项都是非负实数,即0,1,2,, n x n ≥= 则称 此级数为正项级数 2..收敛定理 正项级数收敛的充分必要条件是它的部分和数列有上界。 若正项级数的部分和数列无上界,则其必发散到+∞ 例 级数22(1)(1) n n n n ∞ =??-+? ∑是正项级数。它的部分和数列的通项 21 12212ln ln ln 2ln ln 2(1)(1)11n n n k k k k k n s k k k k n ++==?++??=<- =-,若1 lim n n n U L U +→∞=,当 L<1,级数收敛,当L>1,级数发散,L=1,不能审敛。

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

正项级数敛散性地判别方法

正项级数敛散性的判别方法 摘要:正项级数是级数容中的一种重要级数,它的敛散性是其基本性质。正项级数敛散性的判别方法虽然较多,但是用起来仍有一定的技巧,归纳总结正项级数敛散性判别的一些典型方法,比较这些方法的不同特点,总结出一些典型判别法的特点及其适用的正项级数的特征。根据不同级数的特点分析、判断选择适宜的方法进行判别,才能事半功倍。 关键词:正项级数;收敛;方法;比较;应用 1引言 数项级数是伴随着无穷级数的和而产生的一个问题,最初的问题可以追溯到公元前五世纪,而到了公元前五世纪,而到了公元17、18世纪才有了真正的无穷级数的理论。英国教学家Gregory J (1638—1675)给出了级数收敛和发散两个术语从而引发了数项级数敛散性广泛而深入的研究,得到了一系列数项级数的判别法。因而,判断级数的敛散性问题常常被看作级数的首要问题。我们在书上已经学了很多种正项级数敛散性的判定定理,但书上没有做过多的分析。我们在实际做题目时,常会有这些感觉:有时不知该选用哪种方法比较好;有时用这种或那种方法时,根本做不出来,也就是说,定理它本身存在着一些局限性。因此,我们便会去想,我们常用的这些定理到底有哪些局限呢?定理与定理之间会有些什么联系和区别呢?做题目时如何才能更好得去运用这些定理呢?这就是本文所要讨论的。 2正项级数敛散性判别法 2.1判别敛散性的简单方法 由级数收敛的基本判别定理——柯西收敛准则:级数 1 n n u ∞ =∑收敛 ?0,,,,N N n N p N ε+?>?∈?>?∈有12n n n p u u u ε+++++ +<。取特殊的1p =,可 得推论:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =。 2.2比较判别法 定理一(比较判别法的极限形式): 设 1 n n u ∞=∑和1 n n v ∞ =∑为两个正项级数,且有lim n n n u l v →∞=,于是 (1)若0l <<+∞,则 1 n n u ∞ =∑与 1 n n v ∞ =∑同时收敛或同时发散。 (2)若0l =,则当 1 n n v ∞ =∑收敛时,可得 1 n n u ∞ =∑收敛。

高等数学下册典型例题精选集合.doc

最新高等数学下册典型例题精选集合 第八章 多元函数及其微分法 最大者泄义域,并在平面上画出泄义域的图形。 A - 77 Z[ = J4x_),的定义域是y 2 < 4x z 2二丿 的定义域是 从而z = :)-的定义域是Z]=』4x-护 与z? = / 1 定义域 的公共部分,即 V4x >y>0 x 2 > y>0 例 2 设 z 二 x+y + /(x 一 y),当 y = 0吋 z = ,求 z. 解:代入y = 0时Z = F,得〒=兀+ /(兀),即/(兀)=亍一匕 所以 z = (x- y)2 +2y. 2 2 例3求lim —— >4o J ,+)" +1 _ [ lim(Jx 2 + y 2 +1 +1) = 2 XT O V 尸0 例1求函数z 解:此函数可以看成两个函数Z 严』4x-y2与Z2 =的乘积。 兀-">0,即兀2 >y >0o y>0 lim (* + )(J 兀2 + y2 + ] 4- 1) 解: XT O 原式=厂0 (J 对 + )厂 +1 -1)( J 兀~ + + ] + 1)

