全自动水位控制器_水泵全自动液位控制器_DF-96C_380V_20A

全自动水位控制器_水泵全自动液位控制器_DF-96C_380V_20A
全自动水位控制器_水泵全自动液位控制器_DF-96C_380V_20A

DF-96系列全自动水位控制器工作原理

一、整机工作原理

该型全自动水位控制器电路原理如下图所示。由图可知,本控制器电路主要由电源电路、水位信号检测电路、输出驱动电路三部分组成,下面分别加以介绍。

1.电源电路AC220V电压经变压器T降压,其次级输出近13V左右交流电加至由D1~D4 构成的整流桥输入端,整流后经电容CI滤波得到约10.5V直流电压。该电压经Rl加到红色发光管LEDI上,将LEDI点亮,表示电源正常。该电压除了为ICI及继电器提供工作电源外还直接送到水位检测电极C.作为水位检测的公共电位。

2.水位信号检测电路该部分是以四二输入与门电路CD4081为核心并配以五根水位检测电极A—E构成的。其作用是根据电极实测水位的变化CD4081相应引脚的电平随之变化,满足与门条件时相应输出端电平改变,以驱动输出电路。其中R2是ICI的电源输入限流电阻,D5与R3及D6与R8起隔离自锁作用,当相应输出端即ICI(10)脚、(3)脚为高电平时将(8)脚、(1)脚锁死,其状态的翻转取决于(9)脚和(2)脚。C2—C5及R4_R6、

R12的作用是滤除干扰信号意外进入控制器引起误动作。

3.输出驱动电路该部分主要由驱动管VTI,继电器Jl、功能选择开关K及输出状态指示绿发光管LED2组成。功能选择开关K处于“开?位时,继电器Jl被强制动作.其相应触点Jl-I闭合,外接负荷(单相电动水泵或控制接触器)开始工作,输出状态指示绿发光管LED2也被点亮;处于“关”位时,触点Jl-I断开,外接负荷被切断;处于“自动”位置时.Jl动作与否受驱动管VTI的控制.当VTI基极电位高于0.7V以上时则饱和导通,继电器儿得电动作,其触点Jl-I闭合,反之则断开。

二.实际应用分析

下图是该型全自动水位控制器实际应用的四种接法,分别对应单控上水池、单控下水池、缺水保护和上下水池联合控制。

1.单控上水池

此时电D(绿线)、E(黄线)与电极C(黑线)并接置入水池的最低点,与水池底部接触作为水池(水塔)地线(公共电位);电极A(红线卜一为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与探头接触,水位控制器自动关泵;B隘线卜一为上水池(水塔下限液位控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制器自动开泵,水池充水。其电气原理是:由于电极D、E、c短接,则ICI(8)、(9)脚皆为高电平,与门输出

端(10)脚输出高电平,该高电平送至ICI(5)脚,其(6)脚由于VI2的截止同样为高电平,这样与门输出端(4)脚输出高电位,驱动管VT1饱和导通.Jl得电动作,其触点J1-1闭合,外控水泵得电工作,向池内补水;随着水位的升高.检测电极B首先升为高电位(水是导电的).即ICI(2)脚转为高电平;待水位上升达到上限液位控制点A点时.Icl(1)脚亦转为高电平,与门输出端(3)脚输出高电位,则VI2饱和导通,将IC1(6)脚钳制为低电位。根据与门的特性,其输出端(4)脚转为低电位,驱动管VT1截止.Jl失电,其触点J1-l断开,外控水泵停止工作,补水停止。

随着池内水位的下降,电极A(对应于IC1(1)脚)脱离水面与公共电位断开,但此时由于(3) 脚对(1)脚的自锁作用,所以ICI(1)脚仍然维持高电平并与(2)脚共同作用,始终将IcI(6)脚钳制为低电位;待池内水位下降直至检测电极B脱离公共电位时,即ICI(2)脚变为低电位,与门输出(3)脚电位翻转,则VT2截止.ICI(6)脚变为高电位,与门输出端(4)脚同样输出高电位,驱动管VT1饱和导通.Jl得电动作,触点Jl-I闭合,外控水泵得电工作,同时指示灯LED2被点亮。向池内再次补水,往复循环,实现无人值守控制。

2.单控下水(排水)池

此时电极A(红线)与电极B(蓝线)空着不用。

电极C(黑线)置入水池的最低点,与水池底部接触作为水池(水塔)地线(公共电位);电极E(黄线)一为下水池上限液位控制点.水位上升达到E点水位,水与探头接触,水位控制器自动开泵,水池排水;根据实际需要若不排水,则E点不接;电极D(绿线卜一为下水池下限液位控制点,水位下降到D点水位,水与探头脱离接触,水位控制器自动关泵,水池停止排水。其电气原理是:排水开始时池内是满水,电极C、D、E相当于短接在一起,即ICI(8),(9)脚皆为商电平,与门输出端(10)脚输出高电平。该高电平送至ICI(5)脚,(6)脚同样为高电平,这样与门输出端(4)脚输出高电位.驱动管VTI饱和导通.Jl得电动作,其触点Jl-I闭合,外控水泵得电工作,向池外排水:随着水位的降低,检测电极E首先脱离水面而转为为低电位,但此时由于(10)脚对(8)脚具有自锁作用,所以ICl(8)脚仍然维持高电平并与⑨脚共同作用,始终将ICI(10)脚钳制为高电位;待水位下降达到下限液位控制点D点并使电极D脱离液面时.ICI(9)脚转为低电平。根据与门特性,则与门输出端(10)脚输出低电位,ICI(5)脚转为低电位,其输出端(4)脚转为低电位,驱动管VTl截止,继电器Jl失电,LED2熄灭,其触点Jl-I断开,外控水泵停止工作,排水停止。

3.缺水保护

此时电极A(红线)B(蓝线)空着不用。电极C(黑线)与电极E(黄线)并接置入水池的最低点,与水池底部接触作为水池(水塔)地线(公共电位):C、D点为水池下限水位控制点,水位下降到下限水位.C、D探头之一与水面脱离接触,水位控制器继电器立即动作,切断输出,水泵停止工作。其电气原理是:由于电极C、E并接且与D处于同一液面,相当于通过水阻短接在一起,即ICI(8)、(9)脚皆为高电平,与门输出端(10)脚输出高电平,该高电平送至ICI(5)脚,(6)脚同样为高电平,这样与门输出端(4)脚输出高电位,驱动管VTI饱和·导通,指示灯LED2被点亮.Jl得电动作,其触点J1-I闭合,外控水泵得电工作;当水位下降达到下限液位控制点并使电极C、D因无水脱离接触时,IC1(9)脚转为低电平,与门输出端(10)脚立即转为低电位,IC1(5)脚转为低电位,其输出端(4)脚转为低电位,驱动管VT1截止,继电器儿失电.LED2熄灭,其触点J1-1断开,外控水泵停止工作.起到缺水保护作用。4.上下水池联合控制

