东北大学 热力模拟试验技术与装备——MMS模拟试验机研制

东北大学 热力模拟试验技术与装备——MMS模拟试验机研制

设备才能实现的试验功能,集成为一体,实现一机多功能,极大地提高了试验效率和节约成本,克服了国外同类产品随着实验内容不同,需要更换不同部件的缺点。

国外的热力模拟实验机只能实现加热、拉伸、压缩等功能,在单道次压缩和多道次压缩试验时,需要更换机头(占整体设备的近一半部件),无法同时实现拉伸、压缩等实验功能。MMS 热力模拟实验机可以在不更换任何部件的情况下,就可以进行各项试验,可以模拟温度、应力、应变、位移、力、扭转角度、扭矩等参数,能进行热处理、拉伸、单道次压缩、多道次压缩、平面应变压缩、焊接热模拟、单道次扭转、多道次扭转、静态CCT、动态CCT、动态再结晶等多种实验。特别是拉扭复合、压扭复合大变形实验是MMS 系列热力模拟实验机独有的实验功能,为材料性能的研究开辟了新的方法和手段。试验时,根据不同类型试验的需要,通过液压马达的转动调整半离合器的移动侧和固定侧的相对位置,可以进行不同的试验。当液压马达顺时针旋转时,由于半离合器的啮合作用,移动侧带动二轴向左移动,顺时针旋转到极限时,移动侧被左侧的二轴定位梁挡住,此时可以做拉伸试验;当液压马达逆时针旋转时,由于半离合器的啮合作用,移动侧带动二轴向右移动,

旋转到一定位置后,移动侧的挡柱与固定侧的挡柱接触在一起,由于固定侧的位置不能移动,移动侧不能继续

向右移动,使移动侧带动着二轴与固定侧及液压马达共同逆时针旋转,此时可以做扭转试验或组合连续大变形试验。移动侧与固定侧处于上述两种位置之间的相对位置时,可以进行单道次压缩、多道次压缩、热处理、连铸、焊接、平面变形等试验。3.2精确的温度测量策略保证了试验温度的测量和控制的准确性和精确度发明专利“一种断电采集温度的测量采样方式”针对直接电阻加热时交变电流会在试样周围形成交变电磁场以及交流电的频率变化不规则,严重影响温度测量和控制精度等问题,提出了断电触发采集和采集时刻重置的温度测量策略,保证了试验过程中温度的测量和控制的准确性和精确度。由于在直接电阻加热试样时,有上万安培的交流电流过试样,这样将在试样及其周围空间形成相当强的电磁场,这种强磁场在热电偶回路及测试仪器中产生的干扰信号非常大,不能测量到正确的温度信号。如何实现快速加热过程的精确温度测量与控制,是热力模拟面临的一大难题,本课题采用一种特殊温度测量策略后,顺利解决了该难题。如图2所示,利用每周期可控硅导通前约20°相位角的短暂周期来实现断电采集温度值,采样周期为10ms,在可控硅导通前,试样两端的电压值几乎为零,没有电流流过,所以磁场的干扰很小,这时所测量的温度是试样的实际温度,可达到精确测量温度的目的。3.3高精度高响应的控制系统与应用软件计算机软件著作权“MMS 系列热力模拟试验机应用软件”和“MMS 系列热力模拟实验机焊接热循环计算机应用软件”构建了高精度、超快速响应的控制系统和应用软件。由于采用小试样进行模拟实验,变形过程往往只有20-50ms,需要在短暂时间内精确控制和测量位移、温度、应力等参数,并保持同步,对控制系统要求十分苛刻。采用BP 神经网络PID 控制策略和模糊控制策略,保证了MMS 系列热力模拟实验机的高精度和快速变形的准确性;同时采用试验分类策略,简化了界面复杂程度,使设备操作简单易行。MMS 系列热力模拟实验机的主要性能指标达到或超过国外先进产品,项目成果达到了国际先进水平。实验功能超出国外同类设备,部分主要参数超过国外设备指标。标志着我国在材料热加工领域应用的物理模拟设备开发能力和性能指标已达到国际先进水平,填补了该领域的国内空白,进一步拓宽了材料性能研究的方法和手段,为国内企业和研究院校提供了功能齐全、质优价廉的设备,社会效益巨大,市场前景广阔。表1是本装备与国外先进设备的性能比较。热力模拟试验技术与装备——MMS模拟试验机研制