法2化为一元函数的极限计算。令衣+八]=(,则当 x —0, y —?0 吋,t ―> 1 o 『2 _1 原式=lim --------- = lim(r +1) = 2。 t —I / — ] i ―I 例 4 求 lim r 兀+厂 ,T() 丿 解:法1用夹逼准则。因为2 | xy \< x 2 2 + y 2,所以 2 9 0<

而lim凶=0,从而lim| |=0 XT O 2 XT O厂 + \厂 〉?T O 〉?T O兀十〉 于是lim「1=0 牙-叮兀.+ y 尸0 丿 法2利用无穷小与有界函数的乘积 是无穷小的性质。 因为2|xy|< x2 + y2所以—^― Q +y =lim( AT O 〉?T O 尢y ?x) = 0 例5研究lim^- :护+y 解:取路径y二二一x + kxSke R± ,则lim 小 = [由k是任意非零 F *+y k yTO 丿 的常数,表明原极限不存在。a, 又limx = 0 XT O 〉T() 所以

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

高等数学 课后习题答案第七章

习题七 1. 在空间直角坐标系中,定出下列各点的位置: A (1,2,3); B (-2,3,4); C (2,-3,-4); D (3,4,0); E (0,4,3); F (3,0,0). 解:点A 在第Ⅰ卦限;点B 在第Ⅱ卦限;点C 在第Ⅷ卦限; 点D 在xOy 面上;点E 在yOz 面上;点F 在x 轴上. 2. xOy 坐标面上的点的坐标有什么特点?yOz 面上的呢?zOx 面上的呢? 答: 在xOy 面上的点,z =0; 在yOz 面上的点,x =0; 在zOx 面上的点,y =0. 3. x 轴上的点的坐标有什么特点?y 轴上的点呢?z 轴上的点呢? 答:x 轴上的点,y =z =0; y 轴上的点,x =z =0; z 轴上的点,x =y =0. 4. 求下列各对点之间的距离: (1) (0,0,0),(2,3,4); (2) (0,0,0), (2,-3,-4); (3) (-2,3,-4),(1,0,3); (4) (4,-2,3), (-2,1,3). 解:(1 )s = (2) s == (3) s == (4) s ==5. 求点(4,-3,5)到坐标原点和各坐标轴间的距离. 解:点(4,-3,5)到x 轴,y 轴,z 轴的垂足分别为(4,0,0),(0,-3,0),(0,0,5). 故 02 s = x s == y s == 5z s ==. 6. 在z 轴上,求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解:设此点为M (0,0,z ),则 222222(4)1(7)35(2)z z -++-=++-- 解得 149z = 即所求点为M (0,0,14 9). 7. 试证:以三点A (4,1,9),B (10,-1,6),C (2,4,3)为顶点的三角形是等腰直角三角形. 证明:因为|AB |=|AC |=7.且有 |AC |2+|AB |2=49+49=98=|BC |2. 故△ABC 为等腰直角三角形. 8. 验证:()()++=++a b c a b c . 证明:利用三角形法则得证.见图 7-1 图7-1 9. 设2, 3.u v =-+=-+-a b c a b c 试用a , b , c 表示23.u v -

