高中物理专题复习---传送带模型的能量分析

高中物理专题复习---传送带模型的能量分析
高中物理专题复习---传送带模型的能量分析

微专题34 传送带模型的能量分析

【核心要点提示】

传送带模型能量分析的问题主要包括以下两个核心问题

(1)摩擦系统内摩擦热的计算:依据Q =F f ·x 相对,找出摩擦力与相对路程大小即可。要注意的问题是公式中的x 相对并不是指的是相对位移大小。特别是相对往返运动中,x 相对为多过程相对位移大小之和。

(2)由于传送物体而多消耗的电能:一般而言,有两种思路:

①运用能量守恒,多消耗的电能等于系统能量的增加的能量。以倾斜向上运动传送带传送物体为例,多消耗的电能k E E E Q =?+?+重摩擦

②运用功能关系,传送带克服阻力做的功等于消耗的电能E fS =传 【微专题训练】

如图所示,水平传送带长为s ,以速度v 始终保持匀速运动,把质量为m 的货物放到A 点,货物与传送带间的动摩擦因数为μ,当货物从A 点运动到B 点的过程中,摩擦力对货物做的功不可能是( )

A .等于1

2mv 2

B .小于1

2mv 2

C .大于μmgs

D .小于μmgs

【解析】货物在传送带上相对地面的运动可能先加速后匀速,也可能一直加速,而货物的最终速度应小于等于v ,根据动能定理知摩擦力对货物做的功可能等于12mv 2,可能小于1

2mv 2,

可能等于μmgs ,可能小于μmgs ,故选C. 【答案】C

(2016·湖北省部分高中高三联考)如图所示,质量为m 的物体在水平传送带上由静止释放,传送带由电动机带动,始终保持以速度v 匀速运动,物体与传送带间的动摩擦因数为μ,物体过一会儿能保持与传送带相对静止,对于物体从静止释放到相对静止这一过程,下列说法正确的是( )

A .电动机多做的功为mv 2/2

B .物体在传送带上的划痕长v 2/2μg

C .传送带克服摩擦力做的功为mv 2/2

D .电动机增加的功率为μmgv

【解析】电动机多做的功转化成了物体的动能和内能,物体在这个过程中获得的动能就是

1

2mv 2,所以电动机多做的功一定要大于1

2mv 2,故A 错误;物体在传送带上的划痕长等于物体

在传送带上的相对位移,物体达到速度v 所需的时间t =v μg ,在这段时间内物体的位移x 1=v 2

2μg ,

传送带的位移x 2=vt =v 2μg ,则物体相对位移x =x 2-x 1=v 2

2μg ,故B 正确;传送带克服摩擦力

做的功就为电动机多做的功,所以由A 的分析可知,C 错误;电动机增加的功率即为克服摩擦力做功的功率,大小为fv =μmgv ,所以D 正确。 【答案】BD

如图所示,在匀速转动的电动机带动下,足够长的水平传送带以恒定速率v 1匀速向右运动,一质量为m 的滑块从传送带右端以水平向左的速率v 2(v 2>v 1)滑上传送带,最后滑块返回传送带的右端.关于这一过程的下列判断,正确的有( )