1项目背景热力模拟试验是冶金材料研究的重要手段,在新品开发和工艺优化中起重要作用。钢铁材料的热力模拟试验是指利用小试样,借助热力模拟实验机,再现钢铁材料在制备或热加工过程中的受热或同时受热受力的物理过程,充分暴露与揭示钢铁材料在该过程中的组织和性能变化规律,评定或预测材料在制备或热加工时出现的问题,为制定合理的加工工艺以及研制新材料提供基础数据和技术方案。利用热力模拟实验机,其一,可通过变化材料的成分开发出具有某种组织特征和结构特征并且符合要求的力学性能、物理性能或具有某种特殊功能的新材料;其二,可通过改变工艺来开发新材料,即将发展新材料与优化工艺技术、优化产品结构结合起来,开发出技术含量高的高、新、精的产品。由于它既可以节省现场工业试验的大量费用、时间和精力,又可以对所要求的各种参数进行精确的测量与控制,为工业大生产过程积累必要的参数,提供指导。热力模拟技术及热力模拟实验机已广泛用于钢铁材料热加工过程的研究,成为开发新材料,测定热加工过程组织演变规律的常用技术与关键设备。当前,在国际上围绕开发具有高洁净度、超细晶粒、高均匀性、强韧性、耐蚀性和经济性的新一代钢铁材料展开了新一轮竞争。我国于1998年启动了973项目“新一代钢铁材料重大基础研究”,于2004年开展了“提高钢铁质量和使用寿命的冶金学基础研究” 等以“新一代钢铁材料的开发”为背景的国家重大基础研究项目,热力模拟实验机已经在其中扮演着重要角色。同时,随着我国从钢铁大国向钢铁强国跨越,需要钢铁研究部门和企业大力开展技术创新,强化开发研究手段,在这过程中热力模拟实验机必将发挥重要作用。除了传统的热力模拟试验之外,为探索获得超细晶粒钢的途径,还需要开展一些现有热力模拟实验机不能完成的新型试验,如多向复合剪切大变形细化晶粒试验等。为此,需要开展相关的应用基础研究,开发新一代热力模拟试验装置,促进我国钢铁研究手段的升级换代。热力模拟实验机只有美国、日本等极少数发达国家能够研制生产,处于高度垄断状态,我国一直无法生产。但是我国是应用热力模拟技术进行研制工作最活跃的国家,国内企业和研究院校对热力模拟试验机的需求很大,本课题就是在这种背景下提出的。2 MMS 热力模拟试验机介绍项目研发始于2000年,历经10多年的积累,先后得到了科技部、教育部、国家自然科学基金等的大力资助。热力模拟实验机是一种综合性高技术含量的大型仪器设备,它融材料科学、传热学、力学、机械学、工程检测技术、自动控制和计算机领域的知识和技能为一体,构成了独特的、跨学科的专业领域;是一个高精度的复杂系统,集机、电、气、液于一体。本项目根据相似理论提出了利用小试样进行性能及工艺模拟的方法,在此方法的基础上,发明了独特的机械结构和控制采集策略,因为有了这些创新性发明,从而解决了热力模拟试验机众多实验功能一体化、压扭大变形实验功能和高精度高响应的控制测量等实践问题。MMS 系列热力模拟实验机是一台高精度、高性能多功能模拟实验机,具有多功能模拟能力和实验能力。可以模拟温度、应力、应变、位移、力、扭转角度、扭矩等参数,能进行多种实验。具体的实验种类包括:拉伸实验;单道次压缩实验;平面应变压缩实验;多道次压缩实验;单道次扭转实验;多道次扭转实验;大变形实验(压扭复合实验);动态CCT 实验;动态再结晶实验;控轧控冷实验;应变诱导实验;热裂纹敏感性实验(SICO);应力松弛PTT 实验;零强温度(NST)的测定试验;零塑性温度(NDT)的测定实验;热处理实验;静态CCT 实验;铸造实验;静态再结晶实验;焊接热循环试验;焊接热影响区连续冷却转变试验(SH-CCT 试验);扩散焊试验;电阻对焊试验;温度应力循环变化疲劳试验。目前,已经具备MMS-100、MMS-200和MMS-300三种型号热力模拟实验机的研发能力,拥有国家发明专利6项,实用新型专利3项,计算机软件著作权2项。已生产不同型号的MMS 系列热力模拟实验机8台。MMS 热力模拟实验机的照片如图1所示。实验设备分别应用于东北大学、济南钢铁集团公司、华菱湘潭钢铁公司、包钢、江西理工大学等地,运行情况良好,在用户中拥有良好的口碑。于2009年通过了由中国金属学会组织的科技成果鉴定。该项目2010年获辽宁省科技进步一等奖;2011年获冶金科学技术二等奖。MMS 系列热力模拟实验机的成功研制与推广应用,标志着我国在材料热加工领域应用的物理模拟设备开发能力和性能指标已达到国际先进水平,填补了该领域的国内空白,进一步拓宽了材料性能研究的方法和手段,为国内企业和研究院校提供了功能齐全、质优价廉的设备,社会效益巨大。同时为研发大型高精尖实验设备积累了经验。3 MMS 热力模拟试验机的创新性成果和主要性能指标RAL 研发的MMS 热力模拟试验机具有以下创新性成果。3.1机械结构与实验功能发明专利“多功能热力模拟实验机”和“一种输出位移和扭转的机械传动装置”所涉及的机械结构与独创的传动装置,使MMS 热力模拟实验机成为一套可以同时实现拉伸、压缩及扭转、压扭复合大变形等实验的高性能、多功能一体化实验装置,将原来国外热力模拟实验机需要多台图1 MMS-200热力模拟实验机照片经验模型。由于轧线上特别是变形区内的一些事件和现象尚未得出完善的理论解释,内的摩擦条件的变化、件的热量传递机制、金属在变形区内的流动规律等;一些常用假设与实际情况存在差异,比如轧辊压扁后仍为圆形假设、平面变形假设;冷却过程中的水冷机制的对流区、核沸腾区、膜沸腾区、小液态聚集区推想等;这些问题限制了数学模型的计算精度与稳定性。层别数据的使用为提高模型的计算精度和稳定性提供了切入点,无论国外主流数学模型还是国内自主开发的数学模型,均采用层别数据机制来构建模型。层别划分过粗则不利于提高计算精度,层别划分过细则提高调试难度,降低模型的使用性能。两者之间需要一种平衡。东北大学轧制技术及连轧自动化国家重点实验室在充分了解热连轧带钢生产工艺、设备和技术条件的基础上,开发了以粗轧设定模型、精轧设定模型、板形设定和控制模型、机架间冷却设定和控制模型、层流冷却设定和控制模型为核心的一套热连轧带钢过程控制数学模型。从轧制规程、速度制度、温度制度等方面,综合考虑现场条件,实现对热轧带钢产品外形质量和组织性能质量的全面设定和控制。采用钢族形式划分层别,为新产品提供了预留接口和空间,即保证设定和控制精度,又提高了模型的可用性。2.1轧机设定模型轧机设定模型分为粗轧机组设定模型和精轧机组设定模型。其主要功能为设定轧线的压下制度、速度制度和温度制度。轧机设定模型的优劣决定了该轧线产品质量精度、生产效率和流畅性,是轧制过程控制模型的核心。粗轧过程控制系统的模型包括轧件空冷温降模型、水冷温降模型、塑性功温升模型、轧件轧辊接触导热模型、轧件温度分布、变形抗力模型、接触弧长模型、平立轧的应力状态系数模型、平轧宽展模型、立-平轧宽展模型等。粗轧设定模型的主要功能包括平辊规程设定、宽度设定和短行程设定、轧制节奏设定等。粗轧宽度控制包括宽度设定和自动宽度控制两个部分。宽度设定是粗轧过程设定计算的一部分,通过综合考虑厚度压下和宽结合宽度自学习来设定各道次的立辊开口度;自动宽度控制则是在立辊轧制过程中动态修正开制,自动宽度控制的作用范围有限,因此采用立辊的短行程控制粗轧AWC 系统、SSC 技术和主传动交交变频技术的应用,使宽度精度达0-6.5mm 带钢占带钢全长的比例达到95.4%的较好水平(2012年国丰620mm 热轧厂)。精轧模型设定是通过具体的方程式和轧制参数列表因子以及自学习因子相结合,来精确地计算出轧机在穿带时目标厚度和温度下的各机架辊缝、速度及机架间张力基准等。轧制参数列表因子有很多,因此精轧数学模型能够根据热轧板厂的具体产品进行个性化设定计算。精轧机设定规程的目的是计算出一套辊缝参考值,以便在轧机设备允许条件内获得目标厚度的带钢。同时还必须计算出与电机能力相匹配的精轧各机架速度,以保持机架间的恒定秒流量,并获得精轧的目标出口温度。在确保精轧出口温度的前提下,结合机架间冷却技术,设计热轧带钢的速度制度TVD 曲线,如图3所示。精轧机设定模型包括轧制力模型、能耗模型、温度模型、厚度模型、变形抗力模型、辊缝模型和负荷分配算法等子模型。由于现场条件的波动、模型本身对于轧制条件的简化以及模型结构的原因,使模型计算值与实际值之间存在差异,这是过程控制模型的主要参数需要进行自学习的主要原因。通过自学习的方法,可以使控制模型的设定值计算精度满足过程控制的要求。模型参数自学习分为短期自学习和长期自学习。短期自学习用于轧件到轧件的参数修正,学习后的参数值自动替代原先的参数值,用于下一块同钢种轧件,主要是与轧件有关的模型参数自学习。长期自学习用于大量同种轧件长期参数修正,主要是与轧机有关的模型参数自学习。为了保证带钢在精轧轧制过程中的正常轧制,精轧设定模型通过各个功能模块在精轧设定主程序中的相互调用,利用模型中所提供的模型参数、设备参数、轧件参数及相关限制条件,在模型中增加精轧设定所需要的轧制参数实测值的有效性保护,同时充分发挥模型的自学习功能,完成精轧设定模型对轧件在精轧区域轧制规程的设定。现场应用表明,RAL 轧机设定模型具有设定精度高、稳定性好、使用方便等优良特性。 (未完待续)十年来,我国热连轧生产线得到了前所未有的蓬勃发展。新建和改造的生产线的生产能力、设备水平和技术水平均处于世界前列。虽然轧制过程控制系统的硬件仍以西门子、GE、三菱、VAI、达涅利、东芝、西马克等国外公司为主,但已可以实现由国内设计和指定设备选型。相对于硬件,软件的发展更为迅速,现代热连轧控制系统可分为6级控制。其中I 级和II 级控制系统与产品生产和质量的关系最为密切,也是国内研究和开发的重点内容。轧制技术及连轧自动化国家重点实验室(RAL)以国内钢铁行业的大发展为契机,针对热连轧自动化过程控制系统开展了深入细致的研究,开发了成套I、II 级过程控制系统及其相关模型和算法,并将研究成果提供给热连轧带钢生产线的新建和改造现场,实现了科研成果的迅速转化。该控制系统建立在基于Windows 的多进程多线程系统平台之上,采用II 级设定和控制系统与I 级基础自动化相结合的方式,结合离线仿真、理论分析、工艺和设备优化设计、模型参数优化和在线设定、人工智能、数据挖掘、自学习与自适应等多种手段,实现对热轧带钢生产线全线质量指标的全面控制。1系统开发和应用平台系统开发和应用平台基于Windows 系统,具有共享内存的开辟与管理、进程和线程的管理、通过高速以太网实现过程机之间通信、过程机与HMI 服务器之间的通信、过程机与基础自动化及上级系统的通信、控制逻辑、数据的存储与分析、日志报警等功能。为热轧带钢的自动化控制系统提供全面的数据服务和平台支持。RAL 开发的RAS 轧机过程控制系统应用平台的体系结构上分为4层,如图1所示。