此时各电极的连接参见下图中第4部分所示。其中电极c-为上、下水池(水塔)共用地线,放在上、下水池的最低点与水池底部接触;电极A-为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与探头接触,水位控制器自动关泵;电极B-为上水池(水塔)下限液位控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制器自动开泵,水

池充水;电极D-为下水池下限液位控制点,水位下降到D点水位,水与探头脱离接触,水位控制器自动关泵,水池停止排水:电极E-为下水池上限液位控制点,水位上升到E点水位,水与探头接触,水位控制器自动开泵,水池排头;其电气工作原理不再赘述,可参见前述分析。

三、功能和用途

本产品采用集成电路,并结合高层楼宇上、下水池(水塔)的水位分级提升进行设计,具有下下水池联合控制、水池排水及缺水保护等功能,可自动实现水箱补水、排水,并有效防止水池水位水高溢出或水泵空转损坏,是一种工业、家庭均适用的产品。非常适合城镇、农村、学校、式矿企事业单位及家庭用水的水井——水井供水工程,广泛应用于印染、化工、食品、饮料、酿酒、制糖等行业。

(一)单控上水池控头安装说明安装图如图一所示:

A(经线)—为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与探头接触,水们控制器自动关泵;

B(蓝线)—为上水池(水塔)下限液位控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制器自动开泵,水池充水;

C(黑线)—为水池(水塔)地线,放在水池的最低点与水池底部接触;

D(绿线)、E(黄线)点并接到C。

(二)单控下水池(即排水池)探头安装说明安装图如图二所示:

E—为下水池上限液位控制点,水们上升达到E点水位,水与探头接触,水位控制器自动开泵,水池排水;若不排水,则E点不接;

D—为下水池下限液位控制点,水位下降到D点水位,水与控头脱离接触,水位控制器自动关泵,水池停止排水;

C—为水池地线,放地水池的最低点与水底部接触;

A、B点不接。

(三)缺水保护探头安装说明安装图如图三所示:

C、D点为水池下限水位控制点,水位下降到下限水位,C、D探头之一与水面脱离接触,水位控制器继电器立即动作,切断输出,水泵停止工作;

E点与C点短接;

A、B点不接。

(四)上下水池联合控制探头安装说明安装图如图三所示:

A—为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与控头接触,水们控制器自动关泵;

B—为上水池(水塔)下限液们控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制自动开泵,水池充水;

C—为上、下不池(水塔)公用在线,放在上、下水池的最低点与水池底部接触;

D—为下水池下限液位控制点,水位下降到D点水位,水与探头脱离接触,水位控制器自动关泵,水池停止排水;

E—为下水池上限液位控制点,水位上升到E点水位,水与探头接触,水位控制器自动开泵,水池排头;若不排水,则E点不接。

四、安装使用其他说明

1、为确保液位控制器正常工作,安装好后请再次检查输入输出的接线、探头连接线是否接触可靠。可上、下移动探头,使其接触、脱离水面,模拟检测水们控制器是否安装正确且能按您的需要正常工作。

2、建议将各点探头固定在水池内壁,以免探头位置发生偏移导致水位控制器误动作,(若水池壁为金属,则除C点地线外不宜接在内壁,以免发生短路,导致水位控制器不能正常工作)。

3、按上述接线方法接好后,检查产品右侧的“手动/自动”开关(DF-96D无),是否确能根据用户需要手动开启、关闭水泵,用后将其调整回“自动”位置,水位控制器进入工作状态。

4、临时需开启、关闭水泵,请用水位控制器左侧的“手动/自动”开关控制(DF-96D)型无手动开关。

5、为避免误动作,请勿将产品安装在潮湿、腐蚀及高金属含量气体的环境中。

6、建议您配套采用公司生产的水位控制专用探头。

五、故障排除

1、接通电源不工作:

a.检查红色电源指示灯有无点亮,若不亮,检查输入输出接线端子是否均已接触良好;

b.检查产品左侧的“手动/自动”开关,是否在“关”上将其调整回“自动”位置,水位控制器进入工作状态。

2、水位线超过或低于探头控制点,水泵没有自动关闭或开启,请按“自动/手动”开关手动控制水泵。并检查:

a.探头是否偏离原位,安放位置过高(过低),导致水位无法接触(脱离);

b.上、下水位线、地线探头连接是否与其他线错位,是否有接错或短路;

c.探头有无锈蚀和脱落现象,探头线与产品、探头线与探头之间的连接是否接触良好;

d.c才点地线是否已经安放在水池最低位置。

液位控制器工作原理

西安祥天和电子科技有限公司详情咨询官网https://www.360docs.net/doc/cb13042997.html, 主营产品:液位传感器水泵控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等 液位控制器工作原理 液位控制器是简单的液位控制系统,接线简单、使用灵活。常见的有GKY通用液位控制器和水位报警器,可以接入GKY液位传感器、电极探头(如GKYC-DJ)、UQK01等液位传感器。以下,以GKY传感器为例来说明其工作原理。 一、GKY通用液位控制器工作原理 通用液位控制器外形尺寸长150宽90高70mm,继电器输出I、输出II同步工作,在低水位吸合高水位断开,继电器触点负荷均为220V10A。用于供水时选择4端接入控制回路,用于排水时选择5端接入控制回路。以下为UGKY典型的电气控制接线方案,其中KA为中间继电器或交流接触器: 供水接线方案排水接线方案 二、GKY液位报警器工作原理

水位报警器外形尺寸长150宽90高70mm,可以配一个或两个液位传感器。配一个传感器时,报警器为水满报警:即在这个传感器有水时发出声光报警,同时上限继电器吸合。如果将报警器设置1(7、8端子)用一段导线连接(即短路),则报警器为缺水报警:即在这个传感器无水时发出声光报警,同时下限继电器吸合。如果配两个传感器时,则报警器在下限无水或上限有水时发出声光报警,同时相应的继电器吸合。继电器触点负荷均为220V10A。如果不需要声音报警则把设置2(9、10端子)用一段导线连接即可。以下为GKY-BJ典型的电气控制接线方案,其中KA为中间继电器或交流接触器: 以上是最简单电气控制方案,复杂的控制功能可以通过电气控制的设计来实现。具体可在https://www.360docs.net/doc/cb13042997.html,的“资料免费下载”栏目中下载所需的电气控制柜设计方案。