A .滑块返回传送带右端的速率为v 1

B .此过程中传送带对滑块做功为12mv 21-12mv 2

2 C .此过程中电动机对传送带做功为12mv 21-12

mv 22 D .此过程中滑块与传送带间摩擦产生的热量为1

2

m (v 1+v 2)2

【解析】 滑块向左运动过程中,运动方向受到皮带的阻力,到达最左端,对地速度为零,由动能定理可知,-fx 1=0-12mv 2

2,其后在皮带摩擦力的作用下,摩擦力为动力,使滑块加

速,假设加速至v 1,则有fx 1=12mv 2

1-0,以上两式中可知x 2<x 1,说明滑块返回传送带右端

的速率能够达到v 1,A 选项正确;此过程中传送带对滑块做功,由动能定理可知,为1

2mv 21-

12mv 2

2

,B 选项正确;此过程中电动机对传送带做功,分为两部分,一部分为木块增加的动能12mv 21-12mv 2

2

,另一部分产生内能Q ,C 选项错误;此过程中滑块与传送带间摩擦产生的热量为摩擦力与相对路程的乘积,分两个过程考虑,第一过程为滑块从右端滑至最左端至对地速

度为零,假设运动时间为t 1,则t 1=0-v 2-μg =v 2μg ,t 1时间内皮带对地向右的位移x 3=v 1t 1=v 1v 2

μg ,

fx 3=mv 1v 2,即第一过程产生的热量为f (x 1+x 3)=1

2mv 21+mv 1v 2,第二过程中由于物块对地加

速的位移为x 2,与物块、皮带间的相对滑动距离相等,故第二阶段产生的热量为1

2mv 22,此过

程中滑块与传送带间摩擦产生的热量为12mv 21+mv 1v 2+12mv 22=12m (v 1+v 2)2

,D 选项正确. 【答案】 ABD

(2017·东北三省三校一模)在大型物流货场,广泛应用着传送带搬运货物。如图甲所示,与水平面成θ角倾斜的传送带以恒定速率运动,皮带始终是绷紧的,将m =1 kg 的货物放在传送带上的A 处,经过1.2 s 到达传送带的B 端。用速度传感器测得货物与传送带的速度v 随时间t 变化图象如图乙所示,已知重力加速度g =10 m/s 2,由v -t 图可知( )

A .A 、

B 两点的距离为2.4 m

B .货物与传送带间的动摩擦因数为0.5

C .货物从A 运动到B 过程中,传送带对货物做功大小为12.8 J

D .货物从A 运动到B 过程中,货物与传送带摩擦产生的热量为11.2 J

【解析】由题图乙可知,货物在前0.2 s 运动的距离L 1=0.2 m ,在0.2~1.2 s 内移动的距离L 2=3 m ,所以A 、B 两点距离L =L 1+L 2=3.2 m ,A 错误;从图象上看,前0.2 s 货物的加速度a 1=10 m/s 2,0.2~1.2 s 内货物的加速度a 2=2 m/s 2,根据受力情况,可知ma 1=mg sin θ+μmg co θ,ma 2=mg sin θ-μmg cos θ,解得μ=0.5,B 正确;同时还解得摩擦力F f =μmg cos θ=4 N ,前0.2 s 摩擦力做功W 1=F f L 1=0.8 J ,在0.2~1.2 s 内摩擦力做功W 2=-F f L 2=-12J ,摩擦力对货物做的总功W 1+W 2=-11.2 J ,C 错误;从图象可求得相对位移L 相=1.2 m ,摩擦产生的热量Q =1.2×4 J =4.8 J ,D 错误。 【答案】B

(2015·邯郸市高三月考)一条长12 m 的传送带,倾角为30°,它能够将工件从地面送到卡车上,每个工件的质量为25 kg ,传送带每分钟可传送16个工件,不考虑传送带对工件的加速,g =10 m/s 2,下列说法正确的是( ) A .传送带每分钟对工件做的总功是2.4×104 J

B .摩擦力每分钟对工件做的总功是1.2×104 J

C .传送带的传送功率为100 W

D .传送带的传送功率为200 W

【解析】传送工件时不计加速,则工件随传送带一起匀速上升,即摩擦力F f =mg sin θ,传送带对工件做功实质是传送带的摩擦力F f 对工件做功,所以W =nF f ·l =16×mg sin 30°×l =2.4×104

J ,A 项正确,B 项错误;由功率定义P =W t =2.4×10460

W =400 W ,知C 、D 项错误。

【答案】A

【新乡市2017届高三上学期模拟考试能力提升训练】在一水平向右匀速传输的传送带的左端A 点,每隔T 的时间,轻放上一个相同的工件,已知工件与传送带间动摩擦因素为,工件质量均为m ,经测量,发现后面那些已经和传送带达到相同速度的工件之间的距离为x ,下列判断正确的有( )

A.

传送带的速度为

x

T

B.传送带的速度为22gx μ

C.每个工件与传送带间因摩擦而产生的热量为

1

2

mgx μ D.在一段较长的时间内,传送带因为传送工件而将多消耗的能量为2

3mtx T

【答案】AD

【解析】工件在传送带上先做匀加速直线运动,然后做匀速直线运动,每个工件滑上传送带后运动的规律相同,可知x=vT ,解得传送带的速度v=

x

T

.故A 正确.设每个工件匀加速运动的位移为x ,根据牛顿第二定律得,工件的加速度为μg ,则传送带的速度

v =s 与x 的关系.故B 错误.工件与传送带相

对滑动的路程为:222

2

222v v v x x v g g g gT μμμμ?-===,则摩擦产生的热量为:Q=μmg △x =22

2mx T .故C 错误.根据能量守恒得,传送带因传送一个工件多消耗的能量x

x

22212mx E mv mg x T μ=+=,在时间t 内,传送工件的个数t

n T

=,则多消耗的能量

2

3mtx E nE T

'==.故D 正确.故选AD.

