(完整版)三相半波桥式(全波)整流及六脉冲整流电路

(完整版)三相半波桥式(全波)整流及六脉冲整流电路
(完整版)三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路

1. 三相半波整流滤波

当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压

式中Up——是交流输入电压幅值。

并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流

时的电容量都小。

图1 三相半波整流电路原理图

2. 三相桥式(全波)整流滤波

图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图

由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。

(1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管;

(2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。

由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。

图3 三相整流的波形图

①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o;

②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是:

(1)

式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压,

其半波幅值电压为:

(2)

那么其脉动幅度电压就是:

输出电压平均值Ud是从30o~150o积分得,

(3)

式中Ud——输出电压平均值;

UA——相电压有效值。

如果滤波后再经电容滤波,则输出电压就接近于幅值Up。三相全波整流波形的脉动幅度是:

输出电压平均值Ud是从60o~120o积分得:

UAB=2.34 UA=514V (4)

式中Ud——输出电压平均值,

UAB——线电压有效值。

如果滤波后再经电容滤波,则输出电压就接近于幅值Up。由上面的计算还可以看出,三相全波整流比三相半波整流优越得多,三相全波整流用比半波整流小得多的电容器就可以达到最大值Up。因此,UPS的输入整流器中都采用了三相全波整流电路。

3. 三相6脉冲整流器

上面的三相全波整流是不稳压的,因此在UPS中都用晶闸管整流器(简称晶闸管)代替了二极管整流器,如图4所示。

图4 三相桥式6脉冲全控整流电路原理图

图中的晶闸管整流器VS和二极管整流器VD的工作方式有很大区别。

(1)二极管整流器VD阳极和阴极之间的正向电压只要大于其PN结的势垒电压,二极管就导通。而晶闸管整流器VS,在其控制极没有触发信号加上时,只要其阳极和阴极之间的正向电压不大到把管子击穿,那么它就不导通。(2)晶闸管整流器VS的导通条件有:

①阳极和阴极之间的正向电压。对于二极管整流器来说,这个电压只要在0.7V左右时,就开始导通了;而晶闸管一般规定在6V以上。

②控制极触发信号电压。晶闸管一般都用脉冲触发,要求这个电压脉冲要有一定的幅度和宽度,没有一定的幅度就不能抵消PN结的势垒电压,没有一定的宽度就不能有足够的时间使导通由一点扩散到整个PN结。一般要求幅度为

3~5V,宽度4~10μs,触发电流5~300mA。

③维持电流。是指可以维持晶闸管整流器VS导通的最小电流,一般对20A到200A的晶闸管来说,规定其维持电流小于60mA。

④擎住电流。是指晶闸管被打开而控制极触发信号电压消失后,可以维持继续导通的最小电流,这个电流一般是维持电流的若干倍。

(3)控制角α与导通角θ为了表征晶闸管对交流电压

的控制行为而引出了这两个参量。图5所示是控制角α与导通角θ的关系。下面就对它们的含义进行讨论。

图5 控制角α与导通角θ的关系

①控制角α。当交流正半波加到晶闸管上时,就具有了使晶闸管导通的基础条件,什么时刻给晶闸管控制极加触发信号使其开通呢?从交流正弦波过0开始,一直到晶闸管被触发导通(时间b)的这段晶闸管不导通的时间0b,称为控制角,用α表示。由于晶闸管开启很快,一般是小于1μs,故认为加触发信号的时间就是晶闸管被打开的时间,即一般都把开启时间忽略不计。

②导通角θ。由于晶闸管的开启是一个正反馈过程,故打开后就不能自动关断,这个导通过程要一直延续到电压过0,把从开启到截止这段时间称为导通角,用θ表示。

UPS中的输入整流器就是利用对上述这两个参量的控制来

实现稳压的。一般称这种控制为“相控”。很明显,在这里α+β=180o,就是说只要知道这两个参数中的一个,另一个也就知道了。

4. 六相全波整流和12脉冲整流器

六相全波整流及12脉冲整流器在一些UPS中为了提高输入功率因数或者提高功率容量,就采用了六相全波整流即12

脉冲整流。实际上,在UPS中都采用的六相全波相控整流,

也就是通常所说的12脉冲整流。既然是12脉冲,就说明了两个问题:一个是采用了12只晶闸管,一个是6相输入电源。

图6 12脉冲整流电路

图6所示是12脉冲整流电路。不难看出,两个整流器的结构一模一样,都是三相6脉冲整流,不同的是两个整流器输入变压器的结构不同,一个变压器绕组是“Y”型连接,一个变压器绕组是“Δ”型连接。这样连接的结果就使二者的电压相位差为30o,也即整流脉动的最大宽度是30o。由此得出多相整流时的最大脉动宽度(即晶闸管导通时间θ)表达式为:

其中P为控制脉冲数,比如6脉冲时是60o,12脉冲时是30o,18脉冲时是20o,24脉冲时是15o等等,脉动周期越小,其整流输出电压越高、越接近交流电压峰值,其表示式为在区间的积分:

(5)

对于12脉冲半波整流来说,当α=0时,

这已是220V相电压的峰值;若是12脉冲全波整流,其值为:

(6)

当α=0时其整流电压:Ud=618V

图中两个一样的整流器输出是通过各自的扼流圈后进行并

联的,目的是使二者的输出电流均衡,因为两个整流器虽然一样,但它们的内阻决不会一样,就会造成输出电流的不均衡。因此,扼流圈的阻抗值要远远大于整流器的内阻,即整流器的内阻和扼流圈的阻抗相比可以忽略不计。

