涡流传感器

涡流传感器
涡流传感器

电涡流传感器的研究与探讨汇总

档案编号: 毕业设说明书题目:电涡流传感器的研究与探讨 系别:电气工程系 专业:生产过程自动化 班级: 姓名: 指导教师: (共18 页) 年月日

摘要:电涡流传感器是基于涡流效应的新型传感器。由于它具有结构简单、抗干扰能力强、测量精度高、非接触、响应速度快、不受油污等介质影响等优点,因而得到了广泛的应用。但目前的电涡流位移传感器存在着测量范围小,传感器存在非线性问题,这给传感器的应用造成了一定的影响。 本文首先通过对实验室所用的电涡流传感器实验模板的电路进行研究和优化,进而提高电路的抗干扰能力使测量结果的更加准确。其次针对电涡流位移传感器存在的测量范围小,传感器存在非线性问题的改善提出设想即:先对电涡流位移传感器用于位移检测的工作原理及应用进行分析,研究了线圈截面形状及参数变化对涡流传感器线性测量范围和灵敏度的影响;再从电路设计方面提高传感器的稳定性及抗干扰能力,从而为位移测量扩展量程打下基础;最后通过对电涡流传感器测位移实验进行分析处理得出电涡流传感器位移测量范围的扩展方法和改善电涡流传感器非线性问题的方法。 关键词:电涡流传感器; 位移测量; 非线性; 测量范围 Abstract: the eddy current sensor is a new type of sensor based on eddy current effect. Because it is simple in structure, strong anti-jamming capability, high accuracy, non-contact, fast response, not polluted advantages such media influence, and been widely used. But the current electricity eddy displacement sensor measurement range small, there exist nonlinear problem, the sensor to a sensor applications has caused some influence. This paper firstly eddy current sensor used in the laboratory experiment template circuit research and optimization, and improve the anti-interference ability of the circuit more accurate measurement results. Secondly according to the eddy current displacement sensor measurement range small, there exist nonlinear problem of sensor to improve it puts forward the idea of the eddy current is: first displacement detection sensors for displacement of the working principles and applications, research analyzed the coil cross-section

电涡流传感器

电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一、电涡流传感器的基本原理 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z 的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。输出信号的大小随探头到被测体表面之间的间距而变化,电涡流传感器就是根据这一原理实现对金属物体的位移、振动等参数的测量。 其工作过程是:当被测金属与探头之间的距离发生变化时,探头中线圈的Q值

