编码器的基本知识

编码器的基本知识
编码器的基本知识

编码器的基本知识

编码器的基本知识

增量旋转编码器选型有哪些注意事项?

应注意三方面的参数:

1. 机械安装尺寸,包括定位止口,轴径,安装孔位;电缆出线方式;安装空间体积;工作环境防护等级是否满足要求。

2.分辨率,即编码器工作时每圈输出的脉冲数,是否满足设计使用精度要求。

3.电气接口,编码器输出方式常见有推拉输出(F型HTL格式),电压输出(E),集电极开路(C,常见C为NPN型管输出,C2为PNP型管输出),长线驱动器输出。其输出方式应和其控制系统的接口电路相匹配。

请教如何使用增量编码器?

1,增量型旋转编码器有分辨率的差异,使用每圈产生的脉冲数来计量,数目从6到5400或更高,脉冲数越多,分辨率越高;这是选型的重要依据之一。

2,增量型编码器通常有三路信号输出(差分有六路信号):A,B和Z,一般采用TTL电平,A脉冲在前,B脉冲在后,A,B脉冲相差

90度,每圈发出一个Z脉冲,可作为参考机械零位。一般利用A超前B或B超前A进行判向。

3,使用PLC采集数据,可选用高速计数模块;使用工控机采集数据,可选用高速计数板卡;使用单片机采集数据,建议选用带光电耦合器的输入端口。

4,建议B脉冲做顺向(前向)脉冲,A脉冲做逆向(后向)脉冲,Z原点零位脉冲。

5,在电子装置中设立计数栈。

关于电源供应及编码器和PLC连接:

一般编码器的工作电源有三种:5Vdc、

5-13 Vdc或11-26Vdc。如果你买的编码器用的是11-26Vdc的,就可以用PLC的24V 电源,需注意的是:

1.编码器的耗电流,在PLC的电源功率范围内。

2.编码器如是并行输出,连接PLC的

I/O点,需了解编码器的信号电平是推拉式(或称推挽式)输出还是集电极开路输出,如是集电极开路输出的,有N型和P型两种,需与PLC 的I/O极性相同。如是推拉式输出则连接没有什么问题。

3.编码器如是驱动器输出,一般信号电平是5V的,连接的时候要小心,不要让24V 的电源电平串入5V的信号接线中去而损坏编

码器的信号端。

干扰的问题

选择什么样的输出对抗干扰也很重要,一般输出带反向信号的抗干扰要好一些,即

A+~A-,B+~B-,Z+~Z-,其特征是加上电源8根线,而不是5根线(共零)。带反向信号的在电缆中的传输是对称的,受干扰小,在接受设备中也可以再增加判断(例如接受设备的信号利用A、B信号90°相位差,读到电平10、11、01、00四种状态时,计为一有效脉冲,此方案可有效提高系统抗干扰性能(计数准确))。

何为长线驱动?普通型编码器能否远距离

传送?

长线驱动也称差分长线驱动,5V,TTL的正负波形对称形式,由于其正负电流方向相反,对外电磁场抵消,故抗干扰能力较强。普通型编码器一般传输距离是100米,如果是24V HTL 型且有对称负信号的,传输距离300-400米。

编码器详细介绍与编程指导

增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL 也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米。

编码器工作原理及作用

编码器工作原理及作用-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

编码器工作原理及作用 工作原理 德国siko编码器 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 作用 它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信

编码器基础知识大全

编码器 科技名词定义 中文名称: 编码器 英文名称: coder;encoder 定义: 一种按照给定的代码产生信息表达形式的器件。 应用学科: 通信科技(一级学科);通信原理与基本技术(二级学科)以上内容由全国科学技术名词审定委员会审定公布 编码器 编码器(encoder)是将信号(如比特流)或数据进行编制、转换为可用以通讯、传输和存储的信号形式的设备。编码器把角位移或直线位移转换成电信号,前者称为码盘,后者称为码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电

刷接触导电区或绝缘区来表示代码的状态是"1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是"1”还是"0”,通过"1”和“0”的二进制编码来将采集来的物理信号转换为机器码可读取的电信号用以通讯、传输和储存。 作用 设计图纸 利用电磁感应原理将两个平面型绕组之间的相对位移转换成电信号的测量元件,用于长度测量工具。感应同步器(俗称编码器、光栅尺)分为直线式和旋转式两类。前者由定尺和滑尺组成,用于直线位移测量;后者由定子和转子组成,用于角位移测量。1957年美国的R.W.特利普等在美国取得感应同步器的专利,原名是位置测量变压器,感应同步器是它的商品名称,初期用于雷达天线的定位和自动跟踪、导弹的导向等。在机械制造中,感应同步器常用于数字控制机床、加工中心等的定位反馈系统中和坐标测量机、镗床等的测量数字显示系统中。它对环境条件要求较低,能在有少量粉尘、油雾的环境下正常工作。定尺上的连续绕组