由上面可知,整流相数越多,其整流输出电压的脉动频率越高,脉动幅度越小,脉动系数就越小。输出纹波就越低,纹波系数也就越小。图7给出了12脉冲整流时的波动和多相半波整流时平均值接近峰值的情况。

图7 12脉冲整流时的波动和多相半波整流时平均值接近峰

值的情况

下面也给出脉动系数和纹波系数的表达式:

脉动系数:

(7)

纹波系数:

(8)

为了有一个量的概念,表1给出了半波整流输出电压的脉动系数、纹波系数和整流相数P的关系。由表中可以看出:三

相全波(半波6相)整流比单相全波(半波2相)整流时的麦冬系数和纹波系数小得多,比后者的1/10还小,当然加在后面的滤波电容也就小得多,这也就是为什么当UPS的容量达到一定值时,都尽量采用三相全波整流:为了提高效率,都不采用6相半波整流,虽然都是6只整流管,但由于三相全波整流的输出电压比6相半波整流的输出电压高,因此在同样功率下,三相全波整流的电流小,所以功耗也小,效率也就高了。

表1 半波整流输出电压的脉动系数、纹波系数和整流相数的关系

整流二极管的作用及其整流电路

整流二极管的作用及其整流电路 整流二极管的作用及其整流电路 一种将交流电能转变为直流电能的半导体器件。通常它包含一个PN结,有阳极和阴极两个端子。 P区的载流子是空穴,N区的载流子是电子,在P区和N区间形成一定的位垒。外加使P区相对N区为正的电压时,位垒降低,位垒两侧附近产生储存载流子,能通过大电流,具有低的电压降(典型值为0.7V),称为正向导通状态。 若加相反的电压,使位垒增加,可承受高的反向电压,流过很小的反向电流(称反向漏电流),称为反向阻断状态。整流二极管具有明显的单向导电性,。 整流二极管可用半导体锗或硅等材料制造。硅整流二极管的击穿电压高,反向漏电流小,高温性能良好。通常高压大功率整流二极管都用高纯单晶硅制造。这种器件的结面积较大,能通过较大电流(可达上千安),但工作频率不高,一般在几十千赫以下。整流二极管主要用于各种低频整流电路。 二极管整流电路 一、半波整流电路 图5-1、是一种最简单的整流电路。它由电源变压器B 、整流二极管D 和负载电阻Rfz ,组成。变压器把市电电压(多为220伏)变换为所需要的交变电压e2,D 再把交流电变换为脉动直流电。 下面从图5-2的波形图上看着二极管是怎样整流的。

变压器砍级电压e2,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在0~K时间内,e2为正半周即变压器上端为正下端为负。此时二极管承受正向电压面导通,e2通过它加在负载电阻Rfz上,在π~2π时间内,e2为负半周,变压器次级下端为正,上端为负。这时D承受反向电压,不导通,Rfz,上无电压。在π~2π时间内,重复0~π时间的过程,而在3π~4π时间内,又重复π~2π时间的过程…这样反复下去,交流电的负半周就被"削"掉了,只有正半周通过Rfz,在Rfz上获得了一个单一右向(上正下负)的电压,如图5-2(b)所示,达到了整流的目的,但是,负载电压Usc。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、留下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲"一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个周期内的平均值,即负载上的直流电压 Usc =0.45e2 )因此常用在高电压、小电流的场合,而在一般无线电装置中很少采用。 二、全波整流电路(单向桥式整流电路) 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。

全波整流滤波电路

二极管全波整流滤波电路 ①下面分两部分介绍其工作原理,即桥式整流电路与滤波电路两部分。 首先,介绍桥式整流电路,其工作原理为如下: 电路图 图10.02(a) 在分析整流电路工作原理时,整流电路中的二极管是作为开关运用,具有单向导电性。根据图10.02(a)的电路图可知:当正半周时二极管D1、D3导通,在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通,在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成,得到的是同一个方向的单向脉动电压。单相桥式整流电路的波形图见图10.02(b)。

下面介绍滤波电路的工作原理: (1)滤波的基本概念 滤波电路利用电抗性元件对交、直流阻抗的不同,实现滤波。电容器C对直流开路,对交流阻抗小,所以C应该并联在负载两端。电感器L对直流阻抗小,对交流阻抗大,因此L 应与负载串联。经过滤波电路后,既可保留直流分量、又可滤掉一部分交流分量,改变了交直流成分的比例,减小了电路的脉动系数,改善了直流电压的质量。 (2)电容滤波电路 现以单相桥式电容滤波整流电路为例来说明。电容滤波电路如图10.06所示,在负载电阻上并联了一个滤波电容C。 若电路处于正半周,二极管D1、D3导通,变压器次端电压v2给电容器C充电。此时C相当于并联在v2上,所以输出波形同v2,是正弦形。当v2到达90°时,v2开始下降。先假设二极管关断,电容C就要以指数规律向负载RL放电。指数放电起始点的放电速率很大。 在刚过90°时,正弦曲线下降的速率很慢。所以刚过90°时二极管仍然导通。在超过90°后的某个点,正弦曲线下降的速率越来越快,当刚超过指数曲线起始放电速率时,二极管关断。 所以,在t1到t2时刻,二极管导电,C充电,v C=v L按正弦规律变化;t2到t3时刻二极管关断,v C=v L按指数曲线下降,放电时间常数为R L C。通过以上分析画出波形图如下: ②讨论C和RL的大小对输出电压的影响。