最下层为系统支持层;第二层为软件支持层,数据中心使用Oracle 9i,系统配置库使用Access 数据库;第三层为系统管理层,由系统管理中心(Manager)和核心动态库负责;最上层为应用层,是系统具体工作进程。平台在进程级上采用一功能模块对应一进程的模式分别负责系统维护、网络通讯、系统的数据采集和数据管理、带钢跟踪和模型计算,如图2所示。RAS 平台的主要技术特点:◆多进程多线程结构,可以更加集中的管理同样类型的任务;◆任务间通讯主要采用的是共享内存+事件触发的模式,这种通讯方式通讯效率快,进程/线程反应速度快,数据完整性更强;◆提供了功能丰富的管理界面,改善了用户的体验效果;◆提供了在线的、实时的日志报警显示模块,操作人员可实时监控平台的运行信息,并提供了方便的日志查询功能;◆多任务间耦合度适中合理,平台部署容易,维护成本低,二次开发工作变得更简单。现场应用表明(2010年思文科德热轧厂;2011年国丰650mm 热轧厂;2011年兴业铜业48#轧机生产线),RAS 平台的各项指标达到了设计标准,通讯速度快,效率高,数据准确性高,各个任务间负载均衡,平台运行稳定。2主要数学模型热连轧带钢的过程数学模型图2 过程控制平台体系结构图1 过程控制系统分层结构图3 TVD 曲线示意图是轧制自动化控制系统的核心内容。数学模型既为轧线提供工艺规程的设定,也参与关键技术指标的控制过程,通过关键参数的自学习不断提高其设定与控制精度,进而提高轧线整体质量水平与生产效率。轧制过程控制模型建立在轧制理论之上,由于计算速度以及应用性能的限制,目前在轧线上使用的均为在理论基础上得到的编者按:阐述了热连轧带钢生产线控制系统的发展概况。结合基于Windows 过程控制系统,总结了以粗轧机组和精轧机组的轧机设定模型、板形设定控制模型、终轧温度控制模型、卷取温度控制模型为代表的II 级过程控制系统关键模型数学的技术特点,分析了基础自动化控制系统的主要功能与关键技术。介绍了东北大学轧制技术及连轧自动化国家重点实验室在该领域的研究开发成果及其推广情况,并对该领域的发展前景作出展望。 系统工作进程 应用层(模型、通讯、跟踪、数据库) 系统管理中心 管理层 核心动态库 DBMS 软件支持层 (Oracle、Access) 操作系统 应用层 Windows Server 精轧出口带钢速度,m /s 0 带钢累积轧制长度,m 其他服务器 数据库服务器 其他仪表 HMI 服务器 RAS 过程控制系统 进程间通信 以太网通信 PLC 经验模型。由于轧线上特别是变形区内的一些事件和现象尚未得出完善的理论解释,比如变形区内的摩擦条件的变化、轧辊和轧件的热量传递机制、区内的流动规律等;设与实际情况存在差异,辊压扁后仍为圆形假设、平面变形假设;冷却过程中的水冷机制的对流区、核沸腾区、膜沸腾区、小液态聚集区推想等;这些问题限制了数学模型的计算精度与稳定性。层别数据的使用为提高模型的计算精度和稳定性提供了切入点,无论国外主流数学模型还是国内自主开发的数学模型,均采用层别数据机制来构建模型。层别划分过粗则不利于提高计算精度,层别划分过细则提高调试难度,降低模型的使用性能。两者之间需要一种平衡。东北大学轧制技术及连轧自动化国家重点实验室在充分了解热连轧带钢生产工艺、设备和技术条件的基础上,开发了以粗轧设定模型、精轧设定模型、板形设定和控制模型、机架间冷却设定和控制模型、层流冷却设定和控制模型为核心的一套热连轧带钢过程控制数学模型。从轧制规程、速度制度、温度制度等方面,综合考虑现场条件,实现对热轧带钢产品外形质量和组织性能质量的全面设定和控制。采用钢族形式划分层别,为新产品提供了预留接口和空间,即保证设定和控制精度,又提高了模型的可用性。2.1轧机设定模型轧机设定模型分为粗轧机组设定模型和精轧机组设定模型。其主要功能为设定轧线的压下制度、速度制度和温度制度。轧机设定模型的优劣决定了该轧线产品质量精度、生产效率和流畅性,是轧制过程控制模型的核心。粗轧过程控制系统的模型包括轧件空冷温降模型、水冷温降模型、塑性功温升模型、轧件轧辊接触导热模型、轧件温度分布、变形抗力模型、接触弧长模型、平立轧的应力状态系数模型、平轧宽展模型、立-平轧宽展模型等。粗轧设定模型的主要功能包括平辊规程设定、宽度设定和短行程设定、轧制节奏设定等。粗轧宽度控制包括宽度设定和自动宽度控制两个部分。宽度设定是粗轧过程设定计算的一部分,通过综合考虑厚度压下和宽度压下对轧件宽度变化的影响并口度以改善轧件全长的宽度均匀性。由于宽度检测仪表的限(SSC)来控制头尾部的宽度均匀性。带钢全长的比例达到95.4%的较好水平(2012年国丰620mm 热轧厂)。精轧模型设定是通过具体的方程式和轧制参数列表因子以及自学习因子相结合,来精确地计算出轧机在穿带时目标厚度和温度下的各机架辊缝、速度及机架间张力基准等。轧制参数列表因子有很多,因此精轧数学模型能够根据热轧板厂的具体产品进行个性化设定计算。精轧机设定规程的目的是计算出一套辊缝参考值,以便在轧机设备允许条件内获得目标厚度的带钢。同时还必须计算出与电机能力相匹配的精轧各机架速度,以保持机架间的恒定秒流量,并获得精轧的目标出口温度。在确保精轧出口温度的前提下,结合机架间冷却技术,设计热轧带钢的速度制度TVD 曲线,如图3所示。精轧机设定模型包括轧制力模型、能耗模型、温度模型、厚度模型、变形抗力模型、辊缝模型和负荷分配算法等子模型。由于现场条件的波动、模型本身对于轧制条件的简化以及模型结构的原因,使模型计算值与实际值之间存在差异,这是过程控制模型的主要参数需要进行自学习的主要原因。通过自学习的方法,可以使控制模型的设定值计算精度满足过程控制的要求。模型参数自学习分为短期自学习和长期自学习。短期自学习用于轧件到轧件的参数修正,学习后的参数值自动替代原先的参数值,用于下一块同钢种轧件,主要是与轧件有关的模型参数自学习。长期自学习用于大量同种轧件长期参数修正,主要是与轧机有关的模型参数自学习。为了保证带钢在精轧轧制过程中的正常轧制,精轧设定模型通过各个功能模块在精轧设定主程序中的相互调用,利用模型中所提供的模型参数、设备参数、轧件参数及相关限制条件,在模型中增加精轧设定所需要的轧制参数实测值的有效性保护,同时充分发挥模型的自学习功能,完成精轧设定模型对轧件在精轧区域轧制规程的设定。现场应用表明,RAL 轧机设定模型具有设定精度高、稳定性好、使用方便等优良特性。 (未完待续)热连轧轧制生产线自动控制系统十年来,我国热连轧生产线得到了前所未有的蓬勃发展。新建和改造的生产线的生产能力、设备水平和技术水平均处于世界前列。虽然轧制过程控制系统的硬件仍以西门子、GE、三菱、VAI、达涅利、东芝、西马克等国外公司为主,但已可以实现由国内设计和指定设备选型。相对于硬件,软件的发展更为迅速,现代热连轧控制系统可分为6级控制。其中I 级和II 级控制系统与产品生产和质量的关系最为密切,也是国内研究和开发的重点内容。轧制技术及连轧自动化国家重点实验室(RAL)以国内钢铁行业的大发展为契机,针对热连轧自动化过程控制系统开展了深入细致的研究,开发了成套I、II 级过程控制系统及其相关模型和算法,并将研究成果提供给热连轧带钢生产线的新建和改造现场,实现了科研成果的迅速转化。该控制系统建立在基于Windows 的多进程多线程系统平台之上,采用II 级设定和控制系统与I 级基础自动化相结合的方式,结合离线仿真、理论分析、工艺和设备优化设计、模型参数优化和在线设定、人工智能、数据挖掘、自学习与自适应等多种手段,实现对热轧带钢生产线全线质量指标的全面控制。1系统开发和应用平台系统开发和应用平台基于Windows 系统,具有共享内存的开辟与管理、进程和线程的管理、通过高速以太网实现过程机之间通信、过程机与HMI 服务器之间的通信、过程机与基础自动化及上级系统的通信、控制逻辑、数据的存储与分析、日志报警等功能。为热轧带钢的自动化控制系统提供全面的数据服务和平台支持。RAL 开发的RAS 轧机过程控制系统应用平台的体系结构上分为4层,如图1所示。最下层为系统支持层;第二层为软件支持层,数据中心使用Oracle 9i,系统配置库使用Access 数据库;第三层为系统管理层,由系统管理中心(Manager)和核心动态库负责;最上层为应用层,是系统具体工作进程。平台在进程级上采用一功能模块对应一进程的模式分别负责系统维护、网络通讯、系统的数据采集和数据管理、带钢跟踪和模型计算,如图2所示。RAS 平台的主要技术特点:◆多进程多线程结构,可以更加集中的管理同样类型的任务;◆任务间通讯主要采用的是共享内存+事件触发的模式,这种通讯方式通讯效率快,进程/线程反应速度快,数据完整性更强;◆提供了功能丰富的管理界面,改善了用户的体验效果;◆提供了在线的、实时的日志报警显示模块,操作人员可实时监控平台的运行信息,并提供了方便的日志查询功能;◆多任务间耦合度适中合理,平台部署容易,维护成本低,二次开发工作变得更简单。现场应用表明(2010年思文科德热轧厂;2011年国丰650mm 热轧厂;2011年兴业铜业48#轧机生产线),RAS 平台的各项指标达到了设计标准,通讯速度快,效率高,数据准确性高,各个任务间负载均衡,平台运行稳定。2主要数学模型热连轧带钢的过程数学模型图2 过程控制平台体系结构图1 过程控制系统分层结构图3 TVD 曲线示意图是轧制自动化控制系统的核心内容。数学模型既为轧线提供工艺规程的设定,也参与关键技术指标的控制过程,通过关键参数的自学习不断提高其设定与控制精度,进而提高轧线整体质量水平与生产效率。轧制过程控制模型建立在轧制理论之上,由于计算速度以及应用性能的限制,目前在轧线上使用的均为在理论基础上得到的编者按:阐述了热连轧带钢生产线控制系统的发展概况。结合基于Windows 应用平台的I、II 级过程控制系统,总结了以粗轧机组和精轧机组的轧机设定模型、板形设定控制模型、型、卷取温度控制模型为代表的II 级过程控制系统关键模型数学的技术特点,系统的主要功能与关键技术。介绍了东北大学轧制技术及连轧自动化国家重点实验室在该领域的研究开发成果及其推广情况,并对该领域的发展前景作出展望。 系统工作进程 应用层(模型、通讯、跟踪、数据库) 系统管理中心 管理层 核心动态库 DBMS 软件支持层 (Oracle、Access) 操作系统 应用层 Windows Server 精轧出口带钢速度,m /s 0 带钢累积轧制长度,m 其他服务器 数据库服务器 其他仪表 HMI 服务器 RAS 过程控制系统 进程间通信 以太网通信 PLC 立项建设二十周年 自主创新系列成果(39)东北大学轧制技术及连轧自动化国家重点实验室(简称RAL ),其前身是东北工学院轧钢实验室,

