高中数学中二次函数根的分布问题详解详析

高中数学中二次函数根的分布问题详解详析
高中数学中二次函数根的分布问题详解详析

二次函数根的分布问题

1、 二次函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 上的值域和最值问题。 ① 当对称轴2b x m a

=-≤时,函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 是单调递增函数,所以2max ()y f n an bn c ==++,2

min ()y f m am bm c ==++; ② 当对称轴(,]22

b m n x m a +=-

∈时,函数2()(0)y f x a x b x c a ==++>在区间(,]2b m a -上是单调递减函数,在区间(,]2b n a

-上是单调递增函数,且||||22b b m n a a

--≤--,所以2m a x ()y f n an bn c ==++,2min ()()()222b b b y f a b c a a a

=-=-+-+; ③ 当对称轴(,]22

b m n x n a +=-∈时,函数2()(0)y f x ax bx

c a ==++>在区间(,]2b m a -上是单调递减函数,在区间(,]2b n a

-上是单调递增函数,且||||22b b m n a a

--≥--,所以2m a x ()y f m am bm c ==++,2min ()()()222b b b y f a b c a a a

=-=-+-+; ④ 当对称轴2b x n a =-≥时,函数2()(0)y f x ax bx c a ==++>在闭区间[,]m n 是单调递减函数,所以2max ()y f m am bm c ==++,2

min ()y f n an bn c ==++。 其中,值域就是在最大值与最小值之间。

综上所述: 2max 2()()22()()22b m n f n an bn c x a y b m n f m am bm c x a +?=++=≤??=?+?=++=≥?? 22min 2()()2()()()()2222()()2b f m am bm c x m a b b b b y f a b c m x n a a a a b f n an bn c x n a ?=++=-≤???=-=-+-+<=-

2.二次函数2()(0)y f x ax bx c a ==++>在区间(,]n -∞上的值域和最值问题。

① 当对称轴(,]2b x n a

=-

∈-∞时,函数2()(0)y f x a x b x c a ==++>在(,]2b a -∞-单调递减,在(,]2b n a

-单调递增所以2()(0)y f x ax bx c a ==++>无最大值,最小值2min ()()()222b b b y f a b c a a a

=-=-+-+; ② 当对称轴2b x n a =->时,函数2()(0)y f x ax bx c a ==++>在(,]n -∞上是减函数,所以无最大值,最小值2

min ()y f n an bn c ==++。

2、 二次函数2(0)y ax bx c a =++>在区间[,)n +∞上的值域和最值问题。

① 当对称轴(,)2b x n a

=-∈-∞时,函数2()(0)y f x ax bx c a ==++>在[,)n +∞单调递增,所以2()(0)y f x

a x

b x

c a ==++>无最大值,最小值为2min ()y f n an bn c ==++;

② 当对称轴2b x n a =-

≥时,函数2()(0)y f x ax bx c a ==++>在[,]2b n a -单调递减,在(,)2b a -

+∞单调递增,所以2()(0)y f x ax bx c a ==++>无最大值,最小值2min ()()()222b b b y f a b c a a a

=-=-+-+; 3、 二次函数2(0)y ax bx c a =++<在闭区间[,]m n 上的值域和最值问题。

① 当对称轴2b x m a

=-≤时,函数2()(0)y f x ax bx c a ==++<在闭区间[,]m n 是单调递减函数,所以2max ()y f m am bm c ==++,2min ()y f n an bn c ==++;

② 当对称轴(,]22

b m n x m a +=-∈时,函数2()(0)y f x ax bx

c a ==++<在区间(,]2b m a -上是单调递增函数,在区间(,]2b n a

-上是单调递减函数,且||||22b b m n a a --≤--,所以2max ()()()222b b b y f a b c a a a

=-=-+-+,2min ()y f n an bn c ==++;

③ 当对称轴(,]22b m n x n a +=-∈时,函数2()(0)y f x a x b x c a ==++<在区间

(,]2b m a -上是单调递增函数,在区间(,]2b n a

-上是单调递减函数,且||||22b b m n a a --≥--,所以,2max ()()()222b b b y f a b c a a a =-=-+-+;2min ()y f m am bm c ==++

④ 当对称轴2b x n a

=-≥时,函数2()(0)y f x ax bx c a ==++<在闭区间[,]m n 是单调递增函数,所以2max ()y f n an bn c ==++,2

min ()y f m am bm c ==++。

其中,值域就是在最大值与最小值之间。

综上所述: 2min 2()()22()()22b m n f n an bn c x a y b m n f m am bm c x a +?=++=≤??=?+?=++=≥??