三相半波桥式(全波)整流及六脉冲整流电路

三相半波桥式(全波)整流及六脉冲整流电路 1. 三相半波整流滤波 当功率进一步增加或由于其他原因要求多相整流时,三相整流电路就被提了出来。图1所示就是三相半波整流电路原理图。在这个电路中,三相中的每一相都和单独形成了半波整流电路,其整流出的三个电压半波在时间上依次相差120o 叠加,并且整流输出波形不过0点,其最低点电压 式中Up——是交流输入电压幅值。 并且在一个周期中有三个宽度为120o的整流半波。因此它的滤波电容器的容量可以比单相半波整流和单相全波整流 时的电容量都小。 图1 三相半波整流电路原理图 2. 三相桥式(全波)整流滤波 图2所示是三相桥式全波整流电路原理图。图3是它们的整流波形图。图3(a)是三相交流电压波形;图3(b)是三相半波整流电压波形图;图3(c)是三相全波整流电压波形图。在输出波形图中,N粗平直虚线是整流滤波后的平均输出电压值,虚线以下和各正弦波的交点以上(细虚线以上)的小脉动波是整流后未经滤波的输出电压波形。

图2 三相桥式全波整流电路原理图 由图1和图2可以看出,三相半波整流电路和三相桥式全波整流电路的结构是有区别的。 (1)三相半波整流电路只有三个整流二极管,而三相全波整流电路中却有六只整流二极管; (2) 三相半波整流电路需要输入电源的中线,而三相全波整流电路则不需要输入电源的中线。 由图3可以看出三相半波整流波形和三相全波整流电路则不需要输入电源的中线。 图3 三相整流的波形图 ①三相半波整流波形的脉动周期是120o而三相全波整流波形的脉动周期是60o; ②三相半波整流波形的脉动幅度和输出电压平均值:三相半波整流波形的脉动幅度是: (1) 式中U——脉动幅度电压;Up是正弦半波幅值电压,比如有效值为380V的线电压, 其半波幅值电压为: (2)

整流桥电路大全

整流电路大全 9.3.7 正、负极性全波整流电路及故障处理 如图9-24所示是能够输出正、负极性单向脉动直流电压的全波整流电路。电路中的T1是电源变压器,它的次级线圈有一个中心抽头,抽头接地。电路由两组全波整流电路构成,VD2和VD4构成一组正极性全波整流电路,VD1和VD3构成另一组负极性全波整流电路,两组全波整流电路共用次级线圈。 图9-24 输出正、负极性直流电压的全波整流电路 1.电路分析方法 关于正、负极性全波整流电路分析方法说明下列2点: (1)在确定了电路结构之后,电路分析方法和普通的全波整流电路一样,只是需要分别分析两组不同极性全波整流电路,如果已经掌握了全波整流电路的工作原理,则只需要确定两组全波整流电路的组成,而不必具体分析电路。 (2)确定整流电路输出电压极性的方法是:两二极管负极相连的是正极性输出端(VD2和VD4连接端),两二极管正极相连的是负极性输出端(VD1和VD3连接端)。 2.电路工作原理分析 如表9-28所示是这一正、负极性全波整流电路的工作原理解说。 关键词说明

3.故障检测方法 关于这一电路的故障检测方法说明下列几点: (1)如果正极性和负极性直流输出电压都不正常时,可以不必检查整流二极管,而是检测电源变压器,因为几只整流二极管同时出现相同故障的可能性较小。 (2)对于某一组整流电路出现故障时,可按前面介绍的故障检测方法进行检查。这一电路中整流二极管中的二极管VD1和VD3、VD2和VD4是直流电路并联的,进行在路检测时会相互影响,所以准确的检测应该将二极管脱开电路。 4.电路故障分析 如表9-29所示是正、负极性全波整流电路的故障分析。 分页:123456

10种精密整流电路的详解

1.第一种得模拟电子书上(第三版442页)介绍得经典电路。A1用得就是半波整流并且放大 两倍,A2用得就是求与电路,达到精密整流得目得。(R1=R3=R4=R5=2R2) 2.第二种方法瞧起来比较简单A1就是半波整流电路,就是负半轴有输出,A2得电压跟随器 得变形,正半轴有输出,这样分别对正负半轴得交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真就是她妈得坑爹,经过我半天得分析才发现就是这样得结论:Uo=-|Ui|,整出来得电路全就是负得,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0得时候电路等效就是这样得

放大器A就是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B就是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0得时候电路图等效如下: 放大器A就是电压跟随器,放大器B就是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上就是这个电路得全部分析,但就是想达到正向整流得效果就应该把二极管全部反向过来电路与仿真效果如下图所示

4.第四种电路就是要求所有电阻全部相等。这个仿真相对简单。 电路与仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真就是不清楚为什么就是这样分析,可以参照模拟电子技术书上对于第一种电路得分析),这就是电路图等效如下(R6就是为了测试信号源用得跟这个电路没有直接得关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B得部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B得正相输入端就是相当于接地得,我刚开始一直没有想通,后来明白了,这一条线路上就是根本就没有电流得,根本就没有办法列出方程来。(不知道这么想就是不就是正确得) 当Ui<0得时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

整流电路计算

桥式整流属于全波整流,它不是利用副边带有中心抽头的变压器,用四个二极管接成电桥形式,使在电压V2的正负半周均有电流流过负载,在负载形成单方向的全波脉动电压。 桥式整流电路计算主要参数: 单相全波整流电路图 利用副边有中心抽头的变压器和两个二极管构成如下图所示的全波整流电路。从 图中可见,正负半周都有电流流过负载,提高了整流效率。 全波整流的特点: 输出电压V O高;脉动小;正负半周都有电流供给负载,因而变压器得到充 分利用,效率较高。 主要参数:

桥式整流电路电感滤波原理 电感滤波电路利用 电感器两端的电流不能突变的特点,把电感器与负载串联起来,以达到使输出电流平滑的目的。从能量的观点看,当电源提供的电流增大(由电源电压增加引起)时,电感器L把能量存储起来;而当电流减小时,又把能量释放出来,使负载电流平滑,电感L有平波作用 桥式整流电路电感滤波优点:整流二极管的导电角大,峰值电流小,输出特性较平坦。 桥式整流电路电感滤波缺点:存在铁心,笨重、体积大,易引起电磁干扰, 只适应于低电压、大电流的场合。

例10.1.1桥式整流器滤波电路如图所示,已知V1是220V交流电源,频率为50Hz, 直流电压V L=30V,负载电流I L=50mA。试求电源变压器副边电压v2的有效值,选择整流二极管及滤波电容。

桥式整流电路电容滤波电路 图10.5分别是单相桥式整流电路图和整流滤波电路的部分波形。这里假设‘ 、 t<0时,电容器C已经充电到交流电压V2的最大值(如波形图所示)。 结论1:电容的储能作用,使得输出波形比较平滑,脉动成分降低输出电压的平均值增大。

十种精密全波整流电路图

十种精密全波整流电路图 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益。 图2优点是匹配电阻少,只要求R1=R2

图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计。

图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。

图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波。 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了。 图3的优势在于高输入阻抗。 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高。

三相半波可控整流电路

三相半波可控整流电路

1. 电阻负载 (1) 工作原理 三相半波可控整流电路如图1 a) 所示。为得到零线,变压器二次侧必须接成星形,而一次侧接成三角形,避免3次谐波电流流人电网。三个晶闸管分别接入a、b、c三相电源,它们的阴极连接在一起,称为共阴极接法,这种接法触发电路有公共端,连线方便。 假设将电路中的晶闸管换作二极管,并用VD表示,该电路就成为三相半波不可控整流电路,以下首先分析其工作情况。此时,三个二极管对应的相电压中哪一个的值最大,则该相所对应的 二极管导通,并使另两相的二极管承受反压关断,输出整流电压即为该相的相电压,波形如图1 d) 所示。在一个周期中,器件工作情况如下:在ωt1~ωt2期 间,α相电压最高,VD1导通,u d= u a;在ωt2~ωt3期间,b 相电压最高, VD2导通,u d= u b;在ωt3~ωt4期间,c 相电压最高,VD3导通,u d= u c。此后,在下一周期相当于ωt1的位置即ωt4时刻,VD1又导通,重复前一周期的工作情况。如此,一周期中VD1、VD2、VD3轮流导通,每管各导通120o。u d波形为三个相电压在正半周期的包络线。 在相电压的交点ωt1、ωt2、ωt3处,均出现了二极管换相,即电流由一个二极管向另一个二极管转移,称这些交点为自然换相点。对三相半波可控整流电路而言,自然换相点是各相晶闸管能触发导通的最早时刻,将其作为计算各晶闸管触发角α的起点,即α=0o,要改变触发角只能是在此基础上增大,即沿时间坐标轴向右移。若在自然换相点处触发相应的晶闸管导通,则电

路的工作情况与以上分析的二极管整流工作情况一样。由单相可控整流电路可知,各种单相可控整流电路的自然换相点是变压器二次电压u2的过零点。 当α= 0o时,变压器二次侧 a 相绕组和晶闸管VT1的电流波形如图1 e) 所示,另两相电流波形形状相同,相位依次滞后120o,可见变压器二次绕组电流有直流分量。 图1 f) 是VT1两端的电压波形,由3段组成:第1段, VT1导通期间,为一管压降,可近似为u VT1=0;第2段,在VT1关断后,,VT2导通期间,u VT1= u a-u b = u ab ,为一段线电压;第3段,在VT3导通期间,u VT1= u a-u c = u ac 为另一段线电压。即晶闸管电压由一段管压降和两段线电压组成。由图可见, α= 0o时,晶闸管承受的两段线电压均为负值,随着α增大,晶闸管承受的电压中正的部分逐渐增多。其他两管上的电压波形形状相同,相位依次差120o。 增大α值,将脉冲后移,整流电路的工作情况相应地发生变化。 图2 是α=30o时的波形。从输出电压、电流的波形可看出,这时负载电流处于连续和断续的临界状态,各相仍导电120o。 如果α >30o,例如α =60o时,整流电压的波形如图3 所示,当导通一相的相电压过零变负时,该相晶闸管关断。此时下一相晶闸管虽承受正电压,但它的触发脉冲还未到,不会导通,因此输出电压电流均为零,直到触发脉冲出现为止。这种情况下,负载电流断续,各晶闸管导通角为90o,小于120o 若α角继续增大,整流电压将越来越小,α=150o时,整流输出电压为零。故电阻负载时α角的移相范围为150o。 (2) 负载电压 整流电压平均值的计算分两种情况: 1) α≤30o时,负载电流连续,有 当α= 0 时,U d最大,为U d= U d0=1.17U2. 2) α >30o时,负载电流断续,晶闸管导通角减小,此时有

半波精密整流电路、8种类型精密全波整流电路及详细分析

精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计.图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了.