高等数学试题库

高等数学试题库 第二章 导数和微分 一.判断题 2-1-1 设物体的运动方程为S=S(t),则该物体在时刻t 0的瞬时速度 v=lim lim ()()??????t t s t s t t s t t →→=+-0000与 ?t 有关. ( ) 2-1-2 连续函数在连续点都有切线. ( ) 2-1-3 函数y=|x|在x=0处的导数为0. ( ) 2-1-4 可导的偶函数的导数为非奇非偶函数. ( ) 2-1-5 函数f(x)在点x 0处的导数f '(x 0)=∞ ,说明函数f(x)的曲线在x 0点处的切 线与x 轴垂直. ( ) 2-1-6 周期函数的导数仍是周期函数. ( ) 2-1-7 函数f(x)在点x 0处可导,则该函数在x 0点的微分一定存在. ( ) 2-1-8 若对任意x ∈(a,b),都有f '(x)=0,则在(a,b)内f(x)恒为常数. ( ) 2-1-9 设f(x)=lnx.因为f(e)=1,所以f '(e)=0. ( ) 2-1-10(ln )ln (ln )'ln x x x x x x x x x 2224 3 21 '=-=- ( ) 2-1-11 已知y= 3x 3 +3x 2 +x+1,求x=2时的二阶导数: y '=9x 2 +6x+1 , y '|x=2=49 所以 y"=(y ')'=(49)'=0. ( ) 二.填空题 2-2-1 若函数y=lnx 的x 从1变到100,则自变量x 的增量 ?x=_______,函数增量 ?y=________. 2-2-2 设物体运动方程为s(t)=at 2 +bt+c,(a,b,c 为常数且a 不为0),当t=-b/2a 时, 物体的速度为____________,加速度为________________. 2-2-3 反函数的导数,等于原来函数___________. 2-2-4 若曲线方程为y=f(x),并且该曲线在p(x 0,y 0)有切线,则该曲线在 p(x 0,y 0) 点的切线方程为____________. 2-2-5 若 lim ()() x a f x f a x a →-- 存在,则lim ()x a f x →=______________. 2-2-6 若y=f(x)在点x 0处的导数f '(x)=0,则曲线y=f(x)在[x 0,f(x 0)]处有 __________的切线.若f '(x)= ∞ ,则曲线y=f(x)在[x 0,f(x 0)]处有 _____________的切线. 2-2-7 曲线y=f(x)由方程y=x+lny 所确定,则在任意点(x,y)的切线斜率为 ___________在点(e-1,e)处的切线方程为_____________. 2-2-8 函数

级数审敛法小结

级数审敛法小结 不好意思,又要打扰大家一下了,针对本学期期中考试而言,大致分为两大部分:级数,常微分方程。其中级数(应该都已经讲完了)占得比重相对少些大概有45%左右,还希望大家能抽空复习一下,毕竟这一章的内容有些难度.下面的内容是从一些资料书中总结的一些小内容,希望大家能抽空看一下,谢谢. 首先:针对常数项级数而言要明白它的分类:正项级数,任意项级数(其中,包含特殊的交错级数).对于不同的级数,他们有不同的审敛法. 第一节:正项级数 (当然我们有时也会遇到一些负项级数,他们的判断敛散性的方法和正项级数相同,只是需要我们在运用前,把他们所有的项全部变成正的就可以了) (注意以下方法要求大家在判断出Un的极限为0的时候用哦,若Un的极限不为0,级数发散。) A.定义法(注意这个方法适用于所有的级数,但不一定解得出.): 首先,了解一个充要条件:∑∞ Un收敛?部分和数列{Sn}有界,针对 n =1 这个东西,用的地方不多后面会有介绍。 B.比较审敛法:(这里首先强调一下这里介绍的方法完全是针对 正项级数而言,不能滥用)。对于比较审敛法,也许不要按书上的用起来会更方便一点。简单一句话:我们的目的就是要