I控制器参数整定经验总结

PID控制器的参数整定 (1)PID是比例,积分,微分的缩写. 比例调节作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。 积分调节作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大,则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。 微分调节作用:微分作用反映系统偏差信号的变化率,具有预见性,能预见偏差变化的趋势,因此能产生超前的控制作用,在偏差还没有形成之前,已被微分调节作用消除。因此,可以改善系统的动态性能。在微分时间选择合适情况下,可以减少超调,减少调节时间。微分作用对噪声干扰有放大作用,因此过强的加微分调节,

对系统抗干扰不利。此外,微分反应的是变化率,而当输入没有变化时,微分作用输出为零。微分作用不能单独使用,需要与另外两种调节规律相结合,组成PD或PID控制器。 (2) PID具体调节方法 ①方法一 确定控制器参数 数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。 选择参数 控制器结构确定后,即可开始选择参数。参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。这些要求,对控制系统自身性能来说,有些是矛盾的。我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。 PID控制器的参数整定,可以不依赖于受控对象的数学模型。工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。 常用的方法,采样周期选择, 实验凑试法 实验凑试法是通过闭环运行或模拟,观察系统的响应曲线,然后根据各参数对系统的影响,反复凑试参数,直至出现满意的响应,从而确定PID控制参数。 整定步骤 实验凑试法的整定步骤为"先比例,再积分,最后微分"。 (1)整定比例控制 将比例控制作用由小变到大,观察各次响应,直至得到反应快、超调小的响应曲线。 (2)整定积分环节 若在比例控制下稳态误差不能满足要求,需加入积分控制。 先将步骤(1)中选择的比例系数减小为原来的50~80%,再将积分时间置一个较大值,观测响应曲线。然后减小积分时间,加大积分作用,并相应调整比例系数,反复试凑至得到较满意的响应,确定比例和积分的参数。 (3)整定微分环节 若经过步骤(2),PI控制只能消除稳态误差,而动态过程不能令人满意,则应加入微分控制,构成PID控制。 先置微分时间TD=0,逐渐加大TD,同时相应地改变比例系数和积分时间,反复试凑至获得满意的控制效果和PID控制参数。 实验经验法 扩充临界比例度法

液位控制器的电路模拟设计

课程设计名称:电子技术课程设计 题目:液位控制器的电路模拟设计 学期:2011-2012学年第2学期 专业:自动化 班级: 姓名: 学号:

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 液位控制器的电路模拟设计 二、设计任务 1.检测显示液位功能。 2.控制通道输出为双向晶闸管或继电器,一组转换触点为市电(220V 10A) 3.实现与给定液位比较控制功能。 三、设计计划 电子技术课程设计共1周。 第1天:选题,查资料; 第2天:方案分析比较,确定设计方案; 第3~4天:电路原理设计与电路仿真; 第5天:编写整理设计说明书。 四、设计要求 1. 画出整体电路图。 2. 对所设计的电路全部或部分进行仿真,使之达到设计任务要求。 3. 写出设计说明书。 指导教师: 时间:2011年6月24

1. 方案论证 1.1 设计方案 1.2系统组成框图 2.原理及技术指标 3.单元电路设计及参数计算3.1电源电路 3.2 水位检测和水位控制电路3.2.1水位检测电路 3.2.2 水位控制电路 3.3液位显示电路 3.3.1液位显示部分结构流程图3.3.2液面显示原理 3.4 电机开关控制电路 3.5 电机状态显示电路 3. 6报警电路 4. 仿真 5. 液面控制器总原理图 6.设计小结 7. 参考文献

本液位控制器模拟电路系统具有水位手动控制、电机运转指示、超警戒报警等功能,由七部分组成,即液位检测电路、液位显示电路、液位控制电路、电机开关控制电路、电机状态显示电路、报警电路和电源电路。它采用了二极管、三极管、稳压管、继电器、三端稳压电路等多种电子元件来实现以下为各部分电路及元件原理。其中,液位检测电路是通过压电式单向测力传感器实现将水位变化产生的压力变化转换成电流信号,便于后期的处理。水位控制电路是利用电压比较器的原理实现水位的确定,同时利用迟滞比较器的迟滞性来避免水位压力变化产生的跳闸现象和因水波波动而产生的不稳定信号,同时将比较结果输给下一级。电机开关控制电路是将上一级的结果反映到继电器上,同时利用继电器的特性决定电机是否工作。本系统实现了对水位得监测以及报警,采用传感器和单片机对液位进行监测、显示,精度和灵敏度都比较高,同时也给予了声音报警。电机状态显示电路是通过发光二极管的亮灭显示出电路的工作状态,加水还是在放水。报警电路是利用电压比较器的原理实现水位超过警戒值就报警的功能。电源电路采用电网供电,通过变压器电路、整流电路、滤波电路和稳压电路将电网中的220V交流电转换成直流12V、5V电压。稳压电路由三端稳压器实现,用它来组成稳压电源只需很少的外围元件,电路非常简单,且安全可靠。直流电源电路对水位检测电路、水位控制电路、电机开关控制电路、电机状态显示电路、报警电路和电源电路供电,交流电源只对电机供电。 随着科技的发展人们对水位控制的需求越来越多,它不仅要具有自动控制水位的功能,而且要能手动调整水位,给人们的生产生活带来了极大的方便。此方案电路图构成简单易懂,元器件的价格便宜,性能较稳定,操作简单,具有经济前景。

单容水箱液位定值控制实验

实验上水箱液位定值控制系统 一. 实验目的 1.了解闭环控制系统的结构与组成。 2.了解单闭环液位控制系统调节器参数的整定。 3.观察阶跃扰动对系统动态性能的影响。 二. 实验设备 1. THJ-2型高级过程控制系统装置 2. 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根 三. 实验原理 单回路控制系统的结构/方框图: 它是由被控对象、执行器、调节器和测量变送器组成一个单闭环控制系统。系统的给定量是某一定值,要求系统的被控制量稳定至给定量。由于这种系统结构简单,性能较好,调试方便等优点,故在工业生产中已被广泛应用。 本实验系统的被控对象为上水箱,其液位高度作为系统的被控制量。系统的给定信号为一定值,它要求被控制量上水箱液位在稳定时等于给定值。由反馈控制的原理可知,应把上水箱的液位经传感检测作为反馈信号。其实验图如下:

过程:储水箱的水被抽出后经过电动调节阀调节进水量送给上水箱,经过LT1的测量变送使上水箱的液位反馈给LC1,LC1控制电动调节阀的开度进而控制入水流量,达到所需要的液位并保持稳定。 四.实验接线 其接线图为:图中LT2改接为LT1 五.实验内容及步骤 1.按图要求,完成系统的接线。 2.接通总电源和相关仪表的电源。 3.打开阀F1-1、F1-2、F1-6和F1-9,且把F1-9控制在适当的开度。 4.设置好系统的给定值后,用手动操作调节器的输出,使电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把调节器切换为自动,使系统投入自动运行状态。 5.启动计算机,运行MCGS组态软件软件,并进行下列实验: 设定其智能调节仪的参考参数为:SV=8cm;P=20;I=40;D=0;CF=0;ADDR=1;Sn=33;diH=50;dil=0;上水箱出水阀开度:45%。运行MCGS组态软件软件,并进行实验当实验数据稳定的同时记录的实验曲线如下图:

液位开关_液位开关原理_液位开关接线图

液位开关种类及原理 1浮球液位开关 浮球液位开关结构主要基于浮力和静磁场原理设计生产的。带有磁体的浮球(简称浮球)在被测介质中的位置受浮力作用影响:液位的变化导致磁性浮子位置的变化。浮球中的磁体和传感器(磁簧开关)作用,产生开关信号。 2音叉液位开关 音叉液位开关的工作原理是通过安装在基座上的一对压电晶体使音叉在一定共振频率下振动。当音叉液位开关的音叉与被测介质相接触时,音叉的频率和振幅将改变,音叉液位开关的这些变化由智能电路来进行检测,处理并将之转换为一个开关信号,达到液位报警或控制的目的。为了让音叉伸到罐内,通常使用法兰或者带螺纹的工艺接头将音叉开关安装到罐体的侧面或者顶部。 3电容式液位开关 电容式液位开关的测量原理是:固体物料的物位高低变化导致探头被覆盖区域大小发生变化,从而导致电容值发生变化。探头与罐壁(导电材料制成)构成一个电容。探头处于空气中时,测量到的是一个小数值的初始电容值。当罐体中有物料注入时,电容值将随探头被物料所覆盖区域面积的增加而相应地增大,开关状态发生变化。 4外测液位开关 外测液位开关是一种利用“变频超声波技术”实现的非接触式液位开关,广泛使用于各种液体的液体检测。其测量探头安装在容器外壁上,属于一种从罐外检测液位的完全非接触检测仪表。仪表测量探头发射超声波,并检测其在容器壁中的余振信号,当液体漫过探头时,此余振信号的幅值会变小,这个改变被仪表检测到后输出一个开关信号,达到液位报警的目的。 万联芯城-电子元器件采购网https://www.360docs.net/doc/cb13042997.html,一直秉承着以良心做好良芯的服务理念,为广大客户提供一站式的电子元器件配单服务,客户行业涉及电子电工,智能工控,自动化,医疗安防等多个相关研发生产领域,所售电子元器件均为原厂渠道进货的原装现货库存。只需提交BOM表,即可为您报价。万联芯城同时为长电,顺络,先科ST等知名原厂的指定授权代理商,采购代理品牌电子元器件价格更有优势,欢迎广大客户咨询,点击进入万联芯城。

检修全自动洗衣机水位开关及水位传感器的结构与常见故障

检修全自动洗衣机水位开关及水位传感器的结构与常见故 障 一、水位开关水位开关是波轮式全自动洗衣机控制洗涤桶中水量的电气元件,水位开关主要由杠杆、导管、调节螺钉、压力弹簧、凸轮、顶芯、开关小压簧、动簧片、塑料盘、橡胶膜、气室、压力软管(导压管)、连接套、气嘴、常开触点、常闭触点组成,如图1所示。水位开关通过导压管(压力软管)与洗衣机外桶上的气室连接,而气室是与外桶底部连通的,如图2所示。在洗衣机洗涤工作过程中,当进水电磁阀向洗涤桶内进水时,桶内的水面会不断地升高,在它超过外桶底部的气室入口时,气室内的空气被压缩,气压也随着增大,水位开关内的橡皮膜被气压推动逐渐向上运动,带动水位开关内部触点通断;当排水时,桶内的水位逐渐下降,气压也随之下降,当压力下降到水位开关的触点复位点时,触点动作,接通脱水电路,开始脱水。 水位开关凸轮轴的顶端装有水位旋钮,用户可以通过拧动旋钮来设定水位,当凸轮轴转动时,凸轮的a,b,c,d,e,f六个点分别与杠杆接触,如图3所示。杠杆在不同位置时压力弹簧的压力也不相同,开关闭合点和复位点也不相同,因此形成高、中、低等不同的水位,同时水位开关还设置了补进水功能,若开始洗涤后,用户感觉水位不够,可以将旋钮拧到'

补进水'位置,就开始补水,手松开后,停止补水。二、水位传感器带有模糊控制的电脑全自动洗衣机多采用 水位传感器来控制水位,水位传感器与水位开关的作用相当,能更加准确地控制水位,一般具有10挡水位或15挡水位,而水位开关最多只具有三四挡水位,因此水位传感器在电脑全自动洗衣机中被越来越广泛采用。水位传感器的结构如图4所示,橡胶隔膜的作用是密封气室;弹簧的作用是以一定的弹力压在橡胶隔膜上,将橡胶隔膜的非线性变化转变成磁芯的线性位移变化,同时对磁芯的抖动现象起阻尼作用;磁芯的作用是在周围产生磁场,通过它上下的移动来改变电感线圈的电感量。电感线圈与电容组成LC振荡电路,如图 5所示,通过电感线圈电感量的变化,改变其振荡电路的振荡频率;调整螺钉可以调整水位传感器的精度。电路中虚线框内的元件安装在水位传感器外壳上,虚线框内电路由反相器1,2,电阻R1,R2,电容C1,C2,电感线圈L组成基本LC振荡电路,反相器3将振荡电路输出的非数字脉冲信号,送到单片机IC中。反相器1-3是数字电路,输入端为高电平时,输出端为低电平,反之输入端为低电平时,输出端为高电平。由于R1,R2两个电阻加在反相器1,2的输入和输出两端,使反相器工作特性发生变化,并使该电路工作在线性放大区,电路对输入信号有近10倍的放大作用。

液位控制器怎样选

液位控制系统,液位控制器,无线传输等 详情咨询官网:https://www.360docs.net/doc/cb13042997.html, 液位控制器怎样选择 液位控制器在很多行业领域中都需要用到,那么一般来说在购买液位开关、液位控制器的时候应注意哪些问题呢? 由于生产液位控制器进入门槛较低,国内市场可以形容到泛滥的程度。事实上,要生产出优的液位控制器并不是一件很简单的事。首先是选材,其次是生产过程的工艺控制;差的液位控制器普遍表现为位精度低,性能差。 选购液位控制器的常识: 1.液位控制器的种类,根据你介质的不同可分为普通型,耐高温耐油型和防腐型,普通常温常压水的介质可选用普通型,和水接触的导气电缆材质是丁晴橡胶,可耐介质温度60度.适合消防水箱液位控制也可用于其他生活和工业用液位控制,价廉物美.如果介质是高温(大于60度),或是粘稠和各种油品,就应选用耐高温耐油型,其和介质接触部分均由不锈钢304组成,超大的集气筒结构有效的防止粘稠介质堵塞测量,再如介质如是各类酸碱腐蚀液,就必须采用防腐型,其和腐蚀介质接触部分全部采用聚四氟乙烯(塑料王)绝对防腐。UGKY 通用液位控制器原理图