1991年获批立项建设,1995年通过国家验收,成为我国轧制技术及其自动化领域唯一的国家重点实验室。RAL

秉承“开放、流动、联合、竞争”的运行机制,以国民经济需求为导向,取得了一系列具有自主知识产权的科研创新成果。为庆祝RAL建设二十周年,本报特组织相关报道,以飨读者。图2 温度触发采集原理图表1 MMS 热力模拟试验机与国外同类设备性能比较性能指标MMS 热力模拟实验机美国Gleeble 热力模拟试验机日本富士电波THERMECMASTOR 加热方式直接电阻加热,试样横截面温度均匀直接电阻加热,试样横截面温度均匀高频感应加热,集肤效应,横截面温度不均匀实验功能拉伸、压缩、热处理等一般实验,及焊接热循环、扭转、拉扭复合加载、压扭大变形、超快冷实验不能完成拉扭复合加载、压扭大变形、超快冷实验不能完成焊接热循环、扭转、拉扭复合加载、压扭大变形、超快冷实验最高加热温度1700℃1700℃1500℃最大拉压力196kN 196kN 196kN 最大行程100mm 100mm 100mm 最大加载速度2000mm/s 2000mm/s 1000mm/s 最大应变速率200/s 200/s 100/s 最快加热速度10000℃/s 10000℃/s 2000℃/s 位移控制精度满量程的0.05%满量程的0.1%满量程的0.1%力的控制精度满量程的0.25%满量程的1%满量程的1%温度控制精度±0.5℃±1℃±2℃ 10ms 0 时间,ms 5 0 10 20 T n+1+ — 程序时间,ms 9同步电压,V

模拟电子技术基础期末考试试题及答案

《模拟电子技术》模拟试题一 一、填空题:(每空1分共40分) 1、PN结正偏时(导通),反偏时(截止),所以PN结具有(单向) 导电性。 2、漂移电流是(温度)电流,它由(少数)载流子形成,其大小与(温 度)有关,而与外加电压(无关)。 3、所谓理想二极管,就是当其正偏时,结电阻为(0 ),等效成一条直线;当其 反偏时,结电阻为(无穷),等效成断开; 4、三极管是(电流)控制元件,场效应管是(电压)控制元件。 5、三极管具有放大作用外部电压条件是发射结(正偏),集电结(反偏)。 6、当温度升高时,晶体三极管集电极电流Ic(变小),发射结压降(不变)。 7、三极管放大电路共有三种组态分别是(共基)、(共射)、(共集) 放大电路。 8、为了稳定三极管放大电路的静态工作点,采用(电压并联)负反馈,为了稳 定交流输出电流采用(串联)负反馈。 9、负反馈放大电路和放大倍数AF=(1/(1/A+F)),对于深度负反馈放大电路 的放大倍数AF=(1/ F )。 10、带有负反馈放大电路的频带宽度BWF=()BW,其中BW=(), ()称为反馈深度。 11、差分放大电路输入端加上大小相等、极性相同的两个信号,称为()信号, 而加上大小相等、极性相反的两个信号,称为()信号。 12、为了消除乙类互补功率放大器输出波形的()失真,而采用()类互 补功率放大器。 13、OCL电路是()电源互补功率放大电路; OTL电路是()电源互补功率放大电路。 14、共集电极放大电路具有电压放大倍数(),输入电阻(),输出电阻 ()等特点,所以常用在输入级,输出级或缓冲级。 15、差分放大电路能够抑制()漂移,也称()漂移,所以它广泛应用于()

东北大学自控原理期末试题(2009A)答案

自动控制原理期末试题(A )卷答案 一.概念题(10分) (1)简述自动控制的定义。 (2)简述线性定常系统传递函数的定义。 解: (1)所谓自动控制是在没有人的直接干预下,利用物理装置对生产设备或工艺过程进行合理的控制,使被控制的物理量保持恒定,或者按照一定的规律变化。(5分) (2)零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。(5分) 二.(10分)控制系统如图1所示,其中)(s W c 为补偿校正装置,试求该系统闭环传递函数)()(s X s X r c ,并从理论上确定如何设计补偿校正装置)(s W c 可以使系统补偿后的给定误差为零。 图1 控制系统结构图 解: []) ()(1) ()()()()()(2121s W s W s W s W s W s X s X s W c r c B ++= = (5分) 由此得到给定误差的拉氏变换为 )() ()(1) ()(1)(212s X s W s W s W s W s E r c +-= 如果补偿校正装置的传递函数为 ) (1 )(2s W s W c = (5分) 即补偿环节的传递函数为控制对象的传递函数的倒数,则系统补偿后的误差 0)(=s E 三.(10分)已知某三阶单位负反馈系统具有一个有限零点为-1.5、三个极点分别为6.12.1j ±-和-1.49、且系统传递函数根的形式放大系数为4。试求系统在单位阶跃函数作用下,系统的动态性能指标超调量 %σ、调整时间s t 和峰值时间m t 。 解: 49.13-=s 与5.11-=z 构成偶极子可相消,故系统可以用主导极点2,1s 构成的低阶系统近似(1分) :

模拟电子技术基础全套教案

《模拟电子技术基础》教案 1、本课程教学目的: 本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。 2、本课程教学要求: 1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。 2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。 3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。 4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。 3、使用的教材: 杨栓科编,《模拟电子技术基础》,高教出版社 主要参考书目: 康华光编,《电子技术基础》(模拟部分)第四版,高教出版社 童诗白编,《模拟电子技术基础》,高等教育出版社, 张凤言编,《电子电路基础》第二版,高教出版社, 谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社,

陈大钦编,《模拟电子技术基础问答、例题、试题》,华中理工大学出版社,唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社, 孙肖子编,《电子线路辅导》,西安电子科技大学出版社, 谢自美编,《电子线路设计、实验、测试》(二),华中理工大学出版社, 绪论 本章的教学目标和要求: 要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。 本章总体教学内容和学时安排:(采用多媒体教学) §1-1 电子系统与信号0.5 §1-2 放大电路的基本知识0.5 本章重点: 放大电路的基本认识;放大电路的分类及主要性能指标。 本章教学方式:课堂讲授 本章课时安排: 1 本章的具体内容: 1节 介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法; 介绍放大电路的基本认识;放大电路的分类及主要性能指标。 重点: 放大电路的分类及主要性能指标。

东北大学《模拟电子技术基础》期末考试必备真题集(含答案)01

模拟电子技术基础 一.计算分析题 1.已知放大电路如图8所示,三极管的β=50,U BE =。回答下列问题:(1) 求I CQ =?U CEQ =?(2)画微变等效电路 (3)求?==i o u U U A ? ==s o usm U U A (4)R i =?R o =? 图8 (1) I CQ ≈I EQ = (mA) +V R C e R R R C C + _ _ R e U U o R U 20k Ω 2 10kΩ 2kΩ4k 30μF 30100μ F (+12V) 1+ ++ _ _ ) (410 2012 102b1CC 2BQ V R R V R U b b =+?=+= )mA (65.12 7 .04e BE BQ EQ =-= -= R U U I

U CEQ = V CC ―I CQ ( R c +R e )= ×4 = (V) (2) (3) (4)R i ≈r be =(k Ω) R o = R c = 2 (k Ω 2.已知电路如图9所示,β1=β2=60,U BE1=U BE2=,ΔU I1=1V ,ΔU I2=。 求:①双端输出时的ΔU o=?②从T 1单端输出时的ΔU O1=? )k (1.165 .126 6130026) 1(EQ bb'be Ω≈?+=++=I r r β微变等效电路 U 6 .601.1)4//2(50'be L i o u -=?-=-==r R U U A β 5.311.11)4//2(50'be s L i s i u s o us -=+?-=+-≈+==r R R R R R A U U A β R R R R r R R + _ + _ U I U s β I I R