找要判断的级数的等价无穷小,或是证明这个级数是一个已知收敛级数的高阶无穷小也可。(当然这是证明级数收敛时用的,这里就要求我们要有能一眼猜出级数敛散性的能力,下面会教大家如何第一眼就可以看出绝大多数级数的敛散性) 例1:设k ,m 为正整数,.0,000 >>b a (这里主要是保证以下的 多项式恒为正)是推导出级数 ∑ ∞ =--++++++1 1 10110......n k k k m m m b n b n b a n a n a 收敛的充要条件。 解:设k k k m m m n b n b n b a n a n a u (1) 101 10+++++= --。取m k n n v -= 1,因为0 0lim b a v u n n n = ∞ →,所以 ∑∑∞ =∞ =1 1 ,n n n n v u 具有相同的敛散性,由Vn 收敛的充要条件是k-m>1, 所以所求级数的收敛的充要条件是k-m>1. (这是一个简单的例题,可是他说明了两个问题:1,凡是一般项Un 是有理分式的,我们一眼就能看出级数是否收敛例如级数 ∑ ∞ =---+1 3 2 3 5 5 23) ()12()1(n n n n n n 是收敛的,这因为分子的最高次幂是13,分母 的是15,15-13=2>1 ,故收敛。(至于解题时,我们可以模仿本 题构造Vn 去做)2,这个例题的解法具有一般性。设0→n u ,我 们只需要找到Un 的一个同阶无穷小或是等价无穷小Vn ,如果Vn 的敛散性我们已经掌握,问题解决。 大家可以试着用等价无穷小的方法接一下以下几题: (1));1tan( )3(,,)cos 1(),2(,,sin )1(13 2 2 2112-+??? ? ??-??? ??∑∑∑∞ =∞=∞ =n N n n a n n a n a n

关于数项级数敛散性的判定

关于数项级数敛散性的判定 1、问题的提出 数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的. 2、熟练掌握并准确应用级数的概念、性质和判定定理 2.1数项级数收敛的定义 数项级数 ∑∞ =1 n n u 收敛?数项级数 ∑∞ =1 n n u 的部分和数列{}n S 收敛于S . 这样数项级数的敛散性问题就可以转化为部分和数列{} n S 的极限是否存在的问题的讨论,但由于求数列前n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少. 2.2数项级数的性质 (1)若级数 ∑∞ =1n n u 与 ∑∞ =1 n n v 都收敛,则对任意常数c,d, 级数 ∑∞ =+1 )(n n n dv cu 亦收敛,且 ∑∑∑∞ =∞ =∞ =+=+1 1 1)(n n n n n n n v d u c dv cu ;相反的,若级数∑∞ =+1 )(n n n dv cu 收敛,则不能够推出级数∑∞ =1 n n u 与 ∑∞ =1 n n v 都收敛. 注:特殊的,对于级数 ∑∞ =1n n u 与 ∑∞ =1 n n v ,当两个级数都收敛时, ∑∞ =±1 )(n n n v u 必收敛;当其中一个 收敛,另一个发散时, ∑∞ =±1 )(n n n v u 一定发散;当两个都发散时,∑∞ =±1 )(n n n v u 可能收敛也可能发散. 例1 判定级数∑∞ =+1)5131(n n n 与级数∑∞ =+1)21 1(n n n 的敛散性. 解:因为级数∑∞ =131n n 与级数∑∞=15 1n n 收敛,故级数∑∞ =+1)51 31(n n n 收敛.

高等数学第七章习题详细解答

第七章习题答案 习题7.0 1.下列各种情形中,P 为E 的什么点? (1)如果存在点P 的某一邻域()U P ,使得()?c U P E (c E 为E 的余集); (2)如果对点P 的任意邻域()U P ,都有, ()(),C U P E U P E φφ≠≠ ; (3)如果对点P 的任意邻域()U P ,都有. 解 (1)P 为E 的外点;(2)P 为E 的边界点;(3)P 为E 的聚点。 2.判定下列平面点集的特征(说明是开集、闭集、区域、还是有界集、无界集等?)并分别求出它们的导集和边界. (1) (){} ,0≠x y y ; (2) (){} 22,620≤+≤x y x y ; (3) (){} 2,≤x y y x ; (4) ()(){ }()(){ } 2 2 22,11,24+-≥?+-≤x y x y x y x y . 解 (1) 是开集,是半开半闭区域,是无界集,导集为2R ,边界集为 (){},0=x y y ;(2)既不是开集也不是闭集,是半开半闭区域,是有界集,导集 为(){} 22,620≤+≤x y x y ,边界集为(){} 2222,=6=20++,x y x y x y ;(3) 是闭集,是半开半闭区域,是无界集,导集为集合本身,边界集为(){} 2,=x y y x ;是闭集,是闭区域,是有界集,导集为集合本身,边界集为 ()() (){ } 2 2 22,11,24+-=+-=x y x y x y 习题7.1 1. 设求 1. 解 令 ,=-= y u x y v x ,解得,11= =--u uv x y v v ,故 ()22 ,11????=- ? ?--???? u uv f u v v v ,即()()21+,1=-u v f u v v ,所以,()()21+y ,1=-x f x y y φ≠-}){()(P E P U 22,,y f x y x y x ? ?-=- ???(,).f x y