开关电源整流桥的基础知识整理

开关电源整流桥的基础知识整理 50Hz交流电压经过全波整流后变成脉动直流电压u1,再通过输入滤波电容得到直流高压U1。在理想情况下,整流桥的导通角本应为180°(导通范围是从0°~180°),但由于滤波电容器C的作用,仅在接近交流峰值电压处的很短时间内,才有输入电流流经过整流桥对C 充电。50Hz交流电的半周期为10ms,整流桥的导通时间tC≈3ms,其导通角仅为54°(导通范围是36°~90°)。因此,整流桥实际通过的是窄脉冲电流。桥式整流滤波电路的原理如图1(a)所示,整流滤波电压及整流电流的波形分别如图l(b)和(c)所示。 最后总结几点: (1)整流桥的上述特性可等效成对应于输入电压频率的占空比大约为30%。(2)整流二极管的一次导通过程,可视为一个“选通脉冲”,其脉冲重复频率就等于交流电网的频率(50Hz)。 (3)为降低开关电源中500kHz以下的传导噪声,有时用两只普通硅整流管(例如1N4007) 与两只快恢复二极管(如FR106)组成整流桥,FRl06的反向恢复时间trr≈250ns。 2)整流桥的参数选择 隔离式开关电源一般采用由整流管构成的整流桥,亦可直接选用成品整流桥,完成桥式整流。全波桥式整流器简称硅整流桥,它是将四只硅整流管接成桥路形式,再用塑料封装而成的半导体器件。它具有体积小、使用方便、各整流管的参数一致性好等优点,可广泛用于开关电源的整流电路。硅整流桥有4个引出端,其中交流输入端、直流输出端各两个。 硅整流桥的最大整流电流平均值分0.5~40A等多种规格,最高反向工作电压有50~1000V等多种规格。小功率硅整流桥可直接焊在印刷板上,大、中功率硅整流桥则要用螺钉固定,并且需安装合适的散热器。 整流桥的主要参数有反向峰值电压URM(V),正向压降UF(V),平均整流电流 Id(A),正向峰值浪涌电流IFSM(A),最大反向漏电流IR(霢)。整流桥的反向击穿电压URR应满足下式要求:

三相半波可控整流电路__课程设计..

《电力电子技术课程》课程设计说明书 课程名称:三相半波可控整流电路设计 学院:电气与信息工程学院 专业:电气工程及其自动化 学生姓名:黄亚娟 学号: 10401240302 指导教师:曹志平 时间: 2013年6月9日

摘要 整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 关键词:整流,变压,触发,晶闸管,额定。

目录 摘要 (2) 目录 (3) 引言 (4) 一、三相半波整流电路原理分析 (4) 1.1.1 纯电阻性半波整流电路原理组成 (4) 1.2.1主电路设计 (4) 1.3.1 电路原理波形分析 (5) 二、三相半波整流电路数量分析 (7) 2.1.1 输出值的计算 (7) 2.2.1晶闸管的有效值 (8) 三、器件额定参数计算 (8) 3.1.1 变压器参数 (8) 3.2.1 晶闸管参数 (8) 3.3.1 变压器容量 (8) 3.4.1 晶闸管额定电压 (8) 3.5.1 晶闸管额定电流 (8) 四、MATLAB软件介绍 (9) 五、MATLAB软件电脑仿真………………………………………………… 1 1 5.1.1 MATLAB软件运用电脑仿真电路模型 (11) 5.2.1纯阻性负载三相半波可控整流电路仿真图像 (11) 5.3.1 仿真结果和实际原理分析比较 (12) 六、心得体会 (12) 七、参考文献 (13) 八致谢 (14)

十种运放精密全波整流电路

十种运放精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊说明,增益均按1设计. 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容.电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3

图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益.缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点. 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离.另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K

图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称. 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0.使用时要小心单电源运放在信号很小时的非线性.而且,单电源跟随器在负信号输入时也有非线性. 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡. 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态. 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种. 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,其中电阻R3可以用两个R并联.可以通过R5调节增益,增益可以大于1,也可以小于1.最具有优势的是可以在R5上并电容滤波. 图2的电路的优势是匹配电阻少,只要一对匹配电阻就可以了. 图3的优势在于高输入阻抗. 其它几种,有的在D2导通的半周内,通过A2的复合实现A1的负反馈,对有些运放会出现自激. 有的两个半波的输入阻抗不相等,对信号源要求较高. 两个单运放型虽然可以实现整流的目的,但是输入\输出特性都很差.需要输入\输出都加跟随

各类整流电路图及工作原理

桥式整流电路图及工作原理介绍 桥式整流电路如图1所示,图(a)、(b)、(c)是桥式整流电路的三种不同画法。由电源变压器、四只整流二极管D1~4 和负载电阻RL组成。四只整流二极管接成电桥形式,故称桥式整流。 图1 桥式整流电路图 桥式整流电路的工作原理 如图2所示。

在u2的正半周,D1、D3导通,D2、D4截止,电流由TR次级上端经D1→ RL →D3回到TR 次级下端,在负载RL上得到一半波整流电压。 在u2的负半周,D1、D3截止,D2、D4导通,电流由Tr次级的下端经D2→ RL →D4 回到Tr次级上端,在负载RL 上得到另一半波整流电压。 这样就在负载RL上得到一个与全波整流相同的电压波形,其电流的计算与全波整流相同,即 UL = 0.9U2 IL = 0.9U2/RL 流过每个二极管的平均电流为 ID = IL/2 = 0.45 U2/RL 每个二极管所承受的最高反向电压为 什么叫硅桥,什么叫桥堆 目前,小功率桥式整流电路的四只整流二极管,被接成桥路后封装成一个整流器件,称"硅桥"或"桥堆",使用方便,整流电路也常简化为图Z图1(c)的形式。桥式整流电路克服了全波整流电路要求变压器次级有中心抽头和二极管承受反压大的缺点,但多用了两只二极管。在半导体器件发展快,成本较低的今天,此缺点并不突出,因而桥式整流电路在实际中应用较为广泛。 二极管整流电路原理与分析 半波整流 二极管半波整流电路实际上利用了二极管的单向导电特性。