22max 2()()2()()()()2222()()2b f m am bm c x m a b b b b y f a b c m x n a a a a b f n an bn c x n a ?=++=-≤???=-=-+-+<=-

4、 二次函数2(0)y ax bx c a =++<在区间(,]n -∞或[,)n +∞上的值域和最值问题。

二次函数根的分布专题

一元二次方程根的分布专题 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ? ? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,02121221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k分布 设一元二次方程20(0) ax bx c a ++=>的两不等实根为1x,2x,k为常数。则一元二次方 k1x2x k 根 的 分 布 ① 12 x x k② 12 k x x③ 12 x k x 图 象 充 要 条 件 2 b k a f k 2 b k a f k f k 根 的 分 布 ④ 1122 k x x k⑤ 11223 k x k x k⑥两根有且仅有一根在 12 ,k k内 图 象 充 要 条 件 1 2 12 2 f k f k b k k a 1 2 3 ()0 ()0 ()0 f k f k f k 12 f k f k 或 1 12 1 ()0 22 f k k k b k a 或 2 12 2 ()0 22 f k k k b k a k k k 2 k 1 k 2 k 1 k 3 k 2 k 1 k

高三数学 正态分布和线性回归(知识点和例题)

正态分布和线性回归高考要求 1.了解正态分布的意义及主要性质 2.了解线性回归的方法和简单应用 知识点归纳 1.正态分布密度函数: 2 2 () 2 () 2 x f x e μ σ πσ - - =,(σ>0,-∞<x<∞) 其中π是圆周率;e是自然对数的底;x是随机变量的取值;μ为正态分布的均值;σ是正态分布的标准差.正态分布一般记为) , (2 σ μ N 2.正态分布) , (2 σ μ N)是由均值μ和标准差σ唯一决定的分布 例1、下面给出三个正态总体的函数表示式,请找出其均值μ和标准差σ.(1)2 2 2 1 ) ( x e x f- = π ,(-∞<x<+∞) (2) 2 (1) 8 () 22 x f x e π - - =,(-∞<x<+∞) 解:(1)0,1 (2)1,2 3.正态曲线的性质:正态分布由参数μ、σ唯一确定,如果随机变量ξ~N(μ,σ2),根据定义有:μ=Eξ,σ=Dξ。 正态曲线具有以下性质: (1)曲线在x轴的上方,与x轴不相交。 (2)曲线关于直线x =μ对称。 (3)曲线在x =μ时位于最高点。 (4)当x <μ时,曲线上升;当x >μ时,曲线下降。并且当曲线向左、

右两边无限延伸时,以x 轴为渐近线,向它无限靠近。 (5)当μ一定时,曲线的形状由σ确定。σ越大,曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中。 五条性质中前三条较易掌握,后两条较难理解,因此应运用数形结合的原则,采用对比教学 4.标准正态曲线:当μ=0、σ=l 时,正态总体称为标准正态总体,其 相应的函数表示式是2 221)(x e x f - = π ,(-∞<x <+∞) 其相应的曲线称为标准正态曲线 标准正态总体N (0,1)在正态总体的研究中占有重要的地位任何正态分布的概率问题均可转化成标准正态分布的概率问题 5.标准正态总体的概率问题: 对于标准正态总体N (0,1),)(0x Φ是总体取值小于0x 的概率, 即 )()(00x x P x <=Φ, 其中00>x ,图中阴影部分的面积表示为概率0()P x x <只要有标准正态 分布表即可查表解决.从图中不难发现:当00

高中数学正态分布知识点+练习

正态分布 要求层次 重难点 正态分布 A 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. (一) 知识内容 1.概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近 的曲线.在随机变量中,如果把样本中的任一数据看作随机变量X ,则这条曲线称为X 的概率密度曲线. 曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a b ,之间的概率就是对应的曲边梯形的面积. 2.正态分布 ⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布. 服从正态分布的随机变量叫做正态随机变量,简称正态变量. 正态变量概率密度曲线的函数表达式为22 ()2()2πx f x e μσσ --=?,x ∈R , 其中μ,σ是参数,且0σ>,μ-∞<<+∞. 式中的参数μ和σ分别为正态变量的数学期望和标准差.期望为μ、标准差为σ的正态分布通常记作 2(,)N μσ. 正态变量的概率密度函数的图象叫做正态曲线. ⑵标准正态分布:我们把数学期望为0,标准差为1的正态分布叫做标准正态分布. 例题精讲 高考要求 正态分布 x=μ O y x