液位控制系统,液位控制器,无线传输等 详情咨询官网:https://www.360docs.net/doc/cb13042997.html, 2.液位控制器的组成,分别由探头和显示控制器两部分组成,不 同探头对应不同介质,显示器是通用。 首先从水池(箱)现场到控制室拉一根二芯线(1.5平方的普通线或屏蔽电缆)其最大传输距离为4000m。在水箱(水池)测量静态液位时,把液位传感器直接投入到水箱(水池)底部,在水箱(水池)开口处用尼龙带或三脚可调安装架等将电缆线随意固定即可。在流动的液体中测量液位时,如因介质波动较大,可以在液体中插入一根Φ45mm 的钢管,同时在水流方向的反面不同高度的管壁上打若干小孔,使液体流入管内。另一种方法是在液体底部加装阻尼装置,以过滤泥沙和消除动态压力和波浪对测量的影响。通用液位控制器(含传感器2个)

锅炉水位控制器

河南科技学院新科学院 单片机课程设计报告题目:基于单片机的锅炉水位控制器 专业班级:电气工程及其自动化104 姓名: _ 时间:2012.12.03~2012.12.21 指导教师:邵峰、徐君鹏、张素君 2012年12月20日

基于单片机控制的锅炉水位控制器设计任务书 一. 设计要求 (一) 基本功能 1.具有手动和自动两种操作模式 2.能够实现多点水位数据采集,并实时进行水位状态显示 3.具有多种连锁保护和报警功能 具体工作过程如下: 控制器上电后,首先处于自动工作模式,程序开始扫描当前锅炉的水位和压力状态,如果水位低于正常水位,发出报警信后,同时启动水泵上水,经过一定时间后,如水位到达正常水位,报警将自冻结除,同时如果压力为低压状态则马上启动鼓风机和引风机,否则控制器自动关闭鼓风机和引风机。如果水位达到最高水位和压力超过设定压力时自动报警,同时关闭水泵和风机。系统时刻跟踪显示水位和压力状态。如果你想手动操作,你可以通过手动/自动转换键把系统置为手动工作模式,此时可由人工控制水泵和风机的运行,水位和压力检测由控制器自动完成,且当水位过低时不能手动停止水泵,过高时不能启动水泵,压力过低不能停止风机,过高不能启动风机,从而实现安全联锁保护控制。 (二)扩展功能 1.系统具备一定的硬件抗干扰能力 2.系统增加软件看门狗功能 二.计划完成时间三周 1.第一周完成软件和硬件的整体设计,同时按要求上交设计报告一份。 2.第二周完成软件的具体设计和硬件的制作。 3.第三周完成软件和硬件的联合调试。

目录 1引言 (1) 2总体设计方案.............................................................................. 1 2.1设计思路.............................................................................. 2 2.2设计方框图 (2) 3设计组成及原理分析..................................................................... 3 3.1水位检测电路设计..................................................................... 3 3.2驱动电路设计 (4) 3.3报警电路设计 (4) 3.4复位电路 (5) 3.5振荡电路 (5) 3.6水位指示电路 (6) 3.7手动自动路 (6) 4总结与体会 (7) 参考文献…………………………………………………………………………… 8附录1 …………………………………………………………………………… 9附录 2 …………………………………………………………………………… 10附录 3 …………………………………………………………………………… 11附录 4 (12)

DF-96系列全自动水位控制器工作原理

DF-96系列全自动水位控制器工作原理 [日期:2012-01-02] 来源:作者:辽宁徐涛 一、整机工作原理 该型全自动水位控制器电路原理如下图所示。由图可知,本控制器电路主要由电源电路、水位信号检测电路、输出驱动电路三部分组成,下面分别加以介绍。 1.电源电路 AC220V电压经变压器T降压,其次级输出近13V左右交流电加至由D1~D4构成的整流桥输入端,整流后经电容CI滤波得到约10.5V直流电压。该电压经Rl加到红色发光管LED I上,将LEDI点亮,表示电源正常。该电压除了为IC I 及继电器提供工作电源外还直接送到水位检测电极C.作为水位检测的公共电位。 2.水位信号检测电路 该部分是以四二输入与门电路CD4081为核心并配以五根水位检测电极A—E构成的。其作用是根据电极实测水位的变化CD4081相应引脚的电平随之变化,满足与门条件时相应输出端电平改变,以驱动输出电路。其中R2是ICI 的电源输入限流电阻,D5与R3及D6与R8起隔离自锁作用,当相应输出端即ICI(10)脚、(3)脚为高电平时将(8)脚、(1)脚锁死,其状态的翻转取决于(9)脚和(2)脚。C2—C5及R4_R6、R12的作用是滤除干扰信号意外进入控制器引起误动作。 3.输出驱动电路 该部分主要由驱动管VTI,继电器Jl、功能选择开关K及输出状态指示绿发光管LED2组成。功能选择开关K处于“开?位时,继电器Jl被强制动作.其相应触点Jl-I闭合,外接负荷(单相电动水泵或控制接触器)开始工作,输出状态指示绿发光管LED2也被点亮;处于“关”位时,触点Jl-I断开,外接负荷被切断;处于“自动”位置时.Jl动作与否受驱动管VTI的控制.当VTI基极电位高于0.7V 以上时则饱和导通,继电器儿得电动作,其触点Jl-I闭合,反之则断开。