当输入电压处于交流电压的正半周时,二极管导通,输出电压v o=v i-v d。当输入电压处于交 流电压的负半周时,二极管截止,输出电压v o=0。半波整流电路输入和输出电压的波形如图所 示。 二极管半波整流电路 对于使用直流电源的电动机等功率型的电气设备,半波整流输出的脉动电压就足够了。但对于电子电路,这种电压则不能直接作为半导体器件的电源,还必须经过平滑(滤波)处理。平滑处理电路实际上就是在半波整流的输出端接一个电容,在交流电压正半周时,交流电源在通过二极管向负载提供电源的同时对电容充电,在交流电压负半周时,电容通过负载电阻放电。 电容输出的二极管半波整流电路仿真演示 通过上述分析可以得到半波整流电路的基本特点如下: (1)半波整流输出的是一个直流脉动电压。 (2)半波整流电路的交流利用率为50%。 (3)电容输出半波整流电路中,二极管承担最大反向电压为2倍交流峰值电压(电容输出 时电压叠加)。 (3)实际电路中,半波整流电路二极管和电容的选择必须满足负载对电流的要求。

10种全波精密整流电路

十种精密全波整流电路 图中精密全波整流电路的名称,纯属本人命的名,只是为了区分;除非特殊

说明,增益均按1设计。 图1是最经典的电路,优点是可以在电阻R5上并联滤波电容。电阻匹配关系为R1=R2,R4=R5=2R3;可以通过更改R5来调节增益 图2优点是匹配电阻少,只要求R1=R2 图3的优点是输入高阻抗,匹配电阻要求R1=R2,R4=2R3 图4的匹配电阻全部相等,还可以通过改变电阻R1来改变增益。缺点是在输入信号的负半周,A1的负反馈由两路构成,其中一路是R5,另一路是由运放A2复合构成,也有复合运放的缺点。 图5 和图6 要求R1=2R2=2R3,增益为1/2,缺点是:当输入信号正半周时,输出阻抗比较高,可以在输出增加增益为2的同相放大器隔离。另外一个缺点是正半周和负半周的输入阻抗不相等,要求输入信号的内阻忽略不计 图7正半周,D2通,增益=1+(R2+R3)/R1;负半周增益=-R3/R2;要求正负半周增益的绝对值相等,例如增益取2,可以选R1=30K,R2=10K,R3=20K 图8的电阻匹配关系为R1=R2 图9要求R1=R2,R4可以用来调节增益,增益等于1+R4/R2;如果R4=0,增益等于1;缺点是正负半波的输入阻抗不相等,要求输入信号的内阻要小,否则输出波形不对称。 图10是利用单电源运放的跟随器的特性设计的,单电源的跟随器,当输入信号大于0时,输出为跟随器;当输入信号小于0的时候,输出为0。使用时要小心单电源运放在信号很小时的非线性。而且,单电源跟随器在负信号输入时也有非线性。 图7,8,9三种电路,当运放A1输出为正时,A1的负反馈是通过二极管D2和运放A2构成的复合放大器构成的,由于两个运放的复合(乘积)作用,可能环路的增益太高,容易产生振荡。 精密全波电路还有一些没有录入,比如高阻抗型还有一种把A2的同相输入端接到A1的反相输入端的,其实和这个高阻抗型的原理一样,就没有专门收录,其它采用A1的输出只接一个二极管的也没有收录,因为在这个二极管截止时,A1处于开环状态。 结论: 虽然这里的精密全波电路达十种,仔细分析,发现优秀的并不多,确切的说只有3种,就是前面的3种。 图1的经典电路虽然匹配电阻多,但是完全可以用6个等值电阻R实现,

三相半波整流电路论文设计

电力电子技术课程设计 题目:三相半波整流电路的设计 作者:伟龙 学号: 指导教师:宁 专业班级:13级电气工程及其自动化本科2班 工业学院 2015年12月21日

目录 一、目录 (1) 二、引言 1.1 什么是电力电子技术 (2) 1.2 整流电路的应用领域及分类 (2) 三、设计目的及意义 (3) 四、设计的要求和容 4.1 三相半波整流电路电阻负载原理组成 (3) 4.2 三相半波整流电路电阻负载原理图 (4) 4.3 三相半波整流电路原理波形分析 (4) 4.4 三相半波整流电路的保护电路 (6) 五、三相半波整流电路数量计算 5.1 输出值的计算 (7) 5.2 晶闸管电流有效值 (8) 5.3 晶闸管额定电流 (8) 六、Matlab软件电脑仿真原理图 6.1 电阻负载Matlab原理图仿真 (8) 6.2 阻感负载Matlab原理图仿真 (9) 6.3 电阻负载Matlab波形图仿真 (9) 七、心得体会 (11) 八、参考文献 (12) 九、致 (12)