⑶重要结论: ①正态变量在区间(,)μσμσ-+,(2,2)μσμσ-+,(3,3)μσμσ-+内,取值的概率分别是68.3%,95.4%,99.7%. ②正态变量在()-∞+∞,内的取值的概率为1,在区间(33)μσμσ-+,之外的取值的概率是0.3%,故正态变量的取值几乎都在距x μ=三倍标准差之内,这就是正态分布的3σ原则. (二)典例分析: 【例1】 已知随机变量X 服从正态分布2(3)N a , ,则(3)P X <=( ) A .1 5 B . 1 4 C .1 3 D . 12 【例2】 在某项测量中,测量结果X 服从正态分布() ()210N σσ>,,若X 在()01, 内取值的概率为0.4,则X 在()02, 内取值的概率为 . 【例3】 对于标准正态分布()01N , 的概率密度函数()2 2 x f x -=,下列说法不正确的是( ) A .()f x 为偶函数 B .()f x C .()f x 在0x >时是单调减函数,在0x ≤时是单调增函数 D .()f x 关于1x =对称 【例4】 已知随机变量X 服从正态分布2(2)N σ, ,(4)0.84P X =≤,则(0)P X =≤( ) A .0.16 B .0.32 C .0.68 D .0.84 【例5】 某种零件的尺寸服从正态分布(04)N ,,则不属于区间(44)-,这个尺寸范围的零件约占总数 的 . 【例6】 已知2(1)X N σ-, ~,若(31)0.4P X -=≤≤-,则(31)P X -=≤≤( ) A .0.4 B .0.8 C .0.6 D .无法计算 【例7】 设随机变量ξ服从正态分布(29)N ,,若(2)(2)P c P c ξξ>+=<-,则_______c =.

【经典例题】二次函数根的分布

【经典例题】二次函数根的分布

二次函数根的分布 一、知识点 二次方程根的分布与二次函数在闭区间上的最值归纳 一元二次方程 02=++c bx ax 根的分布情况 分 布情况 两个负根即两根都小于0 ()1 2 0,0x x << 两个正根即两根都大于0 ()1 2 0,0x x >> 一正根一负根即一个根小于0,一个大于0()1 2 0x x << 大致图 象(0 >a ) 得出的 结论 ()00200 b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()0 0??? -??? ->??f

表三:(根在区间上的分布) 分 布情况 两根都在()n m ,内 两根有且仅有 一根在()n m ,内 (图象有两种 情况,只画了一种) 一根在()n m ,内,另一根在()q p ,内,q p n m <<< 大致图 象(0 >a ) 得出的结论 ()()0002f m f n b m n a ?>?? >?? >???<-? ? 或 ()()()()00 f m f n f p f q

二、经典例题 例1:(实根与分布条件)已知βα, 是方程0 24)12(2=-+-+m x m x 的两个根,且βα<<2 ,求实数m 的 取值范围。 变式:关于x 的方程0 12)1(2 2 =-+-mx x m 的两个根,一 个小于0,一个大于1,求m 的取值范围。 例2:(动轴定区间)函数3 2)(2 --=ax x x f 在区间[]2,1上 是单调函数,则a 的取值范围是? 讨论

二次函数根分布经典练习题及解析

二次函数根的分布经典练习题及解析 1若不等式(a -2)x 2+2(a -2)x -4<0对一切x ∈R 恒成立,则a 的取值范围是() A(-∞,2] B [-2,2] C(-2,2] D(-∞,-2) 2设二次函数f (x )=x 2-x +a (a >0),若f (m )<0,则f (m -1)的值为() A 正数 B 负数 C 非负数 D 正数、负数和零都有可能 3已知二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,若在区间[-1,1]内至少存在一个实数c ,使f (c )>0,则实数p 的取值范围是_________ 4二次函数f (x )的二次项系数为正,且对任意实数x 恒有f (2+x )=f (2-x ),若f (1-2x 2)0且a ≠1) (1)令t=a x ,求y =f (x )的表达式; (2)若x ∈(0,2]时,y 有最小值8,求a 和x 的值 6如果二次函数y =mx 2+(m -3)x +1的图象与x 轴的交点至少有一个在原点的右侧,试求 m 的取值范围 7二次函数f (x )=px 2+qx +r 中实数p 、q 、r 满足 m r m q m p ++++12=0,其中m >0,求证 (1)pf ( 1 +m m )<0; (2)方程f (x )=0在(0,1)内恒有解