“模拟电子技术基础”课程教学大纲

“模拟电子技术基础”课程教学大纲 课程名称:模拟电子技术基础 教材信息:《模拟电子电路及技术基础(第三版)》,孙肖子主编 主讲教师:孙肖子(西安电子科技大学电子工程学院副教授) 学时:64学时 一、课程的教学目标与任务 通过本课程教学使学生在已具备线性电路分析的基础上,进一步学习包含有源器件的线性电路和线性分析、计算方法。使学生掌握晶体二极管、稳压管、晶体三极管、场效应管和集成运放等非线性有源器件的工作原理、特性、主要参数及其基本应用电路,掌握各种放大器、比较器、稳压器等电路的组成原理、性能特点、基本分析方法和工程计算及应用技术,获得电子技术和线路方面的基本理论、基本知识和基本技能。培养学生分析问题和解决问题的能力,为以后深入学习电子技术其他相关领域中的内容,以及为电子技术在实际中的应用打下基础。 二、课程具体内容及基本要求 (一)、电子技术的发展与模电课的学习MAP图(2学时) 介绍模拟信号特点和模拟电路用途,电子技术发展简史,本课程主要教学内容,四种放大器模型的结构、特点、用途及增益、输入电阻、输出电阻等主要性能指标,频率特性和反馈的基本概念。 1.基本要求 (1)了解电子技术的发展,本课程主要教学内容,模拟信号特点和模拟电路用途。 (2)熟悉放大器模型和主要性能指标。

(3)了解反馈基本概念和反馈分类。 (二)、集成运算放大器的线性应用基础(8学时) 主要介绍各种理想集成运算应用电路的分析、计算,包括同/反相比例放大、同/反相相加、相减、积/微分、V-I和I-V变换电路和有源滤波等电路的分析、计算,简单介绍集成运放的实际非理想特性对应用电路的影响及实践应用中器件选择的依据和方法。 1.基本要求 (1)了解集成运算放大器的符号、模型、理想运放条件和电压传输特性。 (2)熟悉在理想集成运放条件下,对电路引入深反馈对电路性能的影响,掌握“虚短”、“虚断”和“虚地”概念。 (3)掌握比例放大、相加、相减、积/微分、V-I和I-V变换电路的分析、计算。 (4)了解二阶有源RC低通、高通、带通、带阻和全通滤波器的传递函数、幅频特性及零极点分布,能正确判断电路的滤波特性。 (5)熟悉集成运算放大器的主要技术指标的含义,了解实际集成运放电路的非理想特性对实际应用的限制。 2.重点、难点 重点:各种集成运放应用电路的分析、计算和设计。 难点:有源滤波器的分析、计算和集成运放非理想特性对实际应用的影响,。 (三)、电压比较器、弛张振荡器及模拟开关(4学时) 主要介绍简单比较器、迟滞比较器和弛张振荡器的电路构成、特点、用途、传输特性及主要参数的分析、计算,简单介绍单片集成电压比较器和模拟开关的特点、主要参数和基本应用。

东大18年6月考试《模拟电子技术基础I》考核作业

https://www.360docs.net/doc/ca16508266.html, ------------------------------------------------------------------------------------------------------------------------------ 东 北 大 学 继 续 教 育 学 院 模拟电子技术基础I 试 卷(作业考核 线下) B 卷(共 4 页) 注:请您单面打印,使用黑色或蓝色笔,手写完成作业。杜绝打印,抄袭作业。 一、(10分)半导体器件的分析。 判断图中各电路里的二级管是导通还是截止,并计算电压U ab 。设图中的二级管都是理想的。 二、(10分)电路如图所示,设输入电压u i 是幅值为10V 的正弦波,试画出u o 的波形。(设二极管D 1,D 2为理想二级管)。 三、单管放大电路的分析与计算。 (15分) 电路如图4所示,已知V CC =12V ,R bl =40k Ω,R b2=20k Ω,R c =R L =2k Ω,U BE =0.7V ,β=50,R e =2k Ω, U CES ≈0V 。求:(1)计算静态工作点;(2)随着输入信号i U 的增大,输出信号o U 也增大,若输出o U 波形出现失真,则首先出现的是截止失真还是饱和失真? (3)计算i u A R , 和o R 。 四、功率放大电路的分析与计算。 (15分) 功率放大电路如图5所示,负载R L =8Ω,晶体管T1和T2的饱和压降为2V ,输入u i 为正弦波。求:(1)负载R L 上可获得的最大不失真输出功率?(2)此时的效率和管耗各是多少? 五、填空题:(每空1分 共30分) 1、PN 结正偏时( ),反偏时( ),所以PN 结具有( )导电性。 2、漂移电流是( )电流,它由( )载流子形成,其大小与( )有关,而与外加 电压( )。 3、所谓理想二极管,就是当其正偏时,结电阻为( ),等效成一条直线;当其反偏时,结 电阻为( ),等效成断开; 4、三极管具有放大作用外部电压条件是发射结( ),集电结( )。 5、当温度升高时,晶体三极管集电极电流Ic ( ),发射结压降( )。 6、三极管放大电路共有三种组态分别是( )、( )、( )放大电路。 7、为了稳定三极管放大电路的静态工作点,采用( )负反馈,为了稳定交流输出电流采 用( )负反馈。 8、差分放大电路输入端加上大小相等、极性相同的两个信号,称为( )信号,而加上 大小相等、极性相反的两个信号,称为( )信号。

东北大学自动控制原理必备课后简答

第一章 1.什么是自动控制系统?自动控制系统通常由哪些基本环节组成?各环节起什么作用? 1) 在无人直接参与下可使生产过程或其他过程按期望规律或预定程序进行的控 制系统。 2) 6部分:控制对象:要进行控制的设备或过程;执行机构:直接作用于控制对 象,使被控制量达到所要求的数值;检测装置:检测被控制量;给定环节:设定被控制量的给定值的装置;比较环节:检测的被控制量与给定量比较,确定两者之间的偏差量; 中间环节:一般为放大环节,将偏差信号变换成适于控制执行机构执行的信号。 2.试比较开环控制系统与闭环控制系统的优缺点 1) 工作原理:开环控制系统不能检测误差,也不能校正误差,控制精度和抑制干 扰的性能都比较差,而且对系统参数的变动很敏感。闭环控制系统可以根据检测误差,从而抗干扰性强。 2) 结构组成:开环系统没有检测设备,组成简单。闭环系统由于添加了纠正偏差 的环节,所以成本较高。 3) 稳定性:开环控制系统的稳定性比较容易解决。闭环系统中反馈回路的引入增 加了系统的复杂性。 3.什么是系统的暂态过程?对一般的控制系统,当给定量或扰动量突然增加到某一个值时,输出量的暂态过程如何? 1) 系统从一个稳态过度到另一个稳态的需要经历的过渡过程。 2) 单调过程;衰减振荡过程;持续振荡过程;发散振荡过程。 第二章 1.什么是系统的数学模型?在自动控制系统中常见的数学模型形式有哪些? 1) 描述系统因果关系的数学表达式 2) 微分方程、传递函数、状态方程、传递矩阵、结构框图和信号流图。 2.简要说明用解析法编写自动控制系统动态微分方程的步骤。 1) 确定系统的输入量和输出量; 2) 从系统的输入端开始,沿着信号传递方向,逐次依据组成系统各元部件的有关 物理规律,列写元件或环节的微分方程; 3) 消除中间变量,建立只有输入量和输出量及其各阶导数构成的微分方程。 3.什么是小偏差线性化?这种方法能够解决哪类问题?

模拟电子技术期末试题

第四章 集成运算放大电路 自 测 题 一、选择合适答案填入空内。 (1)集成运放电路采用直接耦合方式是因为 C 。 A .可获得很大的放大倍数 B . 可使温漂小 C .集成工艺难于制造大容量电容 (2)通用型集成运放适用于放大 B 。 A .高频信号 B . 低频信号 C . 任何频率信号 (3)集成运放制造工艺使得同类半导体管的 C 。 A . 指标参数准确 B . 参数不受温度影响 C .参数一致性好 (4)集成运放的输入级采用差分放大电路是因为可以 A 。 A .减小温漂 B . 增大放大倍数 C . 提高输入电阻 (5)为增大电压放大倍数,集成运放的中间级多采用 A 。 A .共射放大电路 B . 共集放大电路 C .共基放大电路 解:(1)C (2)B (3)C (4)A (5)A 二、判断下列说法是否正确,用“√”或“×”表示判断结果填入括号内。 (1)运放的输入失调电压U I O 是两输入端电位之差。(×) (2)运放的输入失调电流I I O 是两端电流之差。(√) (3)运放的共模抑制比c d CMR A A K (√) (4)有源负载可以增大放大电路的输出电流。(√) (5)在输入信号作用时,偏置电路改变了各放大管的动态电流。(× )