二、引言 2.1 什么是电力电子技术 电力电子技术是建立在电子学、电工原理和自动控制三大学科上的新兴学科。因它本身是大功率的电技术,又大多是为应用强电的工业服务的,故常将它归属于电工类。电力电子技术的容主要包括电力电子器件、电力电子电路和电力电子装置及其系统。电力电子器件以半导体为基本材料,最常用的材料为单晶硅;它的理论基础为半导体物理学;它的工艺技术为半导体器件工艺。近代新型电力电子器件量应用了微电子学的技术。电力电子电路吸收了电子学的理论基础,根据器件的特点和电能转换的要求,又开发出许多电能转换电路。这些电路中还包括各种控制、触发、保护、显示、信息处理、继电接触等二次回路及外围电路。利用这些电路,根据应用对象的不同,组成了各种用途的整机,称为电力电子装置。这些装置常与负载、配套设备等组成一个系统。电子学、电工学、自动控制、信号检测处理等技术常在这些装置及其系统量应用。 2.2 整流电路的应用领域及分类 工业中广泛使用的整流电路的目的是把国家电网中的交流电能转换为直流电能。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用 当整流负载容量较大,或要求直流电压脉动较小、易滤波时,应采用三相整流电路。由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好实验和课程设计,又因为整流电路应用非常广泛,在三相可控整流电路中,最基本的是三相半波可控整流电路,应用最为广泛的是三相桥式全控整流电路,双反星形可控整流电路以及十二脉波可控整流电路等,均可在三相半波可控整流电路的基础上进行分析,因此本次我们要做的实践是三相半波可控整流电路。

种精密整流电路的详解

1.第一种的模拟电子书上(第三版442页)介绍的经典电路。A1用的是半波整流并且放 大两倍,A2用的是求和电路,达到精密整流的目的。(R1=R3=R4=R5=2R2) 2.第二种方法看起来比较简单A1是半波整流电路,是负半轴有输出,A2的电压跟随器的 变形,正半轴有输出,这样分别对正负半轴的交流电进行整流!(R1=R2) 3.第三种电路

仿真效果如下: 这个电路真是他妈的坑爹,经过我半天的分析才发现是这样的结论:Uo=-|Ui|,整出来的电路全是负的,真想不通为什么作者放到这里,算了先把分析整理一下: 当Ui>0的时候电路等效是这样的

放大器A是同相比例电路,Uo1=(1+R2/R1)Ui=2Ui 放大器B是加减运算电路,Uo2=(1+R2/R1)Ui-(R4/R3)Uo1=-Ui 当Ui<0的时候电路图等效如下: 放大器A是电压跟随器,放大器B是加减运算电路 式子整理:Uo2=(1+R4/(R2+R3))Ui- R4/(R2+R3)Ui=Ui 以上是这个电路的全部分析,但是想达到正向整流的效果就应该把二极管全部反向过来电路和仿真效果如下图所示

4.第四种电路是要求所有电阻全部相等。这个仿真相对简单。 电路和仿真效果如下 计算方法如下: 当Ui>0时,D1导通,D2截止(如果真是不清楚为什么是这样分析,可以参照模拟电子技术书上对于第一种电路的分析),这是电路图等效如下(R6是为了测试信号源用的跟这个电路没有直接的关系,不知道为什么不加这个电阻就仿真不了)

放大器A构成反向比例电路,uo1=-ui, 这时在放大器B的部分构成加减运算电路,uo2=-uo1=-(-ui) 注意:这里放大器B的正相输入端是相当于接地的,我刚开始一直没有想通,后来明白了,这一条线路上是根本就没有电流的,根本就没有办法列出方程来。(不知道这么想是不是正确的) 当Ui<0的时候,D1截止,D2导通,电路图等效如下: 这时就需要列方程了 Ui<0时Ui/R1=-(U2/R5+U2/(R2+R3))计算得到U2=-2/3 Ui 再根据U2/(R2+R3)=(U0-U2)/R4 得到U0=3/2 U2 带入得到U0=-Ui

整流桥

整流桥-桥式整流工作原理 (2009-12-31 17:11:44) 转载 标 签: 杂谈 整流桥-桥式整流工作原理 整流桥 有多种方法可以用整流二极管将交流电转换为直流电,包括半波整流、全波整流以及桥式整流等。整流桥,就是将桥式整流的四个二极管封装在一起,只引出四个引脚。四个引脚中,两个直流输出端标有+或-,两个交流输入端有~标记。 应用整流桥到电路中,主要考虑它的最大工作电流和最大反向电压。 图一整流桥(桥式整流)工作原理

图二各类整流桥 (有些整流桥上有一个孔,是加装散热器用的) 这款电源的整流桥部分采用了一体式的整流桥,整流桥的作用就是能够通过二极管的单向导通的特性将电平在零点上下浮动的交流电转换为单向的直流电,通常电源中采用的整流桥除了这种单颗集成式的还有采用四颗二极管实现的,它们的原理完全相同 作用就是整流,把交流电变为直流电。实质上就是把4个硅二极管接成桥式整流电路之后封装在一起用塑料包装起来,引出4个脚,其中2个脚接交流电源,用~~符号表示,2个脚是直流输出,用+ -表示。 特点是方便小巧。不占地方。 规格型号一般直接用参数表示:50伏1安,100伏5安等等。 如果你要使用整流桥,选择的时候留点余量,例如要做12伏2安培输出的整流电源,就可以选择25伏5安培的桥。 选择整流桥要考虑整流电路和工作电压. 整流桥堆 整流桥堆一般用在全波整流电路中,它又分为全桥与半桥。 全桥是由4只整流二极管按桥式全波整流电路的形式连接并封装为一体构成的,图是其外形。

全桥的正向电流有0.5A、1A、1.5A、2A、2.5A、3A、5A、10A、20A、35A、50A等多种规格,耐压值(最高反向电压)有25V、50V、100V、200V、300V、400V、500V、600V、800V、1000V等多种规格。 常用的国产全桥有佑风YF系列,进口全桥有ST、IR等。 整流桥命名规则 一般整流桥命名中有3个数字,第一个数字代表额定电流,A;后两个数字代表额电压(数字*100),V 如:KBL410 即4A,1000V RS507 即5A,700V 整流这一个术语,它是通过二极管的单向导通原理来完成工作的,通俗的来说二极管它是正向导通和反向截止,也就是说,二极管只允许它的正极进正电和负极进负电。二极管只允许电流单向通过,所以将其接入交流电路时它能使电路中的电流只按单向流动,即所谓“整流”,用两只管是半泼整流,四只是全泼整流。