的周期为2毫米。滑尺上有两个绕组,其周期与定尺上的相同,但相互错开1/4周期(电相位差90°)。感应同步器的工作方式有鉴相型和鉴幅型的两种。前者是把两个相位差90°、频率和幅值相同的交流电压U1 和U2分别输入滑尺上的两个绕组,按照电磁感应原理,定尺上的绕组会产生感应电势U。如滑尺相对定尺移动,则U的相位相应变化,经放大后与U1和U2比相、细分、计数,即可得出滑尺的位移量。在鉴幅型中,输入滑尺绕组的是频率、相位相同而幅值不同的交流电压,根据输入和输出电压的幅值变化,也可得出滑尺的位移量。由感应同步器和放大、整形、比相、细分、计数、显示等电子部分组成的系统称为感应同步器测量系统。它的测长精确度可达3微米/1000毫米,测角精度可达1″/360°。 分类 按照工作原理编码器可分为增量式和绝对式两类。 增量式 增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。 绝对式

编码器知识详解

光电编码器的工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,其原理示意图如图1所示;通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90。的两路脉冲信号。 编码器的分类 根据检测原理,编码器可分为光学式、磁式、感应式和电容式,根据其刻度方法及信号输出形式,可分为增量式、绝对式以及混合式三种。 1.1 增量式编码器增量式编码器是直接利用光电转换原理输出三组方波脉冲A、B和Z相;A、B两组脉冲相位差90。,从而可方便的判断出旋转方向,而Z相为每转一个脉冲,用于基准点定位。它的优点是原理构造简单,机械平均寿命可在几万小时以上,抗干扰能力强,可靠性高,适合于长距离传输。其缺点是无法输出轴转动的绝对位置信息。 1.2 绝对式编码器绝对式编码器是直接输出数字的传感器,在它的圆形码盘上沿径向有若干同心码盘,每条道上有透光和不透光的扇形区相间组成,相邻码道的扇区树木是双倍关系,码盘上的码道数是它的二进制数码的位数,在吗盘的一侧是光源,另一侧对应每一码道有一光敏元件,当吗盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读书一个固定的与位置相对应的数字码。显然,吗道必须N条吗道。目前国内已有16位的绝对编码器产品。 1.3 混合式绝对编码器混合式绝对编码器,它输出两组信息,一组信息用于检测磁极位置,带有绝对信息功能;另一组则完全同增量式编码器的输出信息。 光电编码器的应用 1、角度测量 汽车驾驶模拟器,对方向盘旋转角度的测量选用光电编码器作为传感器。重力测量仪,采用光电编码器,把他的转轴与重力测量仪中补偿旋钮轴相连,扭转角度仪,利用编码器测量扭转角度变化,如扭转实验机、渔竿扭转钓性测试等。摆锤冲击实验机,利用编码器计算冲击是摆角变化。 2、长度测量 计米器,利用滚轮周长来测量物体的长度和距离。 拉线位移传感器,利用收卷轮周长计量物体长度距离。 联轴直测,与驱动直线位移的动力装置的主轴联轴,通过输出脉冲数计量。 介质检测,在直齿条、转动链条的链轮、同步带轮等来传递直线位移信息。 3、速度测量 线速度,通过跟仪表连接,测量生产线的线速度 角速度,通过编码器测量电机、转轴等的速度测量 4、位置测量 机床方面,记忆机床各个坐标点的坐标位置,如钻床等 自动化控制方面,控制在牧歌位置进行指定动作。如电梯、提升机等 5、同步控制 通过角速度或线速度,对传动环节进行同步控制,以达到张力控制 光电旋转编码器在工业控制中的应用 -------------------------------------------------------------------------------- 1.概述 在工业控制领域,编码器以其高精度、高分辨率和高可靠性而被广泛用于各种位移测量。 目前,应用最广泛的是利用光电转换原理构成的非接触式光电编码器。光电编码器是一种集光、机、电为一体的数字检测装置。作为一次光电传感检测元件的光电编码器,具有精度高、响应快、抗干