习题 4.1 通用型集成运放一般由几部分电路组成,每一部分常采用哪种基本电路?通常对每一部分性能的要求分别是什么? 解:通用型集成运放由输入级、中间级、输出级和偏置电路等四个部分组成。 通常,输入级为差分放大电路,中间级为共射放大电路,输出级为互补电路,偏置电路为电流源电路。 对输入级的要求:输入电阻大,温漂小,放大倍数尽可能大。 对中间级的要求:放大倍数大,一切措施几乎都是为了增大放大倍数。 对输出级的要求:带负载能力强,最大不失真输出电压尽可能大。 对偏置电路的要求:提供的静态电流稳定。 第五章放大电路的频率响应 自测题 一、选择正确答案填入空内。 (1)测试放大电路输出电压幅值与相位的变化,可以得到它的频率响应,条件是 A 。 A.输入电压幅值不变,改变频率 B.输入电压频率不变,改变幅值 C.输入电压的幅值与频率同时变化 (2)放大电路在高频信号作用时放大倍数数值下降的原因是 B ,而低频信号作用时放大倍数数值下降的原因是 A 。 A.耦合电容和旁路电容的存在 B.半导体管极间电容和分布电容的存在。 C.半导体管的非线性特性 D.放大电路的静态工作点不合适 (3)当信号频率等于放大电路的f L或f H时,放大倍数的值约下降到中频时的 B 。 A.0.5倍 B.0.7倍 C.0.9倍 即增益下降 A 。 A.3dB B.4dB C.5dB

东北大学 考试《模拟电子技术基础I》考核作业

东 北 大 学 继 续 教 育 学 院 模拟电子技术基础 I 试 卷(作业考核 线下) B 卷(共 4 页) 总分 题号 一 二 三 四 五 六 七 八 九 十 得分 注:请您单面打印,使用黑色或蓝色笔,手写完成作业。杜绝打印,抄袭作业。 一、(10分)半导体器件的分析。 判断图中各电路里的二级管是导通还是截止,并计算电压U ab 。设图中的二级管都是理想的。 二、(10分)电路如图所示,设输入电压u i 是幅值为10V 的正弦波,试画出u o 的波形。(设二极管D 1,D 2为理想二级管)。 三、单管放大电路的分析与计算。 (15分) 电路如图4所示,已知V CC =12V ,R bl =40kΩ,R b2=20kΩ,R c =R L =2kΩ,U BE =,β=50,R e =2kΩ, U CES ≈0V。求:(1)计算静态工作点;(2)随着输入信号i U 的增大,输出信号o U 也增大,若输出o U 波形出现失真,则首先出现的是截止失真还是饱和失真 (3)计算i u A R , 和o R 。 四、功率放大电路的分析与计算。 (15分) 功率放大电路如图5所示,负载R L =8Ω,晶体管T1和T2的饱和压降为2V ,输入u i 为正弦波。求:(1)负载R L 上可获得的最大不失真输出功率(2)此时的效率和管耗各是多少 五、填空题:(每空1分 共30分) 1、PN 结正偏时( ),反偏时( ),所以PN 结具有( )导电性。 2、漂移电流是( )电流,它由( )载流子形成,其大小与( )有关,而与 外加电压( )。 图4阻容耦合放大 图5 功率放大电路 u u o +V CC T 1 T 2 R L CC + +_ _ (+12V (-12V

东北大学离线作业自动控制原理

东北大学继续教育学院 自动控制原理试卷(作业考核线上2)B 卷(共 4 页) 一、(30分)回答下列各题 1、自动控制系统由哪些基本环节组成?各环节的功能是什么?(10分) 答:(1)控制对象或调节对象——要进行控制的设备或过程。 (2)执行机构——一般由传动装置和调节机构组成。执行机构直接作用于控制对象,使被控制量达到所要求的数值。 (3)检测装置或传感器——该装置用来检测被控制量,并将其转换为与给定量相同的物理 量。 (4)给定环节——设定被控制量的给定值的装置。 (5)比较环节——将所检测的被控制量与给定量进行比较,确定两者之间的偏差量。(6)中间环节——一般包括比较环节和校正环节。 2、传递函数适合哪类控制系统?如何定义?(10分) 答:传递函数适合线性连续系统。其定义为:零初始条件下,输出量的拉氏变换与输入量的拉氏变换之比。 3、通常有哪几种减小稳态误差的途径?(10分) 答:减小稳态误差的途径:增大系统的开环放大系数;提高开环传递函数中的串联积分环节的阶次N;采用补偿的方法——复合控制或前馈控制。

二、(20分)控制系统的动态结构图如图1所示,试求系统输出Y(s)对输入信号R(s)和扰动信 号N(s)的传递函数Y(s)/ R(s)、Y(s)/ N(s)。 Y(S) R(S) N(S) F H1 W2 W1 + + - - H2 图1 题二图 解: (1) 令,可得 (2) 令,可得

三、(30分)一闭环反馈控制系统的动态结构图如图2所示。 (1)试求当%20% σ≤,() 5% 1.8 s t s =时,系统的参数 1 K及τ值。 (2)试求上述系统的位置稳态误差系数 p K、速度稳态误差系数 v K、加速度稳态误差系数 a K 及其相应的稳态误差。 图2 题三图 解 (1) 系统开环传递函数为 1 2 1 11 2 1 1 () ()1 11 K K K s W s K s s s K s s s K τ ττ τ === +?? ++ ? ?? 与标准型相对比,得 2 1 1 K 2 1 K= n n K K ω ξωτ τ ? ?= ? = ? ? ? ? 由%20% σ≤,得 22 0.46 (ln0.2) ξ π ≥≈ + 由() 5% 1.8 s t=,得 3 3.65 n s t ω ξ ≤= 所以

模拟电子技术期末考试

课程《模拟电子技术》 一、填空题(1分×30=30分) 1、在掺杂半导体中,多数载流子的浓度主要取决于 ,而少数载流子的浓度则与 有很大的关系。 2、二极管的伏安特性曲线上可以分为 区、 区、 区和 区四个工作区。 3、一个直流电源必备的3 个环节是 、 和 4、晶体三极管放大器中,当输入电流一定时,静态工作点设置太低,将产生 失真;静态工作点设置太高,将产生 失真。 5、理想集成运放组成的基本运算电路,它的反相输入端和同相输入端之间的电压为 ,这称为 。运放的两个输入端电流为 ,这称为 。 6、差模输入信号时两个输入信号电压的 值,共模输入电压信号是两个输入信号的 值。u i1=20mV ,u i2=18mV 时, u id = mV ,u ic = mV 。 7、将放大电路 的全部或部分通过某种方式回送到输入端,这部分信号称为 信号。 使放大电路净输入信号减小,放大倍数也减小的反馈,称为 反馈;使放大电 路净输入信号增加,放大倍数也增加的反馈,称为 反馈。 8、正弦波振荡器的振荡条件中,幅值平衡条件是指 ,相位平衡条件是 指 ,后者实质上要求电路满足 反馈。 9、电路如图所示,已知VT1、VT2的饱和压降|UCES|=3V ,Ucc=15V ,RL=8欧。则最大输出功率Pom 为 。 10、串联型稳压电路由 、 、 、 组成。 二、选择题(2分×10=20分) 1、某晶体管的极限参数为:I CM =100mA ,U BR(CEO)=20V ,P CM =100mW ,则该器件正常工作状态为( ) A I C =10mA U CE =15V B I C =10mA U CE =9V C I C =100mA U CE =9V D I C =100mA U C E =15V 2、测得晶体管在放大状态的参数时,当I B =30uA I C =2.4m A I B =40uA I C =3m A 时。则晶体管交流放大系数β为( ) A 80 B 60 C 75 D 90 3、射极输出器的输出电阻小,说明电路的( ) A 带负载能力差 B 带负载能力强 C 减轻前级或信号源的负荷 D 增加前级或信号源的负荷 4、放大电路产生零点漂移的主要原因是: ( ) A 电压增益过大 B 环境温度变化 C 采用直接耦合 D 采用阻容耦合

《模拟电子技术》大学期末考试题及答案(七)

《模拟电子技术》模拟试题七 一、选择题(每空2分,共34分) 1、三端集成稳压器CXX7805的输出电压是() A 5v B 9v C 12v 2、测某电路中三极管各极电位分别是0 V、-6V、0.2V则三极管的三个电极分别是(),该管是()。 A (E、C、B) B(C、B、E) C(B、C、E) D(PNP) E(NPN) 3、共射极放大电路的交流输出波形上半周失真时为()失真。共射极放大电路的交流输出波形下半周失真时为()失真。 A 饱和 B 截止C交越D频率 4、差分放大电路是为了()而设置的。 A稳定Au B放大信号C抑制零点漂移 5、对功率放大器的主要要求有()()() A Uo高 B Po大C效率高 D Ri大 E 波形不失真 6、LM386是集成功率放大器,它可以使电压放大倍数在()变化。 A 0-20 B 20 -200 C 200-1000 7、单相桥式整流电容波电路输出电压平均在Uo=( )U2。 A 0.45 B 0.9 C 1.2 8、当集成运放线性工作时,在两条分析依据()()。 A U-=U+ B I-=I+=0 C Uo=Ui D Au=1 9、对功率放大器的主要要求有()()()。 A Uo高 B Po大C效率高 D Ri大 E 波形不失真 10、振荡器的输出信号最初是由()而来的。 A基本放大器 B 选频网络C干扰或噪声信号 二、填空题(每空1分,共32分) 1、自由电子为()载流子,空穴为()载流子的杂质半导体称为()半导体。 2、PN结的单向导电性,就是PN结正偏时(),反偏时()。 3、扩展运动形成的电流是()电流,漂移运动形成的电流是()。 4、所谓理想二极管就是当其正偏时,结电阻为(),等效成一条直线;当其反偏时,结电阻为(),等效成开断。 5、场效应管的漏极电流ID=( ),所以它是()控制文件。 6、当温度升高时三极管的集电极电流IC(),电流放大系数β