关于高等数学经典方法与典型例题归纳

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其自 动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22 +- ++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2 2 22222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极限过 于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =?? ? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有:

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发 散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数)(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性 定理 3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。

级数敛散性判别方法的归纳

级数敛散性判别方法的归纳-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

级数敛散性判别方法的归纳 (西北师大) 摘 要:无穷级数是《数学分析》中的一个重要组成部分,它是研究函数、进行数值运算及数据分析的一种工具,目前,无穷级数已经渗透到科学技术的很多领域,因而级数收敛的判别在级数的研究中亦显得尤为重要,然而判定级数敛散性的方法太多,学者们一时很难把握,本文对级数的敛散性的判别方法作了全面的归纳,以期对学者们有所帮助。 关键词:级数 ;收敛;判别 ;发散 一. 级数收敛的概念和基本性质 给定一个数列{n u },形如 n u u u +++21 ① 称为无穷级数(常简称级数),用∑∞ =1 n n u 表示。无穷级数①的前n 项之和,记为 ∑==n n n n u s 1 =n u u u +++ 21 ② 称它为无穷级数的第n 个部分和,也简称部分和。若无穷级数②的部分和数列{n s }收敛于s.则称无穷级数∑∞ =1n n u 收敛,若级数的部分和发散则称级数∑n v 发散。 研究无穷级数的收敛问题,首先给出大家熟悉的收敛级数的一些基本定理: 定理1 若级数∑n u 和∑n v 都收敛,则对任意的常数c 和d ,级数 )(n n dv cu ∑+亦收敛,且)(n n du cu ∑+=c ∑n u +d ∑n v 定理2 去掉、增加或改变级数的有限个项并不改变级数的敛散性

定理3 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和。 定理4 级数①收敛的充要条件是:任给ε>0,总存在自然数N ,使得当m >N 和任意的自然数p ,都有p m m m u u u ++++++ 21<ε 以上是收敛级数的判别所需的一些最基本定理,但是,在处理实际问题中,仅靠这些是远远不够的,所以在级数的理论中必须建立一系列的判别法,这就是本文的主要任务。 由于级数的复杂性,以下只研究正项级数的收敛判别。 二 正项级数的收敛判别 各项都是由正数组成的级数称为正项级数,正项级数收敛的充要条件是:部分和数列{n s }有界,即存在某正整数M ,对一切正整数 n 有n s <M 。从基本定理出发,我们可以由此建立一系列基本的判别法 1 比较判别法 设∑n u 和∑n v 是两个正项级数,如果存在某正数N ,对一切n >N 都有 n n v u ≤,则 (i )级数∑n v 收敛,则级数∑n u 也收敛; (ii )若级数∑n u 发散,则级数∑n v 也发散。 例 1 . 设∑∞ =1 2 n n a 收敛,证明:∑ ∞ =2 ln n n n n a 收敛(n a >0). 证明:因为 0<∑∞ =1 2 n n a <)ln 1(212 2n n a n +