电涡流传感器的设计

引言 电涡流传感器具有灵敏度高、分辨力高、线性度高、重复性好、结构简单、抗干扰能力强、线性测量范围宽、安装方便、非接触测量、耐高温、能在油、汽、水等恶劣环境下长期连续工作的特点以及能够实现信息的远距离传输、记录、显示和控制的优势,被广泛应用于工业生产和科学研究等领域的位移、振动、偏心、胀差、厚度、转速等物理量的在线检测和安全保护,为精密诊断系统提供了全息动态特性。因而对于电涡流传感器的研究有着深远的理论和实践意义。 目前,对电涡流传感器的研究,主要集中在电磁学模型机理的研究、线圈几何形状的优化设计、测量精度的提高、非线性的线性化和应用范围的拓展等方面。本文提出了一种新型的电涡流传感器设计方案,具有速度快、功耗低、稳定性好等诸多优点,并已广泛应用于电力、石化、冶金、钢铁、航空航天等领域,取得了非常好的效果,得到了用户的一致好评。 1 电涡流传感器的基本工作原理[1-2] 电涡流传感器的基本工作原理是基于电涡流效应。根据法拉第电磁感应定律可知:金属导体置于变化的磁场中时,导体表面就会有感应电流产生。电流的流线在金属导体内自行闭合,这种由电磁感应原理产生的旋涡状感应电流称为电涡流,这种现象称为电涡流效应,电涡流传感器就是利用电涡流效应来检测导电物体的各种物理参数的。如图1所示。 理论和实践均证明:电涡流的大小与导体的磁导率ξ、电导率σ、线圈与导体之间的距离D 、激励电流强度I 、激励电流角频率ω、线圈尺寸因子等参数有关。探头线圈的阻抗Z 是上述参数的函数,即Z =F (,ξ, σ, D , I,ω) 。 很显然,如果只改变其中的某一参数,其他参数恒定,阻抗就成为该参数的单值函数。假设被测金属导体材质均匀,且具有线性和各向同性的性能特点,我们可以控制,ξ, σ, I ,ω这几个参数在一定范围内不变,则阻抗就成为距离的单值 函数,再通过前置器电子线路的处理,将探头线圈阻抗的变化,即探头线圈与金属导体之间的距离的变化转化为电压或电流的变化。输出信号的大小随探头到被测体表面之间的距离而变化,电涡流传感器正是基于这样的原理实现对位移、振动、胀差、偏心等的测量。 图1 电涡流传感器的工作原理 2 电涡流传感器电路设计 2.1 测量电路的选择[3-5] 电涡流传感器的测量电路可分为调频式和调幅式两种,调幅式测量电路又可细分为恒定频率的调幅式和频率变化的调幅式两种。 调幅式测量电路是指以输出高频信号的幅度来反映电涡流传感器探头与被测金属导体之间的关系。其特点是:输出可以被调理为直流电压,而对直流电压进行数据采集的速度快、时间短、可以降低功耗。 调频式测量电路是指将探头线圈的电感量与微调电容构成振荡器,以振荡器的频率作为输出量的一种转换电路。其优点是:电路结构简单,抗干扰能力强,性能较稳定,分辨率和精度高,易与计算机连接,频率输出便于数据采集和处理,成本较低。 在本设计中我们采用调幅式电路。2.2 滤波、稳压、同相比例放大电路的设计 该部分电路的作用是消除直流电源中的交流成分以及电源电压的波动所造成的影响。如图2所示。 2.3 振荡电路的设计[6] 电感三点式振荡电路:由于反馈支路是电感,振荡器的输出波形中含有较多的高次谐波,且振荡频率不高,对本设计不适用,故不予采用。 电容三点式振荡电路:由于输出端和反馈支路均为电容,对高次谐波电抗小,反馈电压中高次谐波分量很少,振荡频率稳定度高,因而输出波形好,更接近正弦 波。振荡频率可以较高。符合本设计的要求,故采用。如图3所示。 图3 电容三点式振荡电路 在本设计中,为了保证振荡电路输出信号的稳定和可靠,我们采取了如下措施: 针对电源电压的变化,在电源端添加了稳压环节;针对负载变化,在振荡电路与负载之间插入了缓冲电路以屏蔽负载的影响;针对环境温度变化,采用了温度系数较小的元件,例如云母电容等;针对外界磁场会引起磁性材料磁导率的变化,影响传感器线圈的涡流效应,将振荡器密封在传感器壳体内,起到屏蔽作用,可减少回路与外界发生的电磁耦合。 2.4 检波、滤波电路的设计 检波、滤波电路将电容三点式振荡器的输出信号,经过检波、滤波,将其转换为直流信号。通过对电路的优化设计,对元器件一致性的筛选以及电阻、电容参数的合理选配,使得该电路既能保证独立线性指标的要求,又能满足对动态响应时间指标的要求,同时还要尽可能降低直流信号输出的交流噪声。检波、滤波电路如图4所示。 2.5 对数运算电路的设计[7] 电涡流传感器的设计 伍艮常 株洲职业技术学院,湖南株洲 412001 DOI :10.3969/j.issn.1001-8972.2011.12.076 图2 滤波、稳压、同相比例放大电路

位移电涡流传感器测量电路设计)

成绩评定:_______ 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

电涡流传感器由于具有对介质不敏感、非接触的特点, 广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量范围, 采用恒频调幅式测量电路, 引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mn电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量范围接近90mm验证了该系统工作的稳定性,证明设计达到了预期效果。关键词: 电涡流传感器; 测量电路;大位移; 线性化

一、设计目的-------------------- 1 二、设计任务与要求- --------------------- 1 2.1 设计任务 ---------------------- 1 2.2 设计要求 ---------------------- 1 三、设计步骤及原理分析--------------- 1 3.1 设计方法----------------------- 1 3.2 设计步骤 ---------------------- 2 3.3 设计原理分析 -------------------- 6 四、课程设计小结与体会--------------- 6 五、参考文献- ------------------------- 6