模拟电子技术基础试卷及答案(期末)知识分享

模拟电子技术基础试卷及答案 一、填空(18分) 1.二极管最主要的特性是 单向导电性 。 2.如果变压器二次(即副边)电压的有效值为10V ,桥式整流后(不滤波)的输出电压为 9 V ,经过电容滤波后为 12 V ,二极管所承受的最大反向电压为 14 V 。 3.差分放大电路,若两个输入信号u I1u I2,则输出电压,u O 0 ;若u I1 =100μV ,u I 2=80μV 则差模输入电压u Id = 20μV ;共模输入电压u Ic =90 μV 。 4.在信号处理电路中,当有用信号频率低于10 Hz 时,可选用 低通 滤波器;有用信号频率高于10 kHz 时,可选用 高通 滤波器;希望抑制50 Hz 的交流电源干扰时,可选用 带阻 滤波器;有用信号频率为某一固定频率,可选用 带通 滤波器。 5.若三级放大电路中A u 1A u 230dB ,A u 320dB ,则其总电压增益为 80 dB ,折合为 104 倍。 6.乙类功率放大电路中,功放晶体管静态电流I CQ 0 、静态时的电源功耗P DC = 0 。这类功放的能量转换效率在理想情况下,可达到 78.5% ,但这种功放有 交越 失真。 7.集成三端稳压器CW7915的输出电压为 15 V 。 二、选择正确答案填空(20分) 1.在某放大电路中,测的三极管三个电极的静态电位分别为0 V ,-10 V ,-9.3 V ,则这只三极管是( A )。 A .NPN 型硅管 B.NPN 型锗管 C.PNP 型硅管 D.PNP 型锗管 2.某场效应管的转移特性如图所示,该管为( D )。 A .P 沟道增强型MOS 管 B 、P 沟道结型场效应管 C 、N 沟道增强型MOS 管 D 、N 沟道耗尽型MOS 管 3.通用型集成运放的输入级采用差动放大电路,这是因为它的( C )。 A .输入电阻高 B.输出电阻低 C.共模抑制比大 D.电压放大倍数大 4.在图示电路中,R i 为其输入电阻,R S 为常数,为使下限频率f L 降低,应( D )。 A . 减小C ,减小R i B. 减小C ,增大R i C. 增大C ,减小 R i D. 增大C ,增大 R i 5.如图所示复合管,已知V 1的β1 = 30,V 2的β2 = 50,则复合后的β约为( A )。 A .1500 B.80 C.50 D.30 6.RC 桥式正弦波振荡电路由两部分电路组成,即RC 串并联选频网络和( D )。 A. 基本共射放大电路 B.基本共集放大电路 C.反相比例运算电路 D.同相比例运算电路 7.已知某电路输入电压和输出电压的波形如图所示,该电路可能是( A )。 A.积分运算电路 B.微分运算电路 C.过零比较器 D.滞回比较器 8.与甲类功率放大方式相比,乙类互补对称功放的主要优点是( C )。 a .不用输出变压器 b .不用输出端大电容 c .效率高 d .无交越失真 0 i D /mA -4 u GS /V 5 + u O _ u s R B R s +V CC V C + R C R i O t u I t u o 4题图 7题图 V 2 V 1

东北大学考试《模拟电子技术基础ⅠX》考核作业参考240

东北大学继续教育学院 模拟电子技术基础IX试卷(作业考核线上2)A 卷(共6 页) 总分题号一二三四五六七八九十得分 一、(40分) 单项选择题(选一个正确答案填入括号里,每题2分) 型半导体是在本征半导体中加入下面物质后形成的。( C ) A、电子 B、空穴 C、三价元素 D、五价元素 2.稳压管的稳压区是其工作在( C )。 A、正向导通 B、反向截止 C、反向击穿 3.二极管电路如图1所示,设二极管均为理想的,则电压Uab为( A )。 图1 A、-12V B、-6V C、0V D、+6V 4.在放大电路中测得一只三极管三个电极的电位分别为-9V、和-6V,则这只三极管属于( C )。 AC、硅PNP型B、硅NPN型C、锗PNP型D、锗NPN型 5. 集成运放的输入级采用差分放大电路是因为可以( A )。 A、减小温漂 B、增大放大倍数 C、提高输入电阻 6.差动式放大电路的差模输入信号是指两个输入端的输入信号的( A ), A、差 B、和 C、平均值 7. 差动式放大电路的共模输入信号是指两个输入端的输入信号的(B )。 A、差 B、和 C、平均值 8. 按要求选择合适的电路构成两级放大电路。 要求输入电阻为1kΩ至2kΩ,电压放大倍数大于3000,第一级应采用( A )。 A、共射电路 B、.共集电路 C、共基电路 9. 按要求选择合适的电路构成两级放大电路。要求输入电阻为1kΩ至2kΩ,电压放大倍数大于3000,第二级应采用( A )。 A、共射电路 B、.共集电路 C、共基电路 10. 按要求选择合适的电路构成两级放大电路。 要求输入电阻为100kΩ~200kΩ,电压放大倍数数值大于100,第一级应采用( B )。 A、共射电路 B、.共集电路 C、共基电路 11. 按要求选择合适的电路构成两级放大电路。 要求输入电阻为100kΩ~200kΩ,电压放大倍数数值大于100,第二级应采用( A )。

东北大学自动控制原理简答题汇总

1.闭环控制系统的基本环节及作用: 1、给定环节:设定被控制的给定值的装置 2、比较环节:将所检测的的被控制量与给定量进行比较,确定两者之间的偏差量 3、校正环节:将比较环节的输出量转化为标准信号 4、放大环节:将偏差信号变换成适于控制执行机构工作的信号 5、执行机构:直接作用于控制对象,使被控量达到所要求的数值 6、被控对象或调节对象:指要进行控制的设备或过程 7、检测装置或传感器:用来检测被控量,并将其转换为与给定量相同的物理量 2.什么是系统的暂态过程?对于一般的控制系统,当给定量或扰动量突然增加到某一个值时,输出量的暂态过程如何? (1)暂态过程:系统从一个稳态过渡到新的稳态的过渡过程 (2)输出量的暂态过程可能有以下几种情况: 1.单调过程。输出量单调变化,缓慢达到新的稳态值。 2.衰减振荡过程。被控制量变化很快,产生超调,经过几次振荡后,达到新的稳定 工作状态。 3.持续振荡过程。被控制量持续振荡,始终不能达到新的稳定工作状态。 4.发散振荡过程。被控制量发散振荡,不能达到所要求的稳定工作状态。 3.如何区分线性系统和非线性系统? 可以通过线性和非线性各自的特性区分,线性系统具有叠加性和齐次性,非线性系统则不具备以上特性。非线性系统不仅与系统的结构和参数有关,还与系统的初始条件有关。 4.按给定力量的特征,系统可分成哪几种类型? 1.恒值系统。恒值系统的给定量保持不变。(输出量恒定不变) 2.随动系统。随动系统中的给定量按照事先未知的时间函数变化。(输出量跟随给定量的 变化,所以也可以叫做同步随动系统) 3.程序控制系统。这种系统的给定量是按照一定的时间函数变化的。(输出量与给定量的 变化规律想同) 5.简述控制系统性能指标。 自动控制系统的性能指标通常是指系统的稳定性,稳态性能和暂态性能。 稳定性:自动控制系统的首要条件时系统能稳定正常运行。 稳态性能:系统稳态误差的大小反映了系统的稳态精度,它表明了系统控制的准确程度。暂态性指标:1.最大超调量σ%:输出最大值与输出稳态值的相对误差。 2.上升时间tr:系统输出量第一次到达输出稳态值时所对应的时刻。 3.过渡时间ts:系统的输出量进入并一直保持在稳态输出值附近的允许误差 带内所需时间。 4.振荡次数μ:在调节时间内输出量在稳态值附近上下波动的次数。 6.对自动控制系统性能指标要求有? 1.稳定性:即系统能工作的首要条件。