如图所示,甲、乙两种粗糙面不同的传送带,倾斜于水平地面放置,以同样恒定速率v 向上运动.现将一质量为m 的小物体(视为质点)轻轻放在A 处,小物体在甲传送带上到达B 处时恰好达到传送带的速率v ;在乙传送带上到达离B 竖直高度为h 的C 处时达到传送带的速率v .已知B 处离地面的高度皆为H .则在小物体从A 到B 的过程中( )

A .两种传送带与小物体之间的动摩擦因数相同

B .将小物体传送到B 处,两种传送带消耗的电能相等

C .两种传送带对小物体做功相等

D .将小物体传送到B 处,两种系统产生的热量相等

【解析】小物体在两种传送带均做初速度为零的匀加速直线运动,加速度大小a =μg cos θ-g sin θ,在速度达到v 的过程中,小物体在甲传送带上的位移s 较大,根据公式a =v 2

2s ,可知

小物体在甲传送带上时的加速度较小,根据a =μg cos θ-g sin θ,可得μ=a

g cos θ+tan θ,即小

物体与甲传送带间的动摩擦因数较小,选项A 错误;在小物体从A 到B 的过程中,根据功能关系可知,传送带对小物体做的功等于小物体机械能的增加量,选项C 正确;在小物体从A 到B 的过程中,只有小物体相对传送带发生滑动时,即只有在加速过程中,系统才发生“摩擦生热”,根据公式Q =fs 相对计算系统产生的热量,可选取做匀速运动的传送带为惯性参考系,小物体在惯性参考系里做初速度大小为v ,加速度大小为a =μg cos θ-g sin θ,末速度为零的匀减速直线运动,可求出s 相对=v 2

2a ,可见,s 相对等于小物体相对于地面速度从0加

速到v 过程中的位移,即系统产生的热量等于小物体加速过程中摩擦力对小物体做的功,对于甲传送带,在加速过程中摩擦力做正功设为W 1,克服重力做功为mgH ,动能改变量为12mv 2,

根据动能定理可求得W 1=1

2mv 2+mgH ,同理可求出小物体在乙传送带上加速过程中摩擦力

做的功为W 2=1

2mv 2+mg (H -h ),显然W 1>W 2,所以Q 1>Q 2,即甲系统产生的热量多,选项

D 错误;在将小物体传送到B 处的过程中,传送带消耗的电能等于系统增加的机械能和产

生的内能,两种系统增加的机械能相等,产生的内能不等,所以消耗的电能不等,选项B 错误. 【答案】C

如图所示,与水平面夹角θ=30°的倾斜传送带始终绷紧,传送带下端A 点与上端B 点间的距离L =4 m ,传送带以恒定的速率v =2 m/s 向上运动.现将一质量为1 kg 的物体无初速度地放于A 处,已知物体与传送带间的动摩擦因数μ=

3

2

,取g =10 m/s 2,求:

(1)物体从A 运动到B 共需多长时间? (2)电动机因传送该物体多消耗的电能.

【解析】(1)物体无初速度地放在A 处后,因mg sin θ<μmg cos θ 故物体斜向上做匀加速直线运动. 加速度a =μmg cos θ-mg sin θ

m =2.5 m/s 2

物体达到与传送带同速所需的时间t 1=v

a =0.8 s

t 1时间内物体的位移x 1=v

2t 1=0.8 m

之后物体以速度v 做匀速运动,运动的时间 t 2=L -x 1v

=1.6 s

物体运动的总时间t =t 1+t 2=2.4 s

(2)解法1:前0.8 s 内物体相对传送带的位移Δx =vt 1-x 1=0.8 m 因摩擦而产生的内能E 内=μmg cos θ·Δx =6 J 整个过程中多消耗的电能

E 电=E k +E p +E 内=1

2

mv 2+mgL sin θ+E 内=28 J

解法2:电动机多消耗的电能在数值上等于两个过程克服摩擦力所做的功,E 电=W f1+W f2 传送带在加速过程的位移x 1′=vt 1=1.6 m W f1=μmgx 1′cos θ=12 J

传送带在匀速过程的位移x 2′=vt 2=3.2 m W f2=mgx 2′sin θ=16 J 所以E 电=28 J

【答案】(1)2.4 s (2)28 J

一质量为M =2 kg 的小物块随足够长的水平传送带一起运动,被一水平向左飞来的子弹击

中,子弹从物块中穿过,如图5甲所示,地面观察者记录了小物块被击穿后的速度随时间的变化关系,如图乙所示(图中取向右运动的方向为正方向),已知传送带的速度保持不变,g 取10 m/s 2.

(1)指出传送带的速度v 的方向及大小,说明理由. (2)计算物块与传送带间的动摩擦因数.