8一个小服装厂生产某种风衣,月销售量x (件)与售价P (元/件)之间的关系为P =160-2x ,生产x 件的成本R =500+30x 元 (1)该厂的月产量多大时,月获得的利润不少于1300元? (2)当月产量为多少时,可获得最大利润?最大利润是多少元? 参考答案 1解析当a -2=0即a =2时,不等式为-4<0,恒成立∴a =2,当a -2≠0时,则a 满足 ? ? ?0,则f (0)>0,而f (m )<0,∴m ∈(0,1), ∴m -1<0,∴f (m -1)>0 答案A 3解析只需f (1)=-2p 2-3p +9>0或f (-1)=-2p 2+p +1>0即-3<p <2 3或-2 1<p <1∴p ∈(-3,2 3) 答案(-3,2 3) 4解析由f (2+x )=f (2-x )知x =2为对称轴,由于距对称轴较近的点的纵坐标较小, ∴|1-2x 2-2|<|1+2x -x 2-2|,∴-2<x <0

经典例题二次函数根的分布

二次函数根的分布 一、知识点 二次方程根的分布与二次函数在闭区间上的最值归纳 一元二次方程 02=++c bx ax 根的分布情况 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图 象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不 讨 论 a ) ()00200 b a a f ?>???-?? ()00200 b a a f ?>???->? ??>?? ()00

表二:(两根与k 的大小比较) 分布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图 象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不 讨 论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->? ??>?? ()0

二次函数根的分布和最值

二次方程根的分布与二次函数在闭区间上的最值归纳 1、一元二次方程 02=++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况) 分 布情况 两个负根即两根都小于0 ()120,0x x << 两个正根即两根都大于0 ()120,0x x >> 一正根一负根即一个根小于0,一个大于0()120x x << 大致图象( >a ) 得出的结论 ()00200b a f ?>??? -?? ()0 0200 b a f ?>??? ->??>?? ()00??? -??? ->??f 综 合结论(不讨论 a ) ()00200b a a f ?>???-?? ()0 0200 b a a f ?>???->???>?? ()00

分 布情况 两根都小于k 即 k x k x <<21, 两根都大于k 即 k x k x >>21, 一个根小于k ,一个大于k 即 21x k x << 大致图象( >a ) 得出的结论 ()020b k a f k ?>??? -?? ()0 20 b k a f k ?>??? ->??>?? ()0??? -??? ->??k f 综 合结论(不讨论 a ) ()020b k a a f k ?>???-?? ()0 20 b k a a f k ?>???->???>?? ()0

人教版高中数学(理科)选修正态分布(一)

正态分布(一) 教学目的: 1 掌握正态分布在实际生活中的意义和作用 2.结合正态曲线,加深对正态密度函数的理理 3.通过正态分布的图形特征,归纳正态曲线的性质 教学重点:正态分布曲线的性质、标准正态曲线N(0,1) 教学难点:通过正态分布的图形特征,归纳正态曲线的性质 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 1.在实际遇到的许多随机现象都服从或近似服从正态分布在上一节课我们研究了当样本容量无限增大时,频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口正态分布在统计学中是最基本、最重要的一种分布 2.正态分布是可以用函数形式来表述的其密度函数可写成: 2 () 2 (),(,) x f x x μ σ - - =∈-∞+∞,(σ>0) 由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的常把它记为) , (2 σ μ N 3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的 4.通过三组正态分布的曲线,可知正态曲线具有两头低、中间高、左右对称的基本特征 5.由于正态分布是由其平均数μ和标准差σ唯一决定的,因此从某种意义上说,正态分布就有好多好多,这给我们深入研究带来一定的困难但我们也发现,许多正态分布中,重点研究N(0,1),其他的正态分布都可以通过) ( ) ( σ μ - Φ = x x F转化为N(0,1),我们把N(0,1)称为标准正态分布,其密度函数为 2 2 1 2 1 ) (x e x F- = π ,x∈(-∞,+∞),从而使正态分布的研究得以简化 6.结合正态曲线的图形特征,归纳正态曲线的性质正态曲线的作图较难,教科书没做要求,授课时可以借助几何画板作图,学生只要了解大致的情形就行了,关键是能通过正态曲线,引导学生归纳其性质教学过程: 一、复习引入: 总体密度曲线:样本容量越大,所分组数越多,各组的频率就越接近于总体在相应各组取值的概率.设想样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,这条曲线叫做总体密度曲线.