关于正项级数敛散性的判别法

关于正项级数敛散性的判别法 作者: 学号: 单位: 指导老师 摘要:级数是数学分析中的主要内容之一,我们学习过的数项级数敛散性判别法有许多种,柯西(Cauchy )判别法、达朗贝尔(D'Alembert )判别法、高斯(Gause )判别法、莱布尼兹(Leibniz )判别法、阿贝尔(Abel )判别法等,对数项级数敛散性判别法进行归纳,使之系统化. 关键词:正项级数;敛散性;判别法 1引言 设数项级数 121...++... n n n a a a a ∞ +==+∑的n 项部分和为: 121 ......n n n i i S a a a a ==++++= ∑.若n 项部分和数列为{n S }收敛,即存在一个实数 S ,使lim n x S S →∞ =.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情 况下,我们称S 为级数的和,可见无穷级数是否收敛,取决于lim n x S →∞ 是否存在, 从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]: 数项级数 1 n n a ∞ =∑收敛? 0,, , N N n N p N ε+ + ?>?∈ ?>?∈对,有 +1+2+ +...+

设数项级数 1 n n a ∞ =∑为正项级数( ) 0n a ≥,则级数的n 项部分和数列{}n S 单调递 增,由数列的单调有界定理,有 定理2.1:正项级数n 1u n ∞ =∑收敛?它部分和数列{}n S 有上界. 证明:由于,...), 2,1(0u i =>i 所以{n S }是递增数列.而单调数列收敛的充要条 件是该数列有界(单调有界定理),从而本定理得证 . 由定理2.1可推得 定理2.2(比较判别法): 设两个正项级数n 1 u n ∞ =∑和n 1 n v ∞ =∑,且 , n ,N N N ≥?∈?+ 有n n cv u ≤,c 是正常数, 则 1)若级数n 1 n v ∞ =∑收敛,则级数n 1 u n ∞ =∑也收敛; 2)若级数n 1 u n ∞ =∑发散,则级数n 1 n v ∞ =∑也发散. 证明:由定理知,去掉,增添或改变级数n 1 u n ∞ =∑的有限项,,则不改变级数n 1 u n ∞ =∑的敛散性.因此,不妨设 , + ∈?N n 有 n n cv u ≤,c 是正常.设级数n 1 n v ∞=∑与n 1 u n ∞ =∑的n 项部分和分部是n B A 和n ,有上述不等式有, n n n n cB v v v c cv cv cv u A =+++=++≤+++=)...(......u u 212121n . 1)若级数n 1 n v ∞ =∑收敛,根据定理1,数列{n B }有上届,从而数列{n A }也有上届, 再根据定理1,级数n 1 u n ∞ =∑收敛; 2)若级数n 1 u n ∞ =∑发散,根据定理1,数列{n A }无上届,从而数列{n B }也无上届,

高等数学(本科)第七章课后习题解答

习题7.1 1.在空间直角坐标系中,指出下列各点位置的特点. ()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F . 【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限. ()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D . 【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离. 【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为 ()2,3,0-、在zox 坐标面上的垂足为()2,0,1--; ()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂 足为()2,0,0-; ()2,3,1--M 到x 轴的距离为()13232 2=-+; ()2,3,1--M 到y 轴的距离为()()52122=-+-; ()2,3,1--M 到z 轴的距离为 ()10312 2=+-. 3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---; ()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-. (2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3; ()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--; ()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.

高等数学经典求极限方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】) sin 1tan 1(sin tan lim sin 1tan 1lim 3030 x x x x x x x x x x +++-=+-+→→