一、设计目的 1. 了解电涡流传感器测量位移的工作原理和特性。 2. 了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用范围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持不变,则传感器

电涡流传感器基本原理

电涡流传感器 原理图 1、什么是电涡流效应? 电感线圈产生的磁力线经过金属导体时,金属导体就会产生感应电流,且呈闭合回路,类似于水涡流形状,故称之为电涡流也叫做电涡流效应,其实是电磁感应原理的延伸。 注意:电涡流传感器要求被测体必须是导体。 传感器探头里有小型线圈,由控制器控制产生震荡电磁场,当接近被测体时,被测体表面会产生感应电流,而产生反向的电磁场。这时电涡流传感器根据反向电磁场的强度来判断与被测体之间的距离。2、电涡流传感器的工作原理与结构

。 传感器线圈由高频信号激励,使它产生一个高频交变磁场φi,当被测导体靠近线圈时,在磁场作用范围的导体表层,产生了与此磁场相交链的电涡流ie,而此电涡流又将产生一交变磁场φe阻碍外磁场的变化。从能量角度来看,在被测导体内存在着电涡流损耗(当频率较高时,忽略磁损耗)。能量损耗使传感器的Q值和等效阻抗Z 降低,因此当被测体与传感器间的距离d改变时,传感器的Q值和等效阻抗Z、电感L均发生变化,于是把位移量转换成电量。这便是电涡流传感器的基本原理 3、电涡流传感器的实际应用 电涡流传感器测量齿轮转速的应用

4、使用电涡流传感器时的注意事项 对被测体的要求 为了防止电涡流产生的磁场影响仪器的正常输出安装时传感器头部四周必须留有一定范围的非导电介质空间,如果在某一部位要同时安装两个以上的传感器,就必须考虑是否会产生交叉干扰,两个探头之间一定要保持规定的距离,被测体表面积应为探头直径3倍以上,当无法满足3倍的要求时,可以适当减小,但这是以牺牲灵敏度为代价的,一般是探头直径等于被测体表面积时,灵敏度降低至70%,所以当灵敏度要求不高时可适当缩小测量表面积。

电涡流传感器转换电路简介

电涡流传感器转换电路简介 曰电涡流传感据的工作原地时知,被测参数变化可以转换成传感路线圈的品瓜因数Q、等 效阻抗Z利等效电感L的变化。转换电路的门的足把这此参数转视力领审、电比放电流输 出。相席地有电桥法和胁陌式、调频式等转换电路。 如阎6—i所示,尽和乙为皱周阻抗。它们ITJ以是禁功式传感器的两个线路阻抗 “个足传感路线阂,另一个足平衡K1的固定线 圈。它们勺屯容cl、最.电阻及l、R2组成电桥 的‘个臂。电源由振荡器供给.振荡频率根据 咆混流传感器的需要选好。吧桥的输出将反映 线圈pK抗的变化.即把线圈阻抗变化转换为电 压顿佰的变化。电感J,和一个固定电容组成并联谐振电路,由频率稳定的石英品体振荡器提供高ATMEL代理频激励信 号.如图

在没有金属导体的情况下,电路的Lc谐振频率/。一1/(2n/冗),等十激励振荡器的振 荡频卒(A111M112).这时J,(’问路呈现阻抗最大。输出电乐的幅位也是最大。峭传感器线圈接 近被测分届导体时,线阁的等效电感发生变化。谐振回路的谐振频率和等效阻抗也跟着发小变 化,致使问路火谐而偏离激ATMEL励频率,谐振峰将向左或向右移动,加阉6 7(3)所尔c若被测体 为非椭性材料,线圈的等放电感减小,回路的谐振频率提高.谐振峰向右偏离激励频率,如图个 /、人所尔,公被测材料为软磁构料.线圈的等效电感增大,问路的消振频率降低,谐振峰间左 偏离激励频率。如图中八、J/i所不。 以非磁性树料为例,可得输出电压幅佰与位移f的义系如图6 7(1))所示。这个特件UJ 线是非线性的,在一定范阀内(,严x:)接近线性。使用时传感器府安装在线件段小间f。关不 州可趴处,这是比较好的安装位置。 调幅式电路部分输出电压认经高频放大器、检波器和低频放,足器后。输出的直流 电压反 映了被测物的位移量。