全自动水位控制器水泵全自动液位控制器DFC_V_A

DF-96系列全自动水位控制器工作原理 一、整机工作原理 该型全自动水位控制器电路原理如下图所示。由图可知,本控制器电路主要由电源电路、水位信号检测电路、输出驱动电路三部分组成,下面分别加以介绍。 1.电源电路AC220V电压经变压器T降压,其次级输出近13V左右交流电加至由D1~D4 构成的整流桥输入端,整流后经电容CI滤波得到约直流电压。该电压经Rl加到红色发光管LEDI上,将LEDI点亮,表示电源正常。该电压除了为ICI及继电器提供工作电源外还直接送到水位检测电极C.作为水位检测的公共电位。 2.水位信号检测电路该部分是以四二输入与门电路CD4081为核心并配以五根水位检测电极A—E构成的。其作用是根据电极实测水位的变化CD4081相应引脚的电平随之变化,满足与门条件时相应输出端电平改变,以驱动输出电路。其中R2是ICI的电源输入限流电阻,D5与R3及D6与R8起隔离自锁作用,当相应输出端即ICI(10)脚、(3)脚为高电平时将(8)脚、(1)脚锁死,其状态的翻转取决于(9)脚和(2)脚。C2—C5及R4_R6、 R12的作用是滤除干扰信号意外进入控制器引起误动作。 3.输出驱动电路该部分主要由驱动管VTI,继电器Jl、功能选择开关K及输出状态指示绿发光管LED2组成。功能选择开关K处于“开?位时,继电器Jl被强制动作.其相应触点Jl-I闭合,外接负荷(单相电动水泵或控制接触器)开始工作,输出状态指示绿发光管LED2也被点亮;处于“关”位时,触点Jl-I断开,外接负荷被切断;处于“自动”位置时.Jl 动作与否受驱动管VTI的控制.当VTI基极电位高于以上时则饱和导通,继电器儿得电动作,其触点Jl-I闭合,反之则断开。 二.实际应用分析 下图是该型全自动水位控制器实际应用的四种接法,分别对应单控上水池、单控下水池、缺水保护和上下水池联合控制。 1.单控上水池 此时电D(绿线)、E(黄线)与电极C(黑线)并接置入水池的最低点,与水池底部接触作为水池(水塔)地线(公共电位);电极A(红线卜一为上水池(水塔)上限液位控制点,水位上升达到A点水位,水与探头接触,水位控制器自动关泵;B隘线卜一为上水池(水塔下限液位控制点,水位下降到B点水位以下,水与探头脱离接触,水位控制器自动开泵,水池充水。其电气原理是:由于电极D、E、c短接,则ICI(8)、(9)脚皆为高电平,与门输出端(10)脚输出高电平,该高电平送至ICI(5)脚,其(6)脚由于VI2的截止同样为高电平,这样与门输出端(4)脚输出高电位,驱动管VT1饱和导通.Jl得电动作,其触点J1-1闭合,外控水泵得电工作,向池内补水;随着水位的升高.检测电极B首先升为高电位(水是导电的) .即ICI(2)脚转为高电平;待水位上升达到上限液位控制点A点时.Icl(1)脚亦转为高电平,与门输出端(3)脚输出高电位,则VI2饱和导通,将IC1(6)脚钳制为低电位。根据与门的特性,其输出端(4)脚转为低电位,驱动管VT1截止.Jl失电,其触点J1-l断开,外控水泵停止工作,补水停止。 ?随着池内水位的下降,电极A(对应于IC1(1)脚)脱离水面与公共电位断开,但此时由于(3) 脚对(1)脚的自锁作用,所以ICI(1)脚仍然维持高电平并与(2)脚共同作用,始终将IcI(6)脚钳制为低电位;待池内水位下降直至检测电极B脱离公共电位时,即ICI(2)脚变为低电位,与门输出(3)脚电位翻转,则VT2截止.ICI(6)脚变为高电位,与门输出端(4)脚同样输出高电位,驱动管VT1饱和导通.Jl得电动作,触点Jl-I闭合,外控水泵得电工作,同时指示灯LED2被点亮。向池内再次补水,往复循环,实现无人值守控制。

自动水位液位电脑控制器说明书

微电脑自动液位(水位)控制器使用说明书 本产品采用微电脑自动控制,外形轻便小巧,安装方便,信号线+\P1\P2\P3\多为低压5V,并结合高层楼宇上、下水池(水塔)的水位分级控制,并具有上下水池联合控制,水池排水及多项功能,可自动实现水箱补水、排水、并有效防止水池水位过高溢出或水泵空转或堵转损坏。非常适合城镇家庭、农村、学校、工况企事业单位的供水工程,广泛应用于印染、化工、食品、饮料、酿酒、制糖等行业。 安装调试可以按照以下步骤进行 一、按照本说明书后面的图《控制盒拆开方法》打开本塑料保护盒,将交流电压接到(输入)端子,请将电机接到(输出控制)端子,其他水位传感信号线按照您自己需要的功能,参照接线方法图纸接线。接好线后必须安装塑料保护外壳,然后才可以给本机上电。 二、使用方法 开机时显示型号(型号和相对功能见选型表) 电机参数修改方法:按住F 健不放开再开机,直到显示###,再放开F 健,水泵自动启动,等到水泵正常供水(已经稳定),再按F 键一次,自动记录当前电机参数,自动返回正常使用。 水位传感器信号查看方法:开机约50秒后按住F 键不放,显示###,表示P1线水位信号,再接1次F 键显示###,表示P2线水位信号,再按F 键一次,显示###,表示P3线水位信号。再按一次F 键,显示###,表示当前电机启动后的参数。 水位显示含义:显示 表示低水位 显示第2位一点表示下水池无水 显示 表示低水位 显示第2位两点表示下水池有水 显示表示低水位手动控制法:按A 键或B 键进入手动控制,再按A 键启动输出,按B 键停止输出,按F 键退出手动控制功能,返回自动控制。 电机过载保护后关闭输出并且显示 ,按A 键退回到正常使用。电机空载保护后关闭输出并且显示,按A 键退回到正常使用。 直接可控制 220V 1.2KW 外配接触器 380V 15KW 缺水保护,溢出保护,空载保护,过载保护,堵转保护,故障记忆。. JLD

水位数字控制电路(1)

华南农业大学珠江学院水位数字控制电路实训报告 院系:信息工程系 专业:电气工程及其自动化 班级:1202班 姓名:黄伟奇201225180211 组员:罗润 201225180235 赖梓聪201225180242 指导老师:詹庄春 2013年11月20日

第一章绪论 (3) 1.1 摘要 (3) 1.2 课题研究的目的和意义 (3) 第二章系统总体设计及方案认证系统 (4) 2.1 设计内容 (4) 2.2 电路原理 (4) 2.4方案认证 (5) 第三章硬件电路设计设 (6) 3.1 利用multisim绘制原理图 (6) 第四章硬件电路安装及调试 (7) 4.1 手工焊的工具 (7) 4.2 焊接原理 (7) 4.3 焊接注意事项 (7) 4.4 元件清单及其功能 (9) 4.5 调试要点 (11) 4.6 问题讨论 (11) 第五章总结 (12) 第六章后记 (12) 参考文献 (13)