编码器工作原理及特点介绍

1. 编码器的特点及用途 编码器是通过把机械角度物理量的变化转变成电信号的一种装置;在传感器的分类中,他归属于角位移传感器。 根据编码器的这一特性,编码器主要用于测量转动物体的角位移量,角速度,角加速度,通过编码器把这些物理量转变成电信号输出给控制系统或仪表,控制系统或仪表根据这些量来控制驱动装置。 2. 编码器的主要应用场合: 2.1数控机床及机械附件。 2.2 机器人、自动装配机、自动生产线。 2.3 电梯、纺织机械、缝制机械、包装机械(定长)、印刷机械(同步)、木工机械、塑料机械(定数)、橡塑机械。 2.4 制图仪、测角仪、疗养器雷达等。 最常用的有两种:绝对值编码器和增量式编码器。 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 传感器电源电压一般分为:5V和24V。信号类型: 1、A/B/Z型 2、RS422差分 3、SSI(格雷码) 信号有正弦波的,有方波的。 信号有电流型的,有电压型的 另外SSI编码器输出除了格雷码,也有二进制码的。电压的范围也不仅限于5V和24V 3. 基本原理

3.1 构造 编码器主要是由码盘(圆光栅、指示光栅)、机体、发光器件、感光器件等部件组成。 (1)圆光栅是由涂膜在透明材料或刻画在金属材料上的成放射状的明暗相间的条纹组成的。一个相邻条纹间距称为一个栅节,光栅整周栅节数就是编码器的脉冲数(分辨率)。(注:本公司码盘有三种金属、玻璃、菲林(类似塑料) 三种)。 (2)指示光栅是一片固定不动的,但窗口条纹刻线同圆光栅条纹刻线完全相同的光栅片。 (3)机体是装配圆光栅,指示光栅等部件的载体。 (4)发光器件一般是红外发光管。 (5)感光器件是高频光敏元件;一般有硅光电池和光敏三极管。 3.2 工作原理 由圆光栅和指示光栅组成一对扫描系统,在扫描系统的一侧投射一束红外光,在扫描系统的另一侧的感光器件就可以收到扫描光信号;当圆光栅转动时,感光器件接收到的扫描光信号会发生变化,感光器件可以把光信号转变成电信号并输出给控制系统或仪表。 一般编码器的输出信号为两列成90度相位差的Sin信号和Cos信号(这是由指示光栅的窗口条纹刻线保证的);这些信号的周期等于圆光栅转过一个栅节(P)的移动时间,对Sin信号和Cos信号进行放大及整形就可输出方波脉冲信号。 4. 应用举例 编码器的应用场合十分的广泛,在此列举几个简单事例: (1) 数控机床对加工工件自动检测就是通过编码器来进行检测的:数控机床刀架的对零校准也是通过编码器来实施的。 (2) 编码器在PLC上的应用:一般PLC上都有高速信号输入口,编码器可以作为高速信号输入元件,使PLC更加迅速和精准地实施闭环控制。而在变频器上其一般接变频器的PG卡上。

绝对式光电编码器基本构造及特点

绝对式光电编码器基本构造及特点 用增量式光电编码器有可能由于外界的干扰产生计数错误,并且在停电或故障停车后无 法找到事故前执行部件的正确位置。采用绝对式光电编码器可以避免上述缺点。绝对式光电编码器的基本原理及组成部件与增量式光电编码器基本相同,也是由光源、码盘、检测光栅、光电检测器件和转换电路组成。与增量式光电编码器不同的是,绝对式光电编码器用不同的数码来分别指示每个不同的增量位置,它是一种直接输出数字量的传感器。在它的圆形码盘上沿径向有若干同心码道,每条上由透光和不透光的扇形区相间组成,相邻码道的扇区数目是双倍关系,码盘上的码道数就是它的二进制数码的位数,在码盘的一侧是光源,另一侧对应每一码道有一光敏元件;当码盘处于不同位置时,各光敏元件根据受光照与否转换出相应的电平信号,形成二进制数。这种编码器的特点是不要计数器,在转轴的任意位置都可读出一个固定的与位置相对应的数字码。显然,码道越多,分辨率就越高,对于一个具有N 位 二进制分辨率的编码器,其码盘必须有N 条码道。绝对式光电编码器原理如图1-8 所示。 绝对式光电编码器是利用自然二进制、循环二进制(格雷码)、二-十进制等方式进行光 电转换的。绝对式光电编码器与增量式光电编码器不同之处在于圆盘上透光、不透光的线条图形,绝对光电编码器可有若干编码,根据读出码盘上的编码,检测绝对位置。它的特点是:可以直接读出角度坐标的绝对值;没有累积误差;电源切除后位置信息不会丢失;编码器的精度取决于位数;最高运转速度比增量式光电编码器高。 图1-8 绝对式光电编码器原理 1.3.2 码制与码盘 绝对式光电编码器的码盘按照其所用的码制可以分为:二进制码、循环码(格雷码)、 十进制码、六十进制码(度、分、秒进制)码盘等。四位二元码盘(二进制、格雷码)如图1-9 所示。图中黑、白色分别表示透光、不透光区域。