电涡流式传感器

第四章电涡流式传感器 教学要求 1.了解电涡流效应和等效阻抗分析。 2.熟悉电涡流探头结构和被测体材料、形状和大小对灵敏度的影响。 3.熟悉电涡流式传感器的测量转换电路。 4.掌握电涡流式传感器的应用。 5.掌握接近开关的分类和特点。 教学手段多媒体课件、各种电涡流传感器演示 教学课时3学时 教学内容: 第一节电涡流传感器工作原理 一、电涡流效应(演示) 从金属探测器的探测过程导出电涡流传感器的电涡流效应。从金属探测器的结构来说明图4-1电涡流传感器工作原理。 二、等效阻抗分析 图4-1中的电感线圈称为电涡流线圈。分析它的等效电路:一个电阻R和一个电感L 串联的回路。电涡流线圈受电涡流影响时的等效阻抗Z的函数表达式(分析其实际价值)Z=R+jωL=f(i1、f、μ、σ、r、x)(4-1)结论:电涡流线圈的阻抗与μ、σ、r、x之间的关系均是非线性关系,解决方法:必须由微机进行线性化纠正。 第二节电涡流传感器结构及特性 一、电涡流探头结构(实物演示) 电涡流传感器的传感元件是一只线圈,俗称为电涡流探头。 线圈结构:用多股较细的绞扭漆包线(能提高Q值)绕制而成,置于探头的端部,外部用聚四氟乙烯等高品质因数塑料密封,(图4-2)。CZF-1系列电涡流探头的性能: 表4-1 CZF-1系列传感器的性能 提问:请同学由上表分析得出结论:探头的直径越大,测量范围就越大,但分辨力就越差,灵敏度也降低。 二、被测体材料、形状和大小对灵敏度的影响 线圈阻抗变化与哪些因素有关:金属导体的电导率、磁导率等。 第三节测量转换电路 (简单介绍调幅式和调频式测量转换电路。) 一、调幅式电路 调幅式:以输出高频信号的幅度来反映电涡流探头与被测金属导体之间的关系。图4-3:高频调幅式电路的原理框图。 ?

位移电涡流传感器测量电路设计-)

位移电涡流传感器测量电路设计-)

————————————————————————————————作者:————————————————————————————————日期:

成绩评定: 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

摘要 电涡流传感器由于具有对介质不敏感、非接触的特点,广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mm电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量范围接近90mm,验证了该系统工作的稳定性,证明设计达到了预期效果。关键词:电涡流传感器;测量电路;大位移;线性化

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务 ----------------------- 1 2.2设计要求 ----------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法 ----------------------- 1 3.2设计步骤 ----------------------- 2 3.3设计原理分析 -------------------- 6 四、课程设计小结与体会 ----------------- 6 五、参考文献-------------------------- 6

一、设计目的 1.了解电涡流传感器测量位移的工作原理和特性。 2.了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量范围,采用恒频调幅式测量电路,引用指数运算电 路作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用范围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用,但是测量位移的线性范围受到传感器线圈直径的限制,位移测量范围为线圈直径的1/3~1/5,大直径的传感器,其测量范围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量范围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量范围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励,在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持

电涡流位移传感器的原理..

电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。 电涡流传感器以其长期工作可靠 性好、测量围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。

前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I 和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定围不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为“S”型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部体线圈与金属导体的距离D的变化转化成电压或电流的变化。

电涡流式传感器的应用

电涡流式传感器的应用 摘要:随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。传感器技术的应用在许多个发达国家中,已经得到普遍重视。电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。 关键词:电涡流式传感器传感器技术 引言:电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 一.电涡流传感器的工作原理: 电涡流传感器利用检测线圈与被测导体之间的涡流效应进行测量,具有非接触测量、灵敏度高、频响特性好、抗干扰能力强等优点,其基本原理如图l所示。当线圈l通以交流电I1时,其产生的交变磁场H1会在被测导体2中产生电涡流 I2,而I2又产生一交变磁场H2 来阻碍H1的变化,从而使线圈的 等效电感L发生变化。当被测导 体的电阻率、磁导率都确定,只 有x发生变化时,通过分析提取 等效电感与测量位移间的关系, 就可以建立电涡流位移传感器。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子