《模拟电子技术基础》题库

《模拟电子技术基础》题库 一、填空题 1-12(第一章) 1、杂质半导体有型和型之分。 2、PN结最重要的特性是__________,它是一切半导体器件的基础。 3、PN结的空间电荷区变厚,是由于PN结加了__________电压,PN结的空间电荷区变窄,是由于PN 结加的是__________电压。 4、N型半导体中多数载流子是,P型半导体中多数载流子是,PN结具 有特性。 5、发射结偏置,集电结偏置,则三极管处于饱和状态。 6、P型半导体中空穴为载流子,自由电子为载流子。 7、PN结正偏时,反偏时,所以PN结具有导电性。 8、反向电流是由载流子形成,其大小与有关,而与外加电压。 9、三极管是控制元件,场效应管是控制元件。 10当温度升高时,三极管的等电极电流I,发射结压降UBE。 11、晶体三极管具有放大作用时,发射结,集电结。 12、漂移电流是电流,它由载流子形成,其大小与有关,而与 外加电压。 13-19(第二章) 13、放大电路中基极偏置电阻Rb的作用是__________。 14、两级放大电路的第一级电压放大倍数为100,即电压增益为﹍﹍﹍﹍﹍﹍﹍dB,第二 级电压增益为26dB,则两级总电压增益为﹍﹍﹍﹍﹍﹍﹍dB。 15、有偶数级共射电路组成的多级放大电路中,输入和输出电压的相位_________,有奇数级组成的多 级放大电路中,输入和输出电压的相位__________。 16、电压负反馈稳定的输出量是__________,使输出电阻__________,电流负反馈稳定的输出量_______, 使输出电阻__________。 17、稳压二极管是利用二极管的__________特性工作的。 18、晶闸管阳极和阴极间加__________,控制极加适当的__________,晶闸管才能导通。 19、在输入V2单相半波整流电路中,二极管承受的最大反向电压为V RM,负载电压为V O。 20-26(第三章) 20、甲类功放的最大缺点是_______; 21、双极型三极管是控制器件,场效应管是控制器件;结型场效应管的栅源极之间 必须加偏置电压,才能正常放大工作。

模拟电子技术基础期末试题 答案

课程 模拟电子技术基础 班级 学号 姓名 一、填空题:(15分,每空1分) 1. 环境温度变低,放大电路中晶体管的共射电流放大倍数 会变 。 2. 当设计要求输出功率为20W 的乙类推挽功放时,应选取P CM 至少为 W 的功率管。 3. 若将集成运放理想化,则差模输入电阻id r = ,o r = 。 4.在负反馈放大电路中,要达到提高输入电阻、增强带负载能力的目的,应该给放大器接入 反馈。 5. _______比例运算电路的输入电阻大,而_______比例运算电路的输入电阻小。 6. 差分放大电路的主要功能是放大 信号、抑制 信号。 7. 当输入信号的频率等于放大电路的L f 或H f 时,放大倍数的值约下降到中频时的 。 8. 根据相位平衡条件判断图示电路 (填“能”或“不能”)产生正弦波振荡。 9.负反馈使放大电路增益下降,但它可以 通频带, 非线性失真。

10. 在直流电源中,当变压器副边电压有效值2U =20V 时,单相全波整流电路的输出电压平均值)(AV O U = V ,若负载电阻L R =20Ω,则负载电流平均值)(AV O I = A 。 二、选择题:(20分,每题2分) 1.在本征半导体中加入 元素可形成P 型半导体。 A.五价 B.四价 C.三价 2.工作在放大区的某三极管,如果当B I 从12A μ增大到22A μ, C I 从1mA 变为1.9mA , 那么它的β约为 。 A. 90 B. 83.3 C. 86.4 3.以下基本放大电路中, 电路不具有电压放大能力。 A.共射 B.共集 C.共基 4.用恒流源取代长尾式差分放大电路中的发射极电阻e R ,将使电路的 。 A.差模放大倍数数值增大 B.抑制共模信号能力增强 C.差模输入电阻增大 5.在杂质半导体中,多数载流子的浓度主要取决于 。 A .温度 B. 掺杂工艺 C. 杂质浓度 6.为增大电压放大倍数,集成运放的中间级采用 。 A.共射放大电路 B.共集放大电路 C.共基放大电路 7.欲得到电流—电压转换电路,应在放大电路中引入 负反馈。 A.电压并联 B.电压串联 C.电流并联 D.电流串联 8.欲将方波转换成尖顶波电压,应选用 运算电路。 A.比例 B.加减 C.积分 D.微分 9.功率放大电路的最大输出功率是在输入电压为正弦波时,输出基本不失真情况下,负载上可获得的最大 。 A.交流功率 B.直流功率 C.平均功率 10. 在RC 桥式正弦波振荡电路中,当信号频率f =O f 时,RC 串并联网络呈 。 A.容性 B.阻性 C.感性 三、(本题10分)判断下图电路中是否引入了反馈,是直流反馈还是交流反馈,是正反馈还是负反馈,如果电路引入了交流负反馈,判断引入了哪种阻态。并估算此电路在深度负反馈条件下的源电压放大倍数。

东大21年1月考试《模拟电子技术基础X》考核作业【标准答案】

学习中心: 院校学号: 姓名 课程名称: 模拟电子技术基础X 1 东 北 大 学 继 续 教 育 学 院 模拟电子技术基础X 试 卷(作业考核 线上2) A 卷(共 8 页) 1.N 型半导体是在本征半导体中加入( D )后形成的。 A 、电子 B 、空穴 C 、三价元素 D 、五价元素 2.其它条件不变,若放大器输入端电阻减小应引入 ( D ) A 、电压负反馈 B 、电流负反馈 C 、串联负反馈 D 、并联负反馈 3.正弦波振荡电路利用正反馈产生振荡的条件是 ( B ) A 、 B 、 C 、 4.在OCL 功率放大电路中输入信号为正弦电压,输出波形如图1所示, 说明电路中出现的失真是( C ) 失真。 A 、饱和 B 、截止 C 、交越 5.在放大电路中,为了稳定静态工作点,可以引入( A )。 A 、直流负反馈 B 、交流负反馈 C 、交流正反馈 D 、直流正反馈 6.当PN 结加正向电压时,其空间电荷区 ( B )。 A 、变宽 B 、变窄 C 、基本不变 7.对于基本共射放大电路的特点,其错误的结论是( A )。 A 、输出电压与输入电压相位相同 B 、输入电阻,输出电阻适中 C 、电压放大倍数大于1 D 、电流放大倍数大于1 8.在放大电路中测得一只三极管三个电极的电位分别为2.8V 、3.5V 、6V ,则这只三极管属于( B )。 A 、硅PNP 型 B 、硅NPN 型 C 、锗PNP 型 D 、锗NPN 型 9. 场效应管与双极型晶体管相比,具有( A )。 A 、更大的输入电阻 B 、更小的输入电阻 C 、相同的输入电阻 10.二极管电路如图2所示,设二极管均为理想的,则电压U o 为 ( C )。 A 、-10V B 、-5V C 、0V D 、+5V 1=F A 1 -=F A 1|1|>>+F A

模拟电子技术基础-课程作业

教材 模拟电子技术基础(第四版) 清华大学 模拟电子技术课程作业 第1章 半导体器件 1将PN 结加适当的正向电压,则空间电荷区将( A )。 (a)变宽 (b)变窄 (c)不变 2半导体二极管的主要特点是具有( B )。 (a)电流放大作用 (b)单向导电性 (c)电压放大作用 3二极管导通的条件是加在二极管两端的电压( A )。 (a)正向电压大于PN 结的死区电压 (b)正向电压等于零 (c)必须加反向电压 4电路如图1所示,设D 1,D 2均为理想元件,已知输入电压u i =150sin ωt V 如图2所示,试画出电压u O 的波形。 D 2 D 1 u O + - 图1 图2 5电路如图1所示,设输入信号u I 1,u I2的波形如图2所示,若忽略二极管的正向压降,试画出输出电压u O 的波形,并说明t 1,t 2时间内二极管D 1,D 2的工作状态。

u I2 D 1 图1 图2 u u 第2章基本放大电路 1下列电路中能实现交流放大的是图()。 U o CC U CC U (c)(d) - o u o 2图示电路,已知晶体管 β=60,U BE .V =07 ,R C k =2 Ω,忽略U BE ,如要将集电极电流 I C调整到1.5mA,R B应取()。 (a)480kΩ(b)120kΩ(c)240kΩ(d)360kΩ

3固定偏置放大电路中,晶体管的β=50,若将该管调换为β=80的另外一个晶体管,则该电路中晶体管集电极电流IC 将( )。 (a)增加 (b)减少 (c)基本不变 4分压式偏置放大电路如图所示,晶体T 的β=40,U BE . V =07,试求当RB1,RB2分别开路时各电极的电位(U B ,U C ,U E )。并说明上述两种情况下晶体管各处于何种工作状态。 u o U CC 12V + - 5放大电路如图所示,已知晶体管的输入电阻r be k =1Ω,电流放大系数β=50,要求: (1)画出放大器的微变等效电路; (2)计算放大电路输入电阻r i 及电压放大倍数A u 。 Ω u o 12V + -

相关文档
最新文档