倍加福编码器基础讲解

P+F Absolute Rotary Encoder通讯参数设置 型号

1、地址选择和终端电阻1.1站地址 1.2 终端电阻 2、信号和电源线的连接

3、安装GSD文件 GSD文件为电子设备数据库文件,是可读的ASCII码文件。不同厂家的PROFIBUS产品集成在一起,生产厂家必须以GSD文件方式提供这些产品的功能参数,例如I/O点数、诊断信息、传输速率、时间监视等。在Step 7 的SIMATIC 管理器中打开硬件组态工具HW Config ,安装GSD后,在右边的硬件目录PROFIBUS DP→Additional Field Devices→Encoders→ENCODER将会出现刚刚安装的P+F Rotary Encoder。其数据传输原理如图所示。 4、组态通讯参数

在Step 7硬件配置窗口中,双击P+F Rotary Encoder 图标,打开编码器(DP Slave)的参数设置窗口,如图所示。结合工程实际,在此窗口中进行参数设置: a、代码顺序(Code Sequence):计数方向, CW(顺时针旋转,代码增加),CCW (逆时针旋转,代码增加); b、标定功能控制(Scaling function control):只有设置成Enable ,下面 c、d和e的设置才会生效; c、单圈分辨率(Measuring units per revolution):8192; d、测量范围高位(Total measuring range(units)hi): 512; e、测量范围低位(Total measuring range(units)lo): 0; f、其它参数采用默认值。 注:1、由c可以计算出编码器每圈产生(=8192)个二进制码,即单圈精度为13位。2、由d和e可以计算出编码器最大可以转(=512×65536+0)圈,即多圈精度为12位。 5、预置值 6、LED状态灯指示信息

光栅尺和编码器介绍

光栅与编码器介绍 位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m 达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。 德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标

编码器基础知识

各种输出形式的旋转编码器与后续设备(PLC、计数器等)接线分别怎么接? ⑴与PLC连接,以CPM1A为例 ①NPN集电极开路输出 方法1:如下图所示 这种接线方式应用于当传感器的工作电压与PLC的输入电压不同时,取编码器晶体管部分,另外串入电源,以无电压形式接入PLC。但是需要注意的是,外接电源的电压必须在DC30V以下,开关容量每相35mA以下,超过这个工作电压,则编码器内部可能会发生损坏。 具体接线方式如下:编码器的褐线接编码器工作电压正极,蓝线接编码器工作电压负极,输出线依次接入PLC的输入点,蓝线接外接电源负极,外接电源正极接入PLC的输入com端。 方法2:编码器的褐线接电源正极,输出线依次接入PLC的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 ②电压输出 接线方式如图所示:

具体接线方式如下:编码器的褐线接电源正极,输出线依次接入PLC 的输入点,蓝线接电源负极,再从电源正极端拉根线接入PLC输入com端。 不过需要注意的是,不能以下图方式接线。 ③PNP集电极开路输出 接线方式如下图所示: 具体接线方式如下:编码器的褐线接工作电压正极,蓝线接工作电压负极,输出线依次接入PLC的输入com端,再从电源负极端拉根线接入PLC的输入com端。 ④线性驱动输出 具体接线如下:输出线依次接入后续设备相应的输入点,褐线接工作电压的正极,蓝线接工作电压的负极。 ⑵与计数器连接,以H7CX(OMRON制)为例 H7CX输入信号分为无电压输入和电压输入。 ①无电压输入: 以无电压方式输入时,只接受NPN输出信号。 NPN集电极开路输出的接线方式如下:

编码器的工作原理及作用

编码器的工作原理及作用:它是一种将旋转位移转换成一串数字脉冲信号的旋转式传感器,这些脉冲能用来控制角位移,如果编码器与齿轮条或螺旋丝杠结合在一起,也可用于测量直线位移。 编码器产生电信号后由数控制置CNC、可编程逻辑控制器PLC、控制系统等来处理。这些传感器主要应用在下列方面:机床、材料加工、电动机反馈系统以及测量和控制设备。在ELTRA 编码器中角位移的转换采用了光电扫描原理。读数系统是基于径向分度盘的旋转,该分度由交替的透光窗口和不透光窗口构成的。此系统全部用一个红外光源垂直照射,这样光就把盘子上的图像投射到接收器表面上,该接收器覆盖着一层光栅,称为准直仪,它具有和光盘相同的窗口。接收器的工作是感受光盘转动所产生的光变化,然后将光变化转换成相应的电变化。一般地,旋转编码器也能得到一个速度信号,这个信号要反馈给变频器,从而调节变频器的输出数据。故障现象:1、旋转编码器坏(无输出)时,变频器不能正常工作,变得运行速度很慢,而且一会儿变频器保护,显示“PG断开”...联合动作才能起作用。要使电信号上升到较高电平,并产生没有任何干扰的方波脉冲,这就必须用电子电路来处理。编码器pg接线与参数矢量变频器与编码器pg之间的连接方式,必须与编码器pg的型号相对应。一般而言,编码器pg型号分差动输出、集电极开路输出和推挽输出三种,其信号的传递方式必须考虑到变频器pg卡的接口,因此选择合适的pg卡型号或者设置合理.

编码器一般分为增量型与绝对型,它们存着最大的区别:在增量编码器的情况下,位置是从零位标记开始计算的脉冲数量确定的,而绝对型编码器的位置是由输出代码的读数确定的。在一圈里,每个位置的输出代码的读数是唯一的;因此,当电源断开时,绝对型编码器并不与实际的位置分离。如果电源再次接通,那么位置读数仍是当前的,有效的;不像增量编码器那样,必须去寻找零位标记。 现在编码器的厂家生产的系列都很全,一般都是专用的,如电梯专用型编码器、机床专用编码器、伺服电机专用型编码器等,并且编码器都是智能型的,有各种并行接口可以与其它设备通讯。 编码器是把角位移或直线位移转换成电信号的一种装置。前者成为码盘,后者称码尺.按照读出方式编码器可以分为接触式和非接触式两种.接触式采用电刷输出,一电刷接触导电区或绝缘区来表示代码的状态是“1”还是“0”;非接触式的接受敏感元件是光敏元件或磁敏元件,采用光敏元件时以透光区和不透光区来表示代码的状态是“1”还是“0”。 按照工作原理编码器可分为增量式和绝对式两类。增量式编码器是将位移转换成周期性的电信号,再把这个电信号转变成计数脉冲,用脉冲的个数表示位移的大小。绝对式编码器的每一个位置对应一个确定的数字码,因此它的示值只与测量的起始和终止位置有关,而与测量的中间过程无关。

编码器基础

1 编码器基础 1.1光电编码器 编码器是传感器的一种,主要用来检测机械运动的速度、位置、角度、距离和计数等,许多马达控制均需配备编码器以供马达控制器作为换相、速度及位置的检出等,应用范围相当广泛。按照不同的分类方法,编码器可以分为以下几种类型: 根据检测原理,可分为光学式、磁电式、感应式和电容式。 根据输出信号形式,可以分为模拟量编码器、数字量编码器。 根据编码器方式,分为增量式编码器、绝对式编码器和混合式编码器。 光电编码器是集光、机、电技术于一体的数字化传感器,主要利用光栅衍射的原理来实现位移——数字变换,通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。典型的光电编码器由码盘、检测光栅、光电转换电路(包括光源、光敏器件、信号转换电路)、机械部件等组成。光电编码器具有结构简单、精度高、寿命长等优点,广泛应用于精密定位、速度、长度、加速度、振动等方面。 这里我们主要介绍SIMATIC S7系列高速计数产品普遍支持的增量式编码器和绝对式编码器。 1.2增量式编码器 增量式编码器提供了一种对连续位移量离散化、增量化以及位移变化(速度)的传感方法。增量式编码器的特点是每产生一个输出脉冲信号就对应于一个增量位移,它能够产生与位移增量等值的脉冲信号。增量式编码器测量的是相对于某个基准点的相对位置增量,而不能够直接检测出绝对位置信息。 如图1-1所示,增量式编码器主要由光源、码盘、检测光栅、光电检测器件和转换电路组成。在码盘上刻有节距相等的辐射状透光缝隙,相邻两个透光缝隙之间代表一个增量周期。检测光栅上刻有A、B两组与码盘相对应的透光缝隙,用以通过或阻挡光源和光电检测器件之间的光线,它们的节距和码盘上的节距相等,并且两组透光缝隙错开1/4节距,使得光电检测器件输出的信号在相位上相差90°。当码盘随着被测转轴转动时,检测光栅不动,光线透过码盘和检测光栅上的透过缝隙照射到光电检测器件上,光电检测器件就输出两组相位相 差90°的近似于正弦波的电信号,电信号经过转换电路的信号处理,就可以得到被测轴的转角或速度信息。 图1-1增量式编码器原理图

海德汉-光栅与编码器介绍

位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A 相、B相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家 L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫

编码器基础知识

增量型和绝对值编码器常见问题(FAQ) 编码器业务部

目录 1增量式编码器 (4) 1.1如何选择单圈脉冲数PPR (4) 1.2编码器的最大允许单圈脉冲数如何计算 编码器的最大允许单圈脉冲数如何计算?? (4) 1.3编码器的最大允许转速为? (4) 1.4编码器的接口通信距离可达? (5) 1.5是否必须使用屏蔽线缆 是否必须使用屏蔽线缆?? (5) 如何有效降低编码器应用时的噪声影响?? (5) 1.6如何有效降低编码器应用时的噪声影响 为何要使用柔性联轴器?? (5) 1.7为何要使用柔性联轴器 编码器输出的信号是什么意思?? (5) 1.8编码器输出的信号是什么意思 什么是门参考脉冲?? (6) 1.9什么是门参考脉冲 增量式编码器可兼容何种串行通信方式?? (7) 1.10增量式编码器可兼容何种串行通信方式 1.11倍加福RS422编码器的信号电平为 编码器的信号电平为?? (7) 输出接口有?? (7) 1.12倍加福编码器的供电-输出接口有 1.13什么是差分线驱动输出 什么是差分线驱动输出?? (7) 什么是集电极开路输出?? (8) 1.14什么是集电极开路输出 什么是图腾柱输出?? (8) 1.15什么是图腾柱输出 什么是推挽式输出?? (8) 1.16什么是推挽式输出 什么是吸收型输入和源型输入?? (8) 1.17什么是吸收型输入和源型输入 什么是正交信号输出?? (9) 1.18什么是正交信号输出 1.19正交输出和4倍频什么关系 倍频什么关系?? (9) 有何用处?? (9) 1.20反向通道A和B有何用处 什么是参考脉冲?? (9) 1.21什么是参考脉冲 为何需要使用上拉电阻?? (9) 1.22为何需要使用上拉电阻 更换编码器必须断电停机吗?? (9) 1.23更换编码器必须断电停机吗 成什么后果?? (10) 1.24意外将24V DC连接到输出通道会造 连接到输出通道会造成什么后果 成什么后果 编码器故障诊断需要什么检测设备?? (10) 1.25编码器故障诊断需要什么检测设备 等级?? (11) 1.26什么是IP等级 2绝对值编码器 (12) 2.1什么是绝对值编码器? (12) 绝对值编码器和增量式编码器的区别是什么?? (12) 2.2绝对值编码器和增量式编码器的区别是什么 绝对值编有哪些输出码制?? (12) 2.3绝对值编有哪些输出码制 什么是格雷码?? (13) 2.4什么是格雷码

编码器入门学习

编码器入门学习 编码器的工作原理简介 绝对脉冲编码器:APC 增量脉冲编码器:SPC 两者一般都应用于速度控制或位置控制系统的检测元件. 旋转编码器是用来测量转速的装置。它分为单路输出和双路输出两种。技术参数主要有每转脉冲数(几十个到几千个都有),和供电电压等。单路输出是指旋转编码器的输出是一组脉冲,而双路输出的旋转编码器输出两组相位差90度的脉冲,通过这两组脉冲不仅可以测量转速,还可以判断旋转的方向。 增量型编码器与绝对型编码器的区分 编码器如以信号原理来分,有增量型编码器,绝对型编码器。 增量型编码器 (旋转型) 工作原理: 由一个中心有轴的光电码盘,其上有环形通、暗的刻线,有光电发射和接收器件读取,获得四组正弦波信号组合成A、B、C、D,每个正弦波相差90度相位差(相对于一个周波为360度),将C、D信号反向,叠加在A、B两相上,可增强稳定信号;另每转输出一个Z相脉冲以代表零位参考位。 由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。 编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。 分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。 信号输出: 信号输出有正弦波(电流或电压),方波(TTL、HTL),集电极开路(PNP、NPN),推拉式多种形式,其中TTL为长线差分驱动(对称A,A-;B,B-;Z,Z-),HTL也称推拉式、推挽式输出,编码器的信号接收设备接口应与编码器对应。 信号连接—编码器的脉冲信号一般连接计数器、PLC、计算机,PLC和计算机连接的模块有低速模块与高速模块之分,开关频率有低有高。 如单相联接,用于单方向计数,单方向测速。 A.B两相联接,用于正反向计数、判断正反向和测速。 A、B、Z三相联接,用于带参考位修正的位置测量。 A、A-, B、B-,Z、Z-连接,由于带有对称负信号的连接,电流对于电缆贡献的电磁场为0,衰减最小,抗干扰最佳,可传输较远的距离。 对于TTL的带有对称负信号输出的编码器,信号传输距离可达150米。 对于HTL的带有对称负信号输出的编码器,信号传输距离可达300米