电涡流探头原理与安装

电涡流传感器探头的原理以及实际应用和安装 一、概述 我公司#1、#2小汽轮机TSI(汽轮机监视系统)使用美国本特立.内华达公司生产的3500 电涡流传感器系统,本系统为我公司#1、#2小机TSI系统提供准确可靠的监测数据。 在#1、#2小机TSI系统中主要使用了本特立.内华达公司的3500 XL 8 mm 电涡流传感器,这种电涡流传感器提供最大80 mils (2 mm)线性范围和200 mV/mil 的输出。它在大多数机械监测应用中用于径向振动、轴向位移、转速和相位的测量。 二、工作原理 电涡流传感器可分为高频反射式和低频透射式两类,我公司主要使用高频反射式电涡流传感器,下面将对其工作原理作以阐述: 电涡流传感器是基于电磁感应原理而工作的,但又完全不同于电磁感应,并且在实际测量中要避免电磁感应对其的干扰。电涡流的形成:现假设有一线圈中的铁心是由整块铁磁材料制成的,此铁心可以看成是由许多与磁通相垂直的闭合细丝所组成,因而形成了许多闭合的回路。当给线圈通入交变的电流时,由于通过铁心的磁通是随着电流做周期性变化的,所以在这些闭合回路中必有感应电动势产生。在此电动势的作用下,形成了许多旋涡形的电流,这种电流就称为电涡流。电涡流传感器的工作原理如下图所示:

当线圈中通过高频电流i时,线圈周围产生高频磁场,该磁场作用于金属体,但由于趋肤效应,不能透过具有一定厚度的金属体,而仅作用于金属表面的薄层内。在交变磁场的作用下金属表面产生了感应电流Ie,即为涡流。感应电流也产生一个交变磁场并反作用于线圈上,其方向与线圈原磁场方向相反。这两个磁场相互叠加,就改变了原来线圈的阻抗Z,Z的变化仅与金属导体的电阻率ρ、导磁率u、激励电磁强度i、频率f、线圈的几何形状r以及线圈与金属导体之间的距离有关。线圈的阻抗可以用如下的函数式表示:Z=F(ρ、u、i、f、d)。当被测对象的材料一定时,ρ、u为常数,仪表中的i、f、d也为定值,于是Z就成为距离d的单值函数。 三、实际应用 电涡流传感器以其测量线性范围大,灵敏度高,结构简单,抗干扰能力强,不受油污等介质的影响,特别是非接触测量等优点,而得到了广泛的应用。在火电厂中主要应用在以下几个监测项目: 1、转子转速:在机组运行期间,连续监视转子的转速,当转速高于给定值时 发出报警信号或停机信号。其工作原理:根据电涡流传感器的工作原理可知,趋近式电涡流探头和运行的转子齿轮之间会产生一个周期性变化的脉冲量,测出这个周期性变化的脉冲量,即可实现对转子转速的监测。

电涡流式传感器

电涡流式传感器 根据初中学的法拉第电磁感应原理,块状金属导体置于变化的磁场中,导体内将产生呈涡旋状的感应电流,称之为电涡流或涡流,这种现象称为涡流效应。 电涡流传感器是利用电涡流效应,将位移、温度等非电量转换为阻抗的变化或电感的变化从而进行非电量电测的。 目前生产的变间隙位移传感器,器量程范围为300m~800mm。 将块状金属导体置于通有交变电流的传感器线圈磁场中。根据法拉第电磁感应原理,由于电流的变化,在线圈周围就产生一个交变磁场,当被测导体置于该磁场范围之内,被测导体内便产生电涡流,电涡流也将产生一个新磁场,和方向相反,抵消部分原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化。

一、电涡流式传感器的结构 电涡流式传感器结构比较简单,主要由一个安置在探头壳体的扁平圆形线圈构成。 二、电涡流式传感器的测量电路 利用电涡流式变换元件进行测量时,为了得到较强的电涡流效应,通常激磁线圈工作在较高频率下,所以信号转换电路主要有调幅电路和调频电路两种。 调幅式(AM)电路