第一章绪论 1.1 摘要 在日常生活及工农业生产中,往往需要对水位进行监测并加以控制,时下市场上有一些采用浮球来控制水位的球阀和简单水位控制开关,这些产品价格不高,但是没能做到自动控制水位的高低,下面介绍一款性能稳定的全自动水位控制器;该控制电路简单,使用灵活,可独立运作,也可作大型数字控制系统的外围控制器件。。 1.2 课题研究的目的和意义 研究目的:通过这次的课题研究我们希望在理清它的发展脉络上进一步了解它的发明原理,将平时所学习的知识运用到实验探索上,这对提高我们的动手能力,创新意识,及锻炼思维活动无疑是一个莫大的帮助。同时我们也希望这次的研究能让同学进一步了解照明灯,而不是仅局限于课本知识以内。从小的突破点入手,掌握又一项科技知识,从而实现课堂外的又一次提高,为现代教育科学尽一份力量! 研究意义:随着电子技术的发展,人类越来越脱离纯手工的检测,特别是水位检测的发展,更是迅猛发展。本报告介绍的是模拟水位数字控制电路。依靠水位,来控制水泵的运行,适时对河水进行加水控制,达到用户用水安全。适合于水利工厂适时控制水源,达到合理利用水源,保护环境。

控制回路PID参数整定方法精

Honeywell DCS 控制回路PID参数整定方法 鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。 一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中; 二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2; 三、PID参数代表的含义 K:比例增益(放大倍数),范围为0.0~240.0; T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用; T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。 四、PID参数的作用 (1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。 K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完

全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。 (2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。 (3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。 五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面: 其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。 六、控制器的选择方法 (1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统; (2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;

液位控制器实训报告

JIU JIANG UNIVERSITY 高级职业技能培训 实训报告 课题:液位控制器 专业:电子信息工程技术 班级: 学号: 学生姓名: 同组同学: 指导教师: 设计时间:2012.09.10—2012.09.21

“液位控制器”的组装、调试与制作 1 实践目的 通过对“液位控制器”机的组装、调试与制作,掌握“液位控制器”的工作原理,提高元器件识别、测试及整机装配、调试的技能,增强综合实践能力。 2 实践要求 1.掌握和理解“液位控制器”原理图各部分电路的具体功能,提高看图、识图能力; 2.对照原理图和PCB板,了解“液位控制器”元器件布局、装配(方向、工艺等)和接线等; 3.掌握调试的基本方法和技巧;学会排除焊接、装配过程中出现的各种故障,解决碰到的各种问题。 4.熟练使用各种常用仪器、仪表和电子工具,掌握元器件和整机的主要参数、技术或性能指标等的测试方法; 5.解答“思考与练习题”,进一步增强理论联系实际能力。 3 “液位控制器”原理简介 在水塔中经常要根据水面的高低进行水位的自动控制,同时进行水位压力的检测和控制。该液位控制器具有水位检测、报警、自动上水和排水(上水用电机正转模拟,下水用电机反转模拟)、压力检测功能。 液位控制器的电路原理如图9.1所示,该控制器主要由电源电路、显示电路、单片机处理电路、按键及蜂鸣器驱动电路、液位检测电路、压力检测电路组成,由三路“传感器”(三根插入水中的导线)检测液位的变化,由89S52控制液位的显示及电泵的抽放水,由ADC0809采集水位压力的变化并由数码管显示压力。各部分电路工作原理如下: 液位控制器的电源电路、显示电路、单片机处理电路及蜂鸣器驱动电路与前面章节相类似,在此不在赘述。 液位检测电路: 液位检测电路如图9.2所示,该液位检测是利用水具有导电性的特性,三路检测都采用简单的三极管检测电路检测液位变化,实际检测时,从单片机P3焊接出四根导线,分别将接A、B、C和VCC的导线放入水杯(模拟水塔)中,位置如图9.3所示。 若某端子和VCC间没有水作导体时,其对应三极管截止,对应输出低电平到单片机;若某端子和VCC间有水作导体时,其对应三极管导通,对应输出高电平到单片机。 电路焊接好后,接通电源,改变液位使检测点变化,当液位在A点以下时红灯连续亮并且发出频率较高的报警声,显示00,电机正转;当A≤液位

液位自动控制器电路图

液位自动控制器电路图 2013-07-29 | 阅:1 转:190 | 分享 修改 液位自动控制器电路图 工业变频2008-12-15 11:30:47 阅读1167 评论0 字号:大中小 本例介绍的液位自动控制器采用分立元件制作而成,其特点是液位检测电极上只通过微弱的交流电流,电极不会产生电解反应,使用寿命较长。 电路工作原理 该液位自动控制器电路由电源电路和液位检测控制电路组成,如图所示。 图液位自动控制器电路 电源电路由电源开关S1、电源变压器T、整流桥堆UR1、UR2和滤波电容器C1、C2组 成。 液位检测控制电路由检测电极a~c、控制按钮S2、S3、电阻器R1~M、晶体管V1、V2、

发光二极管VL1、VL2、继电器K、交流接触器KM和二极管VD组成。 接通电源后,交流220V电压经T降压后,在T的W2绕组和W3绕组上分别产生交流6V电压和交流12V电压。交流12V电压经UR2整流及C2滤波后,为Κ及其驱动电路提供 +12V工作电压,同时将VL1点亮。 在储液池内液位低于下限时,电极a~c均悬空,T的二次绕组与整流滤波电路之间的回路处于开路状态,V2处于截止状态,V1饱和导通,K通电吸合,其常闭触头K1断开,常开触头K2接通,KM吸合,加液泵电动机M通电开始工作,同时VL2点亮。当储液池内液位上升至电极c处时,电极a和电极c通过液体的电阻接通,T的V2绕组上的交流6V电压经URI 整流、C1滤波及R1限流后加至V2的基极,使V2导通,V1截止,K和KM释放,加液泵电动机M停转。同时VL2熄灭,K的常闭触头K1又接通。 当液位再次下降至电极a、b以下时,K和KM再次通电工作,电路进人下一个工作循环下。 S2为手动停止按钮,S3为手动强制运行按钮。在液位处于上、下限之间时,通过S2和 S3可任意停止或起动加液泵电动机。 元器件选择 R1~R4选用1/4W的金属膜电阻器或碳膜电阻器。 C1和C2均选用耐压值为25V的铝电解电容器。 VD选用1N4007型硅整流二极管。 VL1和VL2均选用φ5mm的发光二极管。 V1选用58050或3DG12型硅NPN晶体管;V2选用59014或3DG6型硅NPN晶体 管。 UR1和UR2均选用1A、50V的整流桥堆。 K选用JRX-13F型12V直流继电器。 KM选用CDC10型220V交流接触器。 S1选用5A、220V的电源开关;S2和S3均选用动合按钮。 T选用5~SW的电源变压器。 电极a~c可使用不锈钢制作。本例介绍的液位自动控制器,电路简单易制,无需调试, 可用于各种工矿储液池的液位检测与控制。 电路工作原理