高考数学百大经典例题 正态分布

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094.09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075.08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP

高中数学必修2-3第二章2.4正态分布

2.4 正态分布 1.问题导航 (1)什么是正态曲线和正态分布? (2)正态曲线有什么特点?曲线所表示的意义是什么? (3)怎样求随机变量在某一区间范围内的概率? 2.例题导读 请试做教材P 74练习1题. 1.正态曲线 函数φμ,σ(x )=1 2πσ e -(x -μ)2 2σ2,x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数, φμ,σ(x )的图象为__________________正态分布密度曲线,简称正态曲线. 2.正态分布 一般地,如果对于任何实数a ,b (a <b ),随机变量X 满足P (a <X ≤b )=??a b φ μ,σ (x)d x , 则称随机变量X 服从正态分布.正态分布完全由参数________μ和________σ确定,因此正态分布常记作____________N(μ,σ2),如果随机变量X 服从正态分布,则记为________X ~N (μ,σ2). 3.正态曲线的性质 正态曲线φμ,σ(x)=1 2πσ e -(x -μ)22σ2,x ∈R 有以下性质: (1)曲线位于x 轴________上方,与x 轴________不相交; (2)曲线是单峰的,它关于直线________x =μ对称; (3)曲线在________x =μ处达到峰值________1 σ2π ; (4)曲线与x 轴之间的面积为________1; (5)当________σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x 轴平移,如图①; (6)当μ一定时,曲线的形状由σ确定,σ________越小,曲线越“瘦高”,表示总体的分布越集中;σ________越大,曲线越“矮胖”,表示总体的分布越分散,如图②. 4.正态总体在三个特殊区间内取值的概率值

高中正态分布经典练习题

正 态分布 一、选择题 1.已知随机变量ξ服从正态分布)9,2(N ,若)1()1(-<=+>c P c P ξξ,则c 等于() A.1 B.2 C.3 D.4 2.已知随机变量ξ服从正态分),2(2σN ,且8.0)4(=<ξP ,则)20(<<ξP 等于() A.0.6 B.0.4 C.0.3 D.0.2 3.已知随机变量ξ服从正态分布),2(2σN ,(4)0.84P ξ=≤,则(0)P ξ≤等于() A.0.16 B.0.32 C.0.68 D.0.84 4.已知随机变量X 服从正态分布),2(2σN ,8.0)40(=<X P 等于() A .0.1B.0.2C.0.4D.0.6 5.已知随机变量ξ服从正态分布),3(2σN ,且3.0)2(=<ξP ,则)42(<<ξP 等于() A.0.5 B.0.2 C.0.3 D.0.4 6.已知随机变量ξ服从正态分布),3(2σN ,(4)0.842P ξ=≤,则(2)P ξ≤等于() 7.已知随机变量X 服从正态分布)1,3(N ,且6826.0)42(=<X P 等于() A.0.1588 B.0.158 C.0.1586 D.0.1585 8.已知随机变量X 服从正态分布),0(2σN ,若023.0)2(=>X P ,则(22)P X -≤≤等于() A.0.477 B.0.628 C.0.954 D.0.977 9.在某次联考数学测试中,学生成绩ξ服从正态分布2(100,)(0)σσ>,若ξ在(80,120)内的概率为0.8,则落在(0,80)内的概率为() A.0.05 B.0.1 C.0.15 D.0.2 10.已知随机变量X 服从正态分布2(,)N μσ,且(22)0.9544P X μσμσ-<<+=,()0.6826P X μσμσ-<<+=,若4,1μσ==,则(56)P X <<=() A.0.1358 B.0.1359 C.0.2716 D.0.2718 11.某商场经营的一种袋装的大米的质量服从正态分布)1.0,10(2N (单位kg ),任选一袋这种大米,其质量在9.8~10.2kg 的概率为() A.0.0456 B.0.6826 C.0.9544 D.0.9974 12.一批电池的使用时间X (单位:小时)服从正态分布)4,36(2N ,在这批灯泡中任取一个“使用时间不小于40小时”的概率是() C.0.3174 D.0.1587 二、填空题

二次函数复习重点以及根的分布问题

初三数学培优卷:二次函数考点分析 ★★★二次函数的图像抛物线的时候应抓住以下五点: 开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点. ★★二次函数y=ax 2 +bx+c (a ,b ,c 是常数,a ≠0) 一般式:y=ax 2 +bx+c ,三个点 顶点式:y=a (x -h )2 +k ,顶点坐标对称轴 顶点坐标(-2b a ,244ac b a -). 顶点坐标(h ,k ) ★★★a b c 作用分析 │a │的大小决定了开口的宽窄,│a │越大,开口越小,│a │越小,开口越大, a , b 的符号共同决定了对称轴的位置,当b=0时,对称轴x=0,即对称轴为y 轴,当a ,b 同号时,对称轴x=-2b a <0,即对称轴在y 轴左侧,当a ,b?异号时,对称轴x=- 2b a >0,即对称轴在y 轴右侧, c?的符号决定了抛物线与y 轴交点的位置,c=0时,抛物线经过原点,c>0时,与y 轴交于正半轴;c<0时,与y?轴交于负半轴,以上a ,b ,c 的符号与图像的位置是共同作用的,也可以互相推出. 交点式:y=a(x- x 1)(x- x 2),(有交点的情况) 与x 轴的两个交点坐标x 1,x 2 对称轴为2 2 1x x h += 一元二次方程02 =++c bx ax 根的分布情况 设方程()200ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()2 0f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况)