调频式(FM)电路 调频式电路(100kHz~1MHz)结构如图所示: 当电涡流线圈与被测体的距离x改变时,电涡流线圈的电感量L 也随之改变,引起LC振荡器的输出频率变化,此频率可直接用计算机测量。 如果要用模拟仪表进行显示或记录时,必须使用鉴频器,将△?转换为电压U0。 三、电涡流式传感器的应用电路 电涡流式传感器具有测量范围大、灵敏度高、结构简单、抗干扰能力强和可以非接触测量等优点,被广泛应用于工业生产和科学研究各个领域中。 1、电磁炉

电磁炉是我们日常生活中必备的家用电器之一,涡流传感器是其核心器件之一,高频电流通过励磁线圈,产生交变磁场;在铁质锅底会产生无数的电涡流,使锅底自行发热,烧开锅内的食物。 2、电涡流探雷器 3、电涡流式接近开关 接近开关又称无触点行程开关。它能在一定的距离(几毫米至几十毫米)内检测有无物体靠近。 当物体接近到设定距离时,就可发出“动作”信号。接近开关的核心部分是“感辨头”,它对正在接近的物体有很高的感辨能力。这种接近开关只能检测金属。

涡流检测电路的设计

文献综述 电子信息工程 涡流检测电路的设计 前沿 电涡流传感器有着诸多优点,这让它成为了科学研究和工业生产中广泛使用的非接触无损检测仪器。当金属导体处于交变磁场中时,导体表面就会产生感应电流,这种电流在导体中是自行闭合的,像水中漩涡那样在导体内旋状,所以称之为电涡流或者涡流。电涡流的产生必然要消耗一部份能量,从而使产生磁场的线圈阻抗发生变化,这一物理现象就称为涡流效应。根据此涡流效应而制成的传感器,我们就称之为电涡流传感器。 由于对被测材料的敏感,电涡流传感器的广泛应用一直受到制约。为了消除传感器对被测材料的敏感性,可以采用新的变换电路原理。本文对电涡流传感器的建模和涡流特性进行了三维有限元仿真分析,同时电涡流传感器设计了新型的测量电路,并对该测量电路进行了仿真、优化和实验。[2] [1] 主题 一、电涡流传感器发展历程及应用 在一般的工程实际中,涡流检测包括测量和检测。对一些物理量,诸如距离、速度、加速度、转速等进行测量,对材料的化学成分和力学、电磁性能进行评估,对设备表面和内部线缺陷裂纹实施在线检测、分类和重构。随着涡流检测技术更深入广泛地应用,实际工程问题对涡流检测技术提出了更高的要求,成为推动涡流问题研究向更复杂更具体方向发展的源动力。 目前关于电涡流传感器的研究主要集中在非磁性被测体方面,关于磁性被测体的研究较少。早在1998年,英国universityofDerby的Tian等人就研究了电涡流传感器的输出与被测体的电磁特性之间的定性关系,他在论文中指出,对于非铁磁性被测体,其电阻率对输出的影响较大,而对于铁磁性被测体,其相