光栅、编码器基本知识

光栅、编码器基本知识 位置检测装置作为数控机床的重要组成部分,其作用就是检测位移量,并发出反馈信号与数控装置发出的指令信号相比较,若有偏差,经放大后控制执行部件使其向着消除偏差的方向运动,直至偏差等于零为止。为了提高数控机床的加工精度,必须提高检测元件和检测系统的精度。其中以编码器,光栅尺,旋转变压器,测速发电机等比较普遍,下面主要对光栅和编码器进行说明。 光栅,现代光栅测量技术 简要介绍: 将光源、两块长光栅(动尺和定尺)、光电检测器件等组合在一起构成的光栅传感器通常称为光栅尺。光栅尺输出的是电信号,动尺移动一个栅距,输出电信号便变化一个周期,它是通过对信号变化周期的测量来测出动就与定就职相对位移。目前使用的光栅尺的输出信号一般有两种形式,一是相位角相差90度的2路方波信号,二是相位依次相差90度的4路正弦信号。这些信号的空间位置周期为W。下面针对输出方波信号的光栅尺进行了讨论,而对于输出正弦波信号的光栅尺,经过整形可变为方波信号输出。输出方波的光栅尺有A相、B 相和Z相三个电信号,A相信号为主信号,B相为副信号,两个信号周期相同,均为W,相位差90o。Z信号可以作为较准信号以消除累积误差。 一、栅式测量系统简述 从上个世纪50年代到70年代栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合了起来,测量单位不是像激光一样的是光波波长,而是通用的米制(或英制)标尺。它们有各自的优势,相互补充,在竞争中都得到了发展。由于光栅测量系统的综合技术性能优于其他4种,而且制造费用又比感应同步器、磁栅、球栅低,因此光栅发展得最快,技术性能最高,市场占有率最高,产业最大。光栅在栅式测量系统中的占有率已超过80%,光栅长度测量系统的分辨力已覆盖微米级、亚微米级和纳米级,测量速度从60m/min,到480m/min。测量长度从1m、3m 达到30m和100m。 二、光栅测量技术发展的回顾 计量光栅技术的基础是莫尔条纹(Moire fringes),1874年由英国物理学家L.Rayleigh首先提出这种图案的工程价值,直到20世纪50年代人们才开始利用光栅的莫尔条纹进行精密测量。1950年德国Heidenhain首创DIADUR复制工艺,也就是在玻璃基板上蒸发镀铬的光刻复制工艺,这才能制造高精度、价廉的光栅刻度尺,光栅计量仪器才能为用户所接受,进入商品市场。1953年英国Ferranti公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直广泛应用至今。 德国Heidenhain公司1961年开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,能实现1微米和1角秒的测量分辨力。1966年制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出AURODUR工艺,是在钢基材料上制作高反射率的金属线纹反射光栅。并在光栅一个参考标

编码器知识点

编码器知识点 一、编码器基本概念 1.编码基本概念:将字母、符号等特定信息编成相应N位的二进制代码的过程,称为编码。 2.编码器基本概念:将输入的每个有效的高/低电平信号变成一组对应的二进制代码。 3.编码器的分类: 普通编码器、优先编码器 二、普通编码器 1.特点:任何时刻只允许输入一个有效的编码信号,输入是有约束的。即编码器只对惟一的一个有效信号进行编码。 2.引脚图:输入端,输出端(两者数量间的关系) N位(输出)编码器可以表示2N个信息(输入)。如4位编码器可以表示24即16个信息。 例:3位二进制普通编码器 3.逻辑功能:I0-I7中任一个输入高电平编码信号,Y2Y1Y0相对应输出3位二进制数。(输入与输出间的逻辑关系可用真值表表示) 4.真值表(功能表):输入输出端间的逻辑关系(看下标,找规律) (1) 编码输入端:逻辑符号输入I 0~I 7 端上面无非号,这表示编码输入高电 平有效。 (2) 编码输出端:Y 2、Y 1 、Y (原码输出) 5.读懂8-3线编码器功能表逻辑含义(看下标,找规律,把下标放大方便观看) (1)I0输入为1,其余输入端为0时,输出Y2Y1Y0=000(看作一组三位二进制数的原码) 逻辑含义:当I0输入为1-----指该输入端输入有效编码信号时 (类似于计算器中按下数字“0”键) 其余输入端为0时-----指该输入端输入无效编码信号 (类似于计算器中没有被按下的其余按键)