(3)计算物块对传送带总共做了多少功?系统有多少能量转化为内能?

【解析】(1)由题图可知,物块被击中后先向左做匀减速运动,速度为零后,又向右做匀加速运动,当速度等于2 m/s 以后随传送带一起匀速运动,所以传送带的速度方向向右,大小为2 m/s.

(2)由题图可知,a =Δv Δt =4

2 m/s 2=2 m/s 2

由牛顿第二定律得,滑动摩擦力F f =Ma ,其中 F f =μF N ,F N =Mg ,

所以物块与传送带间的动摩擦因数 μ=a g =2

10

=0.2. (3)由题图可知,传送带与物块存在摩擦力的时间只有3 s ,传送带在这段时间内的位移 x =vt =2×3 m =6 m

所以物块对传送带所做的功为 W =-F f x =-4×6 J =-24 J

选传送带为参考系,物块相对于传送带通过的路程 x ′=v ′2t =62

×3 m =9 m ,

所以转化为内能E Q =F f x ′=4×9 J =36 J.

【答案】(1)2 m/s ,方向向右 理由见解析 (2)0.2 (3)-24 J 36 J

如图所示,在大型超市的仓库中,要利用皮带运输机将货物由平台D 运送到高为h =2.5 m 的平台C 上.为了便于运输,仓储员在平台D 与皮带间放了一个1

4圆周的光滑轨道ab ,轨

道半径为R =0.8 m ,轨道最低点与皮带接触良好.已知皮带和水平面间的夹角为θ=37°,皮带和货物间的动摩擦因数为μ=0.75,运输机的皮带以v 0=1 m/s 的速度沿顺时针方向匀速

运动(皮带和轮子之间不打滑).现仓储员将质量为m =200 kg 的货物放于轨道的a 端(g =10 m/s 2).求:

(1)货物到达圆轨道最低点b 时对轨道的压力; (2)货物沿皮带向上滑行多远才能相对皮带静止; (3)皮带将货物由A 运送到B 需对货物做多少功.

【解析】(1)货物由a 到b ,由机械能守恒定律得mgR =1

2mv 2

解得v =2gR =2×10×0.8 m/s =4 m/s 在最低点b ,由F 合=ma 得F -mg =m v 2R

F =m ????v 2

R +g =200×???

?42

0.8+10 N =6×103 N 由牛顿第三定律可知货物到达圆轨道最低点时对轨道的压力F ′=F =6×103 N. (2)货物在皮带上运动时,由动能定理得: -mgx sin37°-fx =12mv 20-12mv 2

且f =μmg cos37° 解得:x =

v 2-v 20

2g

+μ

=0.625 m.

(3)由于tan37°=μ,则货物减速到v 0后便和皮带一起匀速向上运动

货物由平台D 运送到平台C 的过程中,由功能关系知,皮带对货物做的功为W =mg (h -R )+12mv 20

=3 500 J. 【答案】(1)6×103 N (2)0.625 m (3)3 500 J

飞机场上运送行李的装置为一水平放置的环形传送带,传送带的总质量为M ,其俯视图如图所示,现开启电动机,传送带达到稳定运行的速度v 后,将行李依次轻轻放到传送带上,若有n 件质量均为m 的行李需通过传送带运送给旅客.假设在转弯处行李与传送带无相对滑动,忽略皮带轮、电动机损失的能量.求从电动机开启到运送完行李需要消耗的电能为多少?

【解析】 设行李与传送带间的动摩擦因数为μ,则行李与传送带间由于摩擦而产生的总热量Q =nμmg Δx

由运动学公式,得Δx =x 带-x 行=vt -12vt =1

2vt

又v =at =μgt ,联立解得Q =1

2nmv 2

由能量守恒,得E =Q +12Mv 2+1

2nmv 2

故电动机消耗的电能为E =1

2Mv 2+nmv 2

【答案】 1

2

Mv 2+nmv 2

(2014·江苏单科)如图所示,生产车间有两个相互垂直且等高的水平传送带甲和乙,甲的速度为v 0。小工件离开甲前与甲的速度相同,并平稳地传到乙上,工件与乙之间的动摩擦因数为μ。乙的宽度足够大,重力加速度为g 。

(1)若乙的速度为v 0,求工件在乙上侧向(垂直于乙的运动方向)滑过的距离s ; (2)若乙的速度为2v 0,求工件在乙上刚停止侧向滑动时的速度大小v ;

(3)保持乙的速度2v 0不变,当工件在乙上刚停止滑动时, 下一只工件恰好传到乙上,如此反复。若每个工件的质量均为m ,除工件与传送带之间摩擦外,其他能量损耗均不计,求驱