二次函数根的分布专题

一元二次方程根的分布 一元二次方程根的分布是二次函数中的重要内容。这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用。下面我们将主要结合二次函数图象的性质,分两种情况系统地介绍一元二次方程实根分布的充要条件及其运用。 一.一元二次方程根的基本分布——零分布 所谓一元二次方程根的零分布,指的是方程的根相对于零的关系。比如二次方程有一正根,有一负根,其实就是指这个二次方程一个根比零大,一个根比零小,或者说,这两个根分布在零的两侧。 设一元二次方程20(0)ax bx c a ++=≠的两个不等实根为1x ,2x ①方程有两个不等正根 ??? ?? ? ??? >=>-=+>-=?>>00040,0212 1221a c x x a b x x ac b x x ②方程两根一正一负 :0021<<=<-=+>-=?<<00040,0212 1221a c x x a b x x ac b x x 即时应用: (1)若一元二次方程 0)1(2)1(2 =-++-m x m x m 有两个不等正根,求m 的取值范围。 (2)k 在何范围内取值,一元二次方程0332 =-++k kx kx 有一个正根和一个负根?

二、一元二次方程的非零分布——k 分布 设一元二次方程20(0)ax bx c a ++=>的两不等实根为1x ,2x , k 为常数。则一元二次方k 1x 2x k k k k 2k 1k 2 k 1 k 3 k 2 k 1 k

二次函数零点分布

一元二次函数零点分布(二次方程根的分布) 教学目标 学会如何通过研究函数的图像,确定二次函数在给定区间上的零点分布。 教学重点 根据函数的图像确定二次函数在给定区间上的零点分布。 教学难点 体会影响二次函数在给定区间上的零点分布的要素。 教学过程 一、探究二次函数零点分布的要素 1、 回想:方程0)3(2 =+-+a x a x 有两个正根,两个负根,一个正根一个负根。 2、 思考:函数2)3()(2 +-+=x a x x f 有两个零点,21,x x ,且()+∞∈,0,21x x 。 若将条件改成()+∞∈,1-,21x x ,又该满足什么条件。 3.探究:二次函数零点分布的要素 二、例题讲解 例1 函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且()+∞∈,0,21x x ,求a 范围 【练习1】例1中条件改成()0,,21∞-∈x x

例2函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围 【总结】一元二次函数两个零点均在一个区 间,如()()),(,,,,-b a m m +∞∞ 。这类问题要 考虑哪些因素。 【练习2】12)(2 ++-=ax x x f 有两个零点21,x x ,且()+∞∈,1-,21x x ,求a 范围 【变式1】练习2中条件改成()1,1-,21∈x x 【变式2】12)(2 ++=ax ax x f 的两个零点()1,1-,21∈x x ,求a 范围

例3函数a x a x x f +-+=)3()(2 有两个零点21,x x ,且0,021>

二次函数中根的分布问题

一元二次方程 02=++c bx ax 根的分布情况 设方程()2 00ax bx c a ++=≠的不等两根为12,x x 且12x x <,相应的二次函数为()20f x ax bx c =++=, 方程的根即为二次函数图象与x 轴的交点,它们的分布情况见下面各表(每种情况对应的均是充要条件) 表一:(两根与0的大小比较即根的正负情况)

k k k

根在区间上的分布还有一种情况:两根分别在区间()n m ,外,即在区间两侧12,x m x n <>,(图形分别如下) 需满足的条件是

(1)0a >时,()()00f m f n ???>?? 对以上的根的分布表中一些特殊情况作说明: (1)两根有且仅有一根在()n m ,内有以下特殊情况: 1? 若()0f m =或()0f n =,则此时()()0f m f n < 不成立,但对于这种情况是知道了方程有一根为m 或n , 可以求出另外一根,然后可以根据另一根在区间()n m ,内,从而可以求出参数的值。如方程()2 220 mx m x -++=在区间()1,3上有一根,因为()10f =,所以()()()22212mx m x x mx -++=--,另一根为2m ,由2 13m <<得 2 23 m <<即为所求; 2? 方程有且只有一根,且这个根在区间()n m ,内,即0?=,此时由0?=可以求出参数的值,然后再将参数 的值带入方程,求出相应的根,检验根是否在给定的区间内,如若不在,舍去相应的参数。如方程 24260x mx m -++=有且一根在区间()3,0-内,求m 的取值范围。分析:①由()()300f f -< 即 ()()141530m m ++<得出15314m -<<-;②由0?=即()2164260m m -+=得出1m =-或3 2m =,当 1m =-时,根()23,0x =-∈-,即1m =-满足题意;当32m = 时,根()33,0x =?-,故3 2 m =不满足题意;综上分析,得出15 314 m -<<-或1m =-