HHY10PG型全自动给水排水液位控制器说明书附图---

一、概述 型液位控制器采用集成电路,结合高层楼宇上、下水池(水塔)水位分级提升的特点进行设计,具有HHY10PG 上、下水池联合控制自动排水和给水控制等功能,能有效防止水池水位过高溢出或水泵因空转而损坏,是一种工矿企业、学校及家庭用水的水塔—水井液位自动控制的产品。二、主要技术数据 、工作电源:、 允许电压波动范围(~);1AC380V 220V 50/60Hz,85%110%Ue 、功 耗:≤;2 1.5W 、触头容量: ;33A AC380V 、机械寿命:×41106次;、电寿命:×5 1105次;、安装方式:导轨安装;6三、接线图 四、应用电路举例 五、外形安装尺寸外形尺寸

六、安装使用说明 (一)、供水型探头(电极)安装说明: 、为水池上限液位控制点,水位上升到点水位,水与探头(电极) a 66接触,控制器自动关泵,停止给水池加水。 、为水池下限液位控制点,水位下降至点水位以下,水与探头 b 77(电极)脱离接触,控制器自动开泵,给水池加水。 、为自动控制器控制感应电极探头,放在水池下限液位控制点以下,但不要和。c 8水池的金属物体接触。 (二)、排水型探头(电极)安装说明: 、为水池上限液位控制点,水位上升到点水位。水与探头接触,控制器 a 1010和触点闭合,水泵自动开泵,水池排水。 45 b 、为水池下限液位控制点,水位下降到点水位,点探头与点探头脱离接触, 9998控制器和触点释放,水泵自动关泵,水池停止排水。 45、为控水型和排水型控制器共用电极探头不要和水池中其它金属物体接触,和 c 8,6不接。 7(三)、给水排水型探头(电极)安装说明: 、为上水池上限液位控制点,水位上升到点水位,水与探头接触,控制器自动 a 66关泵,停止给上水池加水。 、为上水池下限液位控制点,水位下降到点水位以下,水与探头脱离接 b 77触,控制器自动开泵,给上水池加水。为上、下水池公用电极探头,放在上、下8水池的最低点但不要和金属物体接触。 、为下水池下限液位控制点,水位下降到点水位,水与探头脱离接触, c 99控制器自动关泵,下水池停止排水。 、为下水池上限液位控制点,水位上升到点水位,水与探头接触, d 1010控制器自动开泵,下水池开始排水。 (四)、为确保液位控制器正常工作,安装好后请再次检查输入输出的接线, 探头连接线的位置是否放置正确,及通过上、下移动探头的方式,使其探头接触或脱离水面,模拟检测水位控制器是否工作正常。 (五)、建议将各点探头固定在水池内壁,以免探头位置发生偏移,导致控 制器误动作。(若水池壁为金属,注意所有探头不要和金属液位池壁接触,并且金属池壁要良好接入大地) (六)、为避免误工作,请勿将产品安装在潮湿、腐蚀及高金属含量气体的环境中 (七)、为了 探头在液体中工作稳定,建议使用防腐蚀的金属棒连接探头引线。 下水池 排水探头安装图() 供水探头安装图()

水箱液位控制系统

过程控制综合训练 课程报告 16 — 17 学年第二学期课题名称基于PLC和组态王的 系统 姓名 学号 班级 成绩

水箱液位控制系统 [摘要] 在工业生产过程中,液位贮槽如进料罐、成品罐、中间缓冲器、水箱等设备应用十分普遍,为了保证生产正常进行,物料进出需均衡,以保证过程的物料平衡。因此,工艺要求贮槽内的液位需维持在给定值上下,或在某一小范围内变化,并保证物料不产生溢出。例如,锅炉系统汽包的液位控制,自流水生产系统过滤池、澄清池水位的控制等等。根据课题要求,设计一个单容水箱的液位过程控制系统,该系统能对一个单容水箱液位的进行恒高度控制。 关键词:过程控制液位控制 PID控制 Abstract:In the process of industrial production, liquid storage tank such as product cans, buffer, tanks and other equipments are widely used. In order to ensure the normal production,material supply and demand must be balanced to guarantee the process of the production. So, the process requires that the liquid level in the tank should be maintained at a given value, or change in a small range,and ensure that the material does not overflow,forinstance,system of boiler drum level control, level control of filter pool and clarification pool of self-flowing water production system and so on. According to the requirement of project, we need design a liquid level process control system for a single tank which make the liquid level on the constant height. Key words: Process Control Liquid Level Control PID Control

什么是液位开关 液位开关原理

西安祥天和电子科技有限公司 主营产品:液位传感器控制箱报警器GKY仪表液位控制系统,液位控制器,无线传输收发器等详情咨询官网https://www.360docs.net/doc/cb13042997.html, 什么是液位开关液位开关原理 液位开关,顾名思义,就是根据液位来自动开关水泵。实现这种功能的方式有很多,主要由所采用的液位传感器来决定。现在的液位传感器无外乎电极式、UQK/GSK式、光电式、压力式、GKY式等几种。分析其基本原理就能够发现这些传感器的优缺点。有些固有的缺点,无论怎么做都无法避免。当然传感器的制造工艺和材质也会影响其性能,所以市场上有不同品质和价格的液位传感器。我们先从其实现原理分析,再从其制造工艺和材质来探讨。液位控制的核心在于液位传感器,它决定了液位控制系统的可靠性、稳定性及使用寿命。所以应该根据使用环境来慎重选择。 至于如何开关水泵?可以有各种设计方案,实现不同的功能。具体设计方案可以登录本公司官网的“资料免费下载”栏目下载。 一、电极式液位控制传感器 电极式是最早的液位控制方式,其控制原理很简单:因为水是导体,有水的时候两个电极间导电,交流接触器吸合。图1.1为电极式在水中控制原理示意图。但是电极在水中会分解而且会吸附很多杂质。如果不及时清理,电极就会失去作用,这是电极式液位传感器固有的缺陷。电极式液位传感器的制造非常简单,有人将导线外皮拨开,插到水里就可以做成电极式液位控制器。所以电极式液位控制器造价很低,价格便宜,但使用寿命很短。当然,如果采用不锈钢做电极,硬度较强,分解得就会慢一点。如果表面再处理光滑一些,电镀一下,吸附的杂质就会少一些,使用寿命就会长一点。但是无论怎么做,其品质都不可能超过干簧管。 二、UQK液位控制原理

相关文档
最新文档