对磁导率和电阻率都会对输出产生影响。国内外很多文献也都指出了传感器输出对被测体电磁特性的敏感问题,并开展了相应的研究,但至今尚未发现改善这一缺陷的有效方法和思路。 二、电涡流传感器技术国内外研究现状 线圈的磁场分布直接影响传感器的性能,而线圈磁场分布又与探头结构和及其几何参数紧密相关。因此目前国内外关于电涡流传感器性能影响参数的研究主要集中在对线圈及其几何参数的研究。比如Garcia和Fava分别提出了一种计算任意形状线圈生成的磁场分布的方法。Theodoulidis提出了在具有矩形截面的矩形柱线圈作用下,位于其正下方的半无限大导体中的涡流分布闭合表达式。Fava等人通过二阶矢量势方法得到了矩形螺旋线圈产生的电磁场的解析表达式。sabbag和Buvat提出用体积积分法模拟含磁芯的传感器的工作状况来解决铁氧体磁芯引入后代来的空心圆柱线圈数学模型不再适用的问题;Burke利用半经验模型预测含磁芯的传感器线圈阻抗,并利用汉克转换计算线圈阻抗值。 国内对这方面的研究较少,主要是通过电涡流传感器对称轴上任意点的磁场强度与线圈几何参数的关系来反映电涡流传感器的性能。 目前传统的电涡流传感器处理电路一般都通过提取阻抗信号中的一个(电阻或感抗、幅值或相位)信息来反映被测量的变化,这方面的研究也较成熟。目前对电涡流传感器电路的研究主要集中在非线性校正和温度补偿方面。 三、电涡流传感器未来发展趋势 随着计算机技术、人工智能和信号处理技术的迅速发展,涡流问题的研究也取得了长足进展,使涡流检测技术在飞机机翼与螺栓连接疲劳损伤检测、核电站热输出管道检测、飞机燃气涡轮发动机叶片检测、海底石油管道及以发电机组为代表的旋转机械等重要零部件检测中得以运用。结合目前涡流检测技术研究存在不足,涡流检测技术的研究将会呈现以下趋势: 1.进一步完善不同被测体下线圈阻抗的求解理论。这里的不同被测体是指具有不同电磁特性的被测体。关于该方面的研究应包含两部分:一是不同被测体下线圈阻抗表达式的理论推导;二是研究获得线圈阻抗值的算法。当电磁场理论应用于电涡流传感器时,因为自身几何结构和边界条件的复杂性,导致线圈阻抗

电涡流位移传感器设计完整版本

课 程设计报告与说明书 《电涡流位移传感器》 课程设计 学生姓名:_________ ___________ 学号:____________ 入学时间: 14 年秋季 专业:___机械设计制造及其自动化___ 直属/分校:__________直属____________ 指导教师:______ 解晓光__________ 大连广播电视大学 2014年12月

设计题目:电涡流位移传感器课程设计 一、设计要求 1、量程::0~20mm 2、精度:1mm 3、激励频率:1M Hz 4、输入电压:24V 5、介质温度: -50℃~250℃ 6、表面的粗糟度: 0.4μm~0.8μm 7、线性误差:<±2% 8、工作温度:探头(-20~120)℃,延长电缆(-20~120)℃,前置器(-30~50)℃ 9、频率响应:0~5KHz 二、总体设计方案 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。根据下面的组成框图,构成传感器。 根据组成框图,具体说明各个组成部分的材料: (1)敏感元件:传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨胀系数小。 (2)传感元件: 前置器是一个能屏蔽外界干扰信号的金属盒子,测量电路完全装在前置器中,并用环氧树脂灌封。 (3)测量电路:本电路拟采用晶体振子及其外围电路来产生振荡。同时考虑到当采用晶体振子构成正弦波振荡电路时,有众多的模拟要素需要处理。如电路常数的确定,工作点的设定和负载阻抗的选用等。因此本电路将采用由COMS反向器与晶体振子组成的最简单且稳定性高的电路,来产生频率为1M的方波信号源。 三.电涡流传感器的基本原理 3.1 电涡流传感器工作原理 根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间必然产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流,如图2-2中所示。与此同时,电涡流i2又产生新的交变磁场H2;H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化。其变化程度取决于被测金属导体的电阻率ρ,磁导率μ,线圈与金属导体的距离x,以及线圈激励电流的频率f等参数。如果只改变上述参数中的一个,而其余参数保持不变,则阻抗Z就成为这个变化参数的单值函数,从而

电涡流位移传感器设计

电涡流位移传感器设计 技术要求: 1、量程:0~20mm 2、精度:1mm 3、激励频率:1M Hz 4、输入电压:24V 5、介质温度: -50℃~250℃ 6、表面的粗糟度: 0.4μm~0.8μm 7、线性误差:<±2% 8、工作温度:探头(-20~120)℃,延长电缆(-20~120)℃,前置器(-30~50)℃ 9、频率响应:0~5KHz 一、总体设计方案 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。根据下面的组成框图,构成传感器。 根据组成框图,具体说明各个组成部分的材料: (1)敏感元件:传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨胀系数小。 (2)传感元件: 前置器是一个能屏蔽外界干扰信号的金属盒子,测量电路完全装在前置器中,并用环氧树脂灌封。 (3)测量电路:本电路拟采用晶体振子及其外围电路来产生振荡。同时考虑到当采用晶体振子构成正弦波振荡电路时,有众多的模拟要素需要处理。如电路常数的确定,工作点的设定和负载阻抗的选用等。因此本电路将采用由COMS反向器与晶体振子组成的最简单且稳定性高的电路,来产生频率为1M的方波信号源。 二、电涡流传感器的基本原理 2.1 电涡流传感器工作原理 根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间必然产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流,如图2-2中所示。与此同时,电涡流i2又产生新的交变磁场H2;H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化。其变化程度取决于被测金属导体的电阻率ρ,磁导率μ,线圈与金属导体