输出Y2Y1Y0=000,相当于输出端输出十进制0(与输入端下标相对应) (类似于计算器输出数码“0”)(当然这实际还包含了显示等过程)(2)I1输入为1,其余输入端为0时,输出Y2Y1Y0=001 逻辑含义:当I1输入为1-----指该输入端输入有效编码信号时 类似于计算器中按下数字“1”键 其余输入端为0时-----指该输入端输入无效编码信号 类似于计算器中没有被按下的其余按键 输出Y2Y1Y0=001,相当于输出端输出数码1(与输入端下标相对应) 类似于计算器输出数码“1” 。。。。。。 5.普通编码器优缺点:电路结构较简单,但同时按下2个或更多键时,其输出将是混乱的。 三、优先编码器 1.特点:允许同时输入两个以上的编码信号,但只对其中优先权最高的一个进行编码。 例:八线—三线优先编码器74HC148 3.74HC148的优先级别 优先级别指输入端优先级别 I7′优先级别最高,I0′优先级别最低。 4.74HC148的逻辑功能描述: (1) 编码输入端:逻辑符号输入I′ 0~I′ 7 端上面均有“′”号,这表示 编码输入低电平有效。 (2) 编码输出端:Y′ 2、Y′ 1 、Y′ (反码输出) (3)选通输入端:在S′= 1时,编码器处于禁止状态,所有输出端均被封锁为高电平。只有在 S′ = 0时,编码器才处于工作状态。用于芯片扩展应用。 (4)选通输出端Y′ S 和扩展输出端Y′ EX :用于芯片扩展应用。 5. 读懂8-3线优先编码器74HC148功能表逻辑含义 控制输入端:符号上不带非号,高电平有效;符号上带非号,低电平有效。

IC-WT 光栅编码器芯片

iC-Haus GmbH Tel+49-6135-9292-0 Integrated Circuits Fax+49-6135-9292-192 Am Kuemmerling18,D-55294Bodenheim https://www.360docs.net/doc/ca8866603.html,

Rev A0,Page2/13

Rev A0,Page 3/13 Operating Conditions:VCC=5V±10% All currents into the device pins are positive;all currents out of the device pins are negative.

Rev A0,Page4/13 Operating Conditions:VCC=5V±10%,Tj=-25..125°C,unless otherwise noted

Rev A0,Page5/13 Operating Conditions:VCC=5V±10%,Tj=-25..125°C,unless otherwise noted

Rev A0,Page6/13 Figure1illustrates the layout of the entire electronic system of an incremental rotary encoder.The devices iC-OR(photodiodes array),iC-WT(incremental encoder)and iC-WE(line driver)from iC-Haus are used. The rotary encoder requires the supply voltages VCC=+5V and VB=+5V to+30V(line driver)and supplies the conditioned signals of tracks A and B and index track Z at the outputs.It’s possible to transmit these signals over directly connected lines of100m length.The system’s upper cut-off frequency is500kHz for track A/B. Internal monitoring functions are available for the chip temperature of the line driver,for the supply voltages and for the LED current control.The ERROR port provides an error message signal which can be logically linked to other,external error signals by simple connection. DESCRIPTION OF FUNCTIONS The photodiodes array iC-OR comprises two diodes each for tracks A and B(differential evaluation)and one diode for track Z(index pulse for constant-light evaluation)in the layout typical for an incremental encoder.A reference diode is not required since the threshold for the index signal is generated from the signals of tracks A and B.It is also possible to use the iC-Haus device iC-WS or the Siemens device KOM2100. The incremental encoder iC-WT evaluates the currents of the photodiodes and generates TTL-compatible information.The zero pulse is logically linked to the tracks A and B with an AND operation.This operation can be cancelled for adjustment purposes by applying a low level to the error message output NERR(combined input and output). An integrated transmit-current drive circuit makes the adjustment to a constant summation photoelectric current at inputs A/B which is specified as the reference current at ILR by means of the external resistor RLR.The external capacitor CLR stabilizes this https://www.360docs.net/doc/ca8866603.html,ing a further reference current at IZ which is set with RZ it is possible to specify the constant-light evaluation threshold for the zero pulse at a controlled and, consequently,constant illuminance.With identical geometries and homogeneous illumination of all photodiodes, ILR and IZ can operate on a common resistor. The resistor RLED limits the maximum possible current through the LED.The transmit-current control features an error detector which sets the output NERR to LOW(open collector)when the permissible working area is exited.The error message detector is activated,for example,in case of a defect of the LED,when the code discs are dirty or steamed,or in the case of excessive influence of lights from an external source.

相关文档
最新文档