简单学电路——半波与全波,半波整流、全波整流、桥式整流(原创)

一、半波整流电路 图 5-1 、是一种最简单的整流电路。它由电源变压器 B 、整流二极管 D 和负载电阻Rfz ,组成。变压器把市电电压(多为220 伏)变换为所需要的交变电压e2 , D 再把交流电变 换为脉动直流电。 下面从图5-2 的波形图上看着二极管是怎样整流的。 变压器砍级电压e2 ,是一个方向和大小都随时间变化的正弦波电压,它的波形如图5-2(a)所示。在 0 ~K 时间内, e2 为正半周即变压器上端为正下端为负。此时二极管承受正 向电压面导通, e2 通过它加在负载电阻 Rfz 上,在π~ 2π时间内, e2 为负半周,变压器

次级下端为正,上端为负。这时 D 承受反向电压,不导通,Rfz,上无电压。在π~2π 时间内,重复0 ~π时间的过程,而在3π~ 4π时间内,又重复π~2π 时间的过程? 这样反复下去,交流电的负半周就被"削 "掉了,只有正半周通过Rfz,在 Rfz 上获得了一个单一右 向(上正下负)的电压,如图5-2 ( b )所示,达到了整流的目的,但是,负载电压Usc 。以及负载电流的大小还随时间而变化,因此,通常称它为脉动直流。 这种除去半周、图下半周的整流方法,叫半波整流。不难看出,半波整说是以"牺牲 "一半交流为代价而换取整流效果的,电流利用率很低(计算表明,整流得出的半波电压在整个 周期内的平均值,即负载上的直流电压Usc =0.45e2)因此常用在高电压、小电流的场合, 而在一般无线电装置中很少采用。 二、全波整流电路 如果把整流电路的结构作一些调整,可以得到一种能充分利用电能的全波整流电路。图5-3 是全波整流电路的电原理图。 全波整流电路,可以看作是由两个半波整流电路组合成的。变压器次级线圈中间需要引 出一个抽头,把次组线圈分成两个对称的绕组,从而引出大小相等但极性相反的两个电压 e2a 、e2b ,构成 e2a 、 D1 、 Rfz 与 e2b 、 D2 、 Rfz ,两个通电回路。 全波整流电路的工作原理,可用图5-4所示的波形图说明。在0 ~π间内, e2a 对 Dl 为正向电压, D1 导通,在Rfz 上得到上正下负的电压;e2b对D2为反向电压,D2 不导通(见图5-4 (b )。在π- 2π时间内, e2b 对 D2 为正向电压,D2 导通,在Rfz 上得到的仍然是上正下负的电压;e2a对D1为反向电压,D1 不导通(见图5-4 ( C)。

精密整流电路

实验 精密整流电路 一、实验目的 (1) 了解精密半波整流电路及精密全波整流电路的电路组成、工作原理及参数估算; (2) 学会设计、调试精密全波整流电路,观测输出、输入电压波形及电压传输特性。 二、知识点 半波精密整流、全波精密整流 三、实验原理 将交流电压转换成脉动的直流电压,称为整流。众所周知,利用二极管的单向导电性,可以组成半波及全波整流电路。在图1(a )中所示的一般半波整流电路中,由于二极管的伏安特性如图1(b )所示,当输入电压 幅值小于二极管的开启电压 时,二极管在信 号的整个周期均处于截止状态,输出电压始终为零。即使幅值足够大,输出电压也只反 映 大于 的那部分电压的大小,故当用于对弱信号进行整流时,必将引起明显的误差, 甚至无法正常整流。如果将二极管与运放结合起来,将二极管置于运放的负反馈回路中,则 可将上述二极管的非线性及其温漂等影响降低至可以忽略的程度,从而实现对弱小信号的精密整流或线性整流。 1.精密半波整流 图2给出了一个精密半波整流电路及其工作波形与电压传输特性。下面简述该电路的工作原理: 当输入>0时,<0,二极管D 1导通、D 2截止,由于N 点“虚地”,故≈0(≈-0.6V )。 图1 一般半波整流电路 V i V O

当输入<0 时,>0,二极管D2导通、D1 截止,运放组成反相比例运算器,故,若R1=R2,则=-。其工作波形及电压传输特性如图所示。电路的输出电压可表示为 v0 = 0 v i>0 -v i v i<0 (a)电路(b)波形 (c)电压传输特性 图2 精密半波整流电路

这里,只需极小的输入电压,即可有整流输出,例如,设运放的开环增益为105 ,二 极管的正向导通压降为0.6V ,则只需输入为 μV 以上,即有整流输出了。同 理,二极管的伏安特性的非线性及温漂影响均被压缩了105 倍。 2.精密全波整流 图3给出一个具有高输入阻抗的精密全波整流电路及其工作波形与电压传输特性。 当输入 >0时, <0,二极管D 1导通、D 2截止,故 = = 。运放A 2为差分输入 放大器,由叠加原理知。 v o v i V OM (b )工作波形 (c ) 电压传输特性 图3 精密全波整流电路 v i R - + A 1 +15V -15V N D 1 R D 2 v o1 - + A 2 +15V -15V N R 2R R L v o (a )电路 t v i v o t

相关文档
最新文档