位移电涡流传感器测量电路设计)

成绩评定: 传感器技术 课程设计 题目位移电涡流传感器测量电路设计

摘要 电涡流传感器由于具有对介质不敏感、非接触的特点,广泛应用于对金属的位移检测中。为扩大电涡流传感器的测量围,采用恒频调幅式测量电路,引用指数运算电路作为非线性补偿环节。利用Matlab计算软件辅助设计了直径为60mm电涡流传感器探头,并结合测量电路进行实验。实验结果表明最大测量围接近90mm,验证了该系统工作的稳定性,证明设计达到了预期效果。 关键词:电涡流传感器;测量电路;大位移;线性化

目录 一、设计目的------------------------- 1 二、设计任务与要求--------------------- 1 2.1设计任务------------------------- 1 2.2设计要求------------------------- 1 三、设计步骤及原理分析 ----------------- 1 3.1设计方法------------------------- 1 3.2设计步骤------------------------- 2 3.3设计原理分析---------------------- 6 四、课程设计小结与体会 ----------------- 6 五、参考文献-------------------------- 6

一、设计目的 1.了解电涡流传感器测量位移的工作原理和特性。 2.了解电涡流传感器的前景及用途 二、设计任务与要求 2.1设计任务 扩大电涡流传感器的测量围,采用恒频调幅式测量电路,引用指数运算电路 作为非线性补偿环节。验证了该系统工作的稳定性,证明设计达到了预期效果。 2.2设计要求 1. 工作在常温、常压、稳态、环境良好; 2. 设计传感器应用电路并画出电路图; 3. 应用围:测量物体的位移。 三、设计步骤及原理分析 3.1设计方法 电涡流传感器具有体积小、非接触、对介质不敏感的特点,被广泛应用于对金属位移等的测量中。尽管用电涡流传感器非接触测量位移已经得到广泛的应用,但是测量位移的线性围受到传感器线圈直径的限制,位移测量围为线圈直径的1/3~1/5,大直径的传感器,其测量围最大可以接近到直径的1/2。在许多领域希望能进一步扩大传感器的测量围,以满足大位移的非接触测量。文中采用指数运算电路作为非线性补偿环节来改善传感器原有的传输特性,扩大传感器测量围。 由电磁感应定律可知:闭合金属导体中的磁通发生变化时,就会在导体中产生闭合的感应电涡流,阻碍磁通量的变化。如图1所示,传感线圈由交流信号激励,在产生焦耳热的同时,又要产生磁滞损耗,它们造成交变磁场能量的损失,进而使传感器的等效阻抗Z发生变化。 影响阻抗Z的因素有被测导体的电导率、磁导率、线圈的激励频率f及传感器与被测导体间的位移x等,只要保证这些影响因素只有位移x变化,其他都保持不变,则传感器的等效阻抗Z将变成位移x的一元函数Z(x),经过线性化处理后

电涡流位移传感器的原理及应用

《检测技术与仪表》课程设计报告 题目:《电涡流位移传感器的原理及应用》学院: 专业: 姓名: 学号:

设计内容摘要: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。如轴的径向振动、振幅以及轴向位置。电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 电涡流位移传感器的工作原理: 电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。它是一种非接触的线性化计量工具。电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。 在高速旋转机械和往复式运动机 械状态分析,振动研究、分析测 量中,对非接触的高精度振动、 位移信号,能连续准确地采集到 转子振动状态的多种参数。如轴 的径向振动、振幅以及轴向位置。

电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。 从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。 根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。而根据电涡流效应制成的传感器称为电涡流式传感器。 前置器中高频振荡电流通过延伸电缆流入探头线圈, 在探头头部的线圈中产生交变的磁场。当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的

相关文档
最新文档