高中数学 典型例题 正态分布 新课标

借助于标准正态分布表求值 例 设ξ服从)1,0(N ,求下列各式的值: (1));35.2(≥ξP (2));24.1(-<ξP (3)).54.1(<ξP 分析:因为ξ用从标准正态分布,所以可以借助于标准正态分布表,查出其值.但由于表中只列出)()(,0000x x P x Φ=<≥ξ的情形,故需要转化成小于非负值0x 的概率,公式:);()()();(1)(a b b a P x x Φ-Φ=<<Φ-=-Φξ和)(1)(00x P x P <-=≥ξξ有其用武之地. 解:(1);0094 .09906.01)35.2(1)35.2(1)35.2(=-=Φ-=<-=≥ξξP P (2);1075 .08925.01)24.1(1)24.1()24.1(=-=Φ-=-Φ=-<ξP (3))54.1()54.1()54.154.1()54.1(-Φ-Φ=<-=<ξξP P .8764.01)54.1(2)]54.1(1[)54.1(=-Φ=Φ--Φ= 说明:要制表提供查阅是为了方便得出结果,但标准正态分布表如此简练的目的,并没有给查阅造成不便.相反其简捷的效果更突出了核心内容.左边的几个公式都应在理解的基础上记住它,并学会灵活应用. 求服从一般正态分布的概率 例 设η服从)2,5.1(2N 试求: (1));5.3(<ηP (2));4(-<ηP (3));2(≥ηP (4)).3(<ηP 分析:首先,应将一般正态分布)2,5.1(N 转化成标准正态分布,利用结论:若),(~2σμηN ,则由)1,0(~N σμηξ-=知:,)(?? ? ??-Φ=<σμηx x P 其后再转化为非负标准正态分布情况的表达式,通过查表获得结果. 解:(1);8413.0)1(25.15.3)5.3(=Φ=??? ??-Φ=<ηP (2);0030.0)75.2(1)75.2(25.14)4(=Φ-=-Φ=??? ? ?--Φ=-<ηP

二次函数根的分布总结练习

二次函数根的分布 一、简单的三种类型 利用Δ与韦达定理研究)0(02 ≠=++a c bx ax 的根的分布 (1)方程有两个正根??? ?? ? ??? >=>-=+≥-=??000421212a c x x a b x x ac b (2)方程有两个负根??? ? ? ? ??? >=<-=+≥-=??000421212a c x x a b x x ac b (3)方程有一正一负根0->≥-=??≤

解析:发现无论开口向上或向下,)(k f 与a 的值都是同号的. 例3.若方程42x +(m-2)x+(m-5)=0的两根都大于1,则求m 的取值范围. (2)???? ??? <->≥-=??<≤k a b k af a c b k x x 20)(04221【图例】 解析:发现无论开口向上或向下,)(k f 与a 的值都是同号的. (3)21x k x <

(原创)最新高中数学正态分布练习及解析

最新高中数学正态分布练习及解析 【2020年高考考查】 利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的意义. 【复习指导】 掌握好正态密度曲线的特点,尤其是其中的参数μ、σ的含义,会由其对称性求解随机变量在特定区间上的概率. 基础梳理 1.正态曲线及性质 (1)正态曲线的定义 函数φμ,σ(x )=12πσ e -(x -μ)2 2σ2, x ∈(-∞,+∞),其中实数μ和σ(σ>0)为参数,我们称φμ,σ(x )的图象(如图)为正态分布密度曲线,简称正态曲线. (2)正态曲线的解析式 ①指数的自变量是x 定义域是R ,即x ∈(-∞,+∞). ②解析式中含有两个常数:π和e ,这是两个无理数. ③解析式中含有两个参数:μ和σ,其中μ可取任意实数,σ>0这是正态分布的两个特征数. ④解析式前面有一个系数为 12πσ,后面是一个以e 为底数的指数函数的形式,幂指数为-(x -μ)2 2σ2.