最新02 第二节 正项级数的判别法

第二节 正项级数的判别法 一般情况下,利用定义和准则来判断级数的收敛性是很困难的,能否找到更简单有效的判别方法呢?我们先从最简单的一类级数找到突破口,那就是正项级数. 分布图示 ★正项级数 ★比较判别法 ★例1 ★例2 ★例3 ★例4 ★例5 ★比较判别法的极限形式 ★例6 ★例7 ★例8 ★例9 ★例10 ★比值判别法 ★例11 ★例12 ★例13 ★根值判别法 ★例14 ★例15 ★例16 ★内容小结 ★课堂练习 ★习题7-2 内容要点 一、正项级数收敛的充要条件是:它的部分和数列}{n s 有界. 以此为基础推出一系列级数收敛性的判别法: 比较判别法;比较判别法的极限形式;推论(常用结论) 比较判别法是判断正项级数收敛性的一个重要方法. 对一给定的正项级数,如果要用比较判别法来判别其收敛性,则首先要通过观察,找到另一个已知级数与其进行比较,并应用定理2进行判断. 只有知道一些重要级数的收敛性,并加以灵活应用,才能熟练掌握比较判别法. 至今为止,我们熟悉的重要的已知级数包括等比级数、调和级数以及-p 级数等. 要应用比较判别法来判别给定级数的收敛性,就必须给定级数的一般项与某一已知级数的一般项之间的不等式. 但有时直接建立这样的不等式相当困难,为应用方便,我们给出比较判别法的极限形式. 使用比较判别法或其极限形式,需要找到一个已知级数作比较,这多少有些困难. 下面介绍的几个判别法,可以利用级数自身的特点,来判断级数的收敛性. 比值判别法(达朗贝尔判别法):适合1+n u 与n u 有公因式且n n n u u 1 lim +∞→ 存在或等于无穷 大的情形. 根值判别法(柯西判别法):适合n u 中含有表达式的n 次幂,且ρ=∞ →n n n u lim 或等于 ∞+的情形. 积分判别法:对于正项级数 ,1 ∑∞ =n n a ,如果}{n a 可看作由一个在),1[+∞上单调减少函数

高等数学(本科)第七章课后习题解答

高等数学(本科)第七章课后习题解答 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

习题7.1 1.在空间直角坐标系中,指出下列各点位置的特点. ()0,5,0-A ;()0,3,3-B ;()3,0,6-C ;()0,0,4D ;()7,5,0-E ;()9,0,0F . 【解】A 点在y 轴上;B 点在xoy 坐标面上;C 点在zox 坐标面上;D 点在x 轴上;E 点在yoz 坐标面上;F 点在z 轴上. 2.指出下列各点所在的卦限. ()1,3,2-A ;()2,1,7--B ;()1,3,2---C ;()3,2,1--D . 【解】A 点在第五卦限;B 点在第三卦限;C 点在第七卦限;D 点在第六卦限. 3.自点()2,3,1--M 分别作xoy 、yoz 、zox 坐标面和x 、y 、z 坐标轴的垂线,写出各垂足的坐标,并求出点M 到上述坐标面和坐标轴的距离. 【解】()2,3,1--M 在xoy 坐标面上的垂足为()0,3,1-、在yoz 坐标面上的垂足为()2,3,0-、在zox 坐标面上的垂足为()2,0,1--; ()2,3,1--M 在x 轴的垂足为()0,0,1-、在y 轴的垂足为()0,3,0、在z 轴的垂足为()2,0,0-; ()2,3,1--M 到x 轴的距离为()13232 2=-+; ()2,3,1--M 到y 轴的距离为()()52122=-+-; ()2,3,1--M 到z 轴的距离为()103122=+-. 3.已经点()2,1,3--M .求:(1)点M 关于各坐标面对称点的坐标;(2)点M 关于各坐标轴对称点的坐标;(3)点M 关于坐标原点的对称点的坐标. 【解】(1)()2,1,3--M 关于xoy 面对称点的坐标是(),2,1,3-; ()2,1,3--M 关于yoz 面对称点的坐标是(),2,1,3---; ()2,1,3--M 关于zox 面对称点的坐标是(),2,1,3-. (2)()2,1,3--M 关于x 轴对称点的坐标是(),2,1,3; ()2,1,3--M 关于y 轴对称点的坐标是(),2,1,3--; ()2,1,3--M 关于z 轴对称点的坐标是(),2,1,3--.

相关文档
最新文档