六条性质 正态曲线的性质 正态曲线φμ,σ(x)=12πσ e -(x -μ)2 2σ2,x ∈R 有以下性质: (1)曲线位于x 轴上方,与x 轴不相交; (2)曲线是单峰的,它关于直线x =μ对称; (3)曲线在x =μ处达到峰值1σ2π; (4)曲线与x 轴围成的图形的面积为1; (5)当σ一定时,曲线随着μ的变化而沿x 轴平移; (6)当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散. 三个邻域 会用正态总体在三个特殊区间内取值的概率值结合正态曲线求随机变量的概率.落在三个邻域之外是小概率事件,这也是对产品进行质量检测的理论依据. 双基自测 1.设有一正态总体,它的概率密度曲线是函数f (x )的图象,且f (x )=18πe -(x -10)2 8,则这个正态总体的平均数与标准差分别是( ). 2.正态分布 (1)正态分布的定义及表示 如果对于任何实数a ,b (a

二次函数及根的分布-

二次函数 教学目标: 1.掌握二次函数的图像及性质 2.能够求出二次函数在某个区间上的最值 3.能够利用二次函数研究一元二次方程的实根的分布 教学重难点: 重点:一元二次函数、二次方程及二次不等式之间的灵活转化 难点:二次函数跟的分布及二次函数的应用 知识要点: 二次函数的区间最值问题,核心是对函数对称轴与给定区间的相对位置关系的讨论.一般分为:对称轴在区间的左边,中间,右边三种情况. 设2()(0)f x ax bx c a =++≠,求f x ()在x m n ∈[],上的最大值与最小值. 分析:将f x ()配方,得对称轴方程x b a =-2, 当a >0时,抛物线开口向上 若- ∈b a m n 2[],必在顶点取得最小值,离对称轴较远端点处取得最大值; 若-?b a m n 2[], 当a >0时,抛物线开口向上,此时函数在[]m n ,上具有单调性,故在离对称轴x b a =- 2较远端点处取得最大值,较近端点处取得最小值.当a <0时,如上,作图可得结论,对二次函数的区间最值结合函数图象总结如下: 当a >0时

??? ???? +<-+≥-=) )((212)())((212)()(21max 如图如图,,n m a b n f n m a b m f x f ?? ? ? ? ? ??? <-≤-≤->-=)(2)()(2)2()(2)()(543min 如图如图如图,,,m a b m f n a b m a b f n a b n f x f 当a <0时 ??? ? ????? <-≤-≤->-=)(2)()(2)2()(2)()(876max 如图如图如图,,,m a b m f n a b m a b f n a b n f x f f x f m b a m n f n b a m n ()()()()()()()min =-≥+-<+?? ??? ??,,如图如图212212910 典型例题 一、求二次函数在闭区间上的值域 (一)正向型 已知二次函数和定义域区间,求其最值.对称轴与定义域区间的相互位置关系的讨论往往成为解决 这类问题的关键.此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间动;(3)轴动,区间定;(4)轴动,区间动. 1.轴定区间定 例1. 已知函数2 ()2tan 1,[1f x x x x θ=+-∈-,当6 πθ=-时,求函数f(x)的最大值与最小值.

2020届高考数学一轮复习条件概率、二项分布及正态分布练习含解析

专题10.6 条件概率、二项分布及正态分布 【考试要求】 1.了解条件概率,能计算简单随机事件的条件概率,了解条件概率与独立性的关系; 2.会利用乘法公式计算概率,会利用全概率公式计算概率; 3.了解伯努利试验,掌握二项分布及其数字特征,并能解决简单的实际问题; 4.了解服从正态分布的随机变量,通过具体实例,借助频率直方图的几何直观,了解正态分布的特征. 【知识梳理】 1.条件概率 2.事件的相互独立性 (1)定义:设A ,B 为两个事件,如果P (AB )=P (A )P (B ),则称事件A 与事件B 相互独立. (2)性质:若事件A 与B 相互独立,则A 与B -,A -与B ,A -与B - 也都相互独立,P (B |A )=P (B ),P (A |B )=P (A ). 3.全概率公式 (1)完备事件组: 设Ω是试验E 的样本空间,事件A 1,A 2,…,A n 是样本空间的一个划分,满足: ①A 1∪A 2∪…∪A n =Ω. ②A 1,A 2,…,A n 两两互不相容,则称事件A 1,A 2,…,A n 组成样本空间Ω的一个完备事件组. (2)全概率公式 设S 为随机试验的样本空间,A 1,A 2,…,A n 是两两互斥的事件,且有P (A i )>0,i =1,2,…,n ,∪n i =1 A i =S ,则对任一事件 B ,有P (B )=∑n i =1 P (A i )P (B |A i )称满足上述条件的A 1,A 2,…,A n 为完备事件组. 4.独立重复试验与二项分布 (1)独立重复试验 在相同条件下重复做的n 次试验称为n 次独立重复试验,其中A i (i =1,2,…,n )是第i 次试验结果,则 P (A 1A 2A 3…A n )=P (A 1)P (A 2)P (A 3)…P (A n ).

相关文档
最新文档