动乙的电动机的平均输出功率P -

【解析】(1)工件滑上乙时,所受摩擦力与侧向的夹角为45°,侧向加速度大小a x =μg cos 45°,工件在侧向上做匀变速直线运动,有-2a x s =0-v 20,解得

s =2v 2

2μg

(2)设t =0时刻摩擦力与侧向的夹角为θ,侧向、纵向加速度的大小分别为a x 、a y ,则a y

a x

=tan

θ。

很小的Δt 时间内,侧向、纵向的速度增量为 Δv x =a x Δt ,Δv y =a y Δt ,解得

Δv y

Δv x

=tan θ, 且由题意知tan θ=v y v x ,则v y ′v x ′=v y -Δv y

v x -Δv x

=tan θ。

v x ′、v y ′分别为物块相对乙传送带在x 、y 方向上的相对速度。所以摩擦力方向保持不变。 则当v x ′=0时,v y ′=0,即v =2v 0。

(3)工件在乙上滑动时侧向位移为x ,沿乙方向的位移为y , 由题意知a x =μg cos θ,a y =μg sin θ,

在侧向上-2a x x =0-v 20,在纵向上2a y y =(2v 0)2

-0,

工件滑动时间t =2v 0

a y ,乙前进的距离y 1=2v 0t 。

工件相对乙的位移L =x 2+(y 1-y )2, 则系统摩擦生热Q =μmgL

电动机做功W =12m (2v 0)2-1

2mv 20

+Q ,

由P -

=W t ,解得P -

=45μmgv 0

5

【答案】(1)2v 20

2μg (2)2v 0 (3)45μmgv 05

(2016·天津市六校高三联考)如图所示,一质量为m =2 kg 的滑块从半径为R =0.2 m 的光滑四分之一圆弧轨道的顶端A 处由静止滑下,A 点和圆弧对应的圆心O 点等高,圆弧的底端B 与水平传送带平滑相接。已知传送带匀速运行的速度为v 0=4 m/s ,B 点到传送带右端C 点的距离为L =2 m 。当滑块滑到传送带的右端C 时,其速度恰好与传送带的速度相同。(g =10 m/s 2),求:

(1)滑块到达底端B 时对轨道的压力; (2)滑块与传送带间的动摩擦因数μ;

(3)此过程中,由于滑块与传送带之间的摩擦而产生的热量Q 。

【解析】(1)滑块从A 运动到B 的过程中,由机械能守恒定律得mgR =1

2mv 2B

解得v B =2gR =2 m/s

在B 点:F N -mg =m v 2B

R

代入解得,F N =60 N

由牛顿第三定律可知,滑块对轨道的压力大小为F N ′=F N =60 N ,方向竖直向下。 (2)滑块从B 运动到C 的过程中,根据牛顿第二定律得μmg =ma

又v 20-v 2

B =2aL ,联立以上两式解得μ=0.3

(3)设滑块从B 运动到C 的时间为t ,加速度 a =μg =3 m/s 2。

由v 0=v B +at ,得t =v 0-v B a =4-23 s =23 s

在这段时间内传送带的位移为s 传=v 0t =8

3 m

传送带与滑块的相对位移为Δs =s 传-L =2

3 m

故滑块与传送带之间的摩擦而产生的热量 Q =μmg Δs =4 J 。

【答案】(1)60 N ,方向竖直向下 (2)0.3 (3)4 J

如图所示,x 轴与水平传送带重合,坐标原点O 在传送带的左端,传送带长L =8 m ,匀速运动的速度v 0=5 m/s.一质量m =1 kg 的小物块轻轻放在传送带上x P =2 m 的P 点,小物块随传送带运动到Q 点后冲上光滑斜面且刚好到达N 点(小物块到达N 点后被收集,不再下滑).若小物块经过Q 处无机械能损失,小物块与传送带间的动摩擦因数μ=0.5,重力加速度g =10 m/s 2.

(1)求N 点的纵坐标;

(2)求小物块在传送带上运动产生的热量;

(3)若将小物块轻轻放在传送带上的某些位置,最终均能沿光滑斜面越过纵坐标y M =0.5 m 的M 点,求这些位置的横坐标范围.

【解析】(1)小物块在传送带上匀加速运动的加速度 a =μg =5 m/s 2

小物块与传送带共速时,所用的时间 t =v 0

a =1 s 运动的位移

Δx =v 20

2a

=2.5 m<(L -x P )=6 m

故小物块与传送带共速后以v 0=5 m/s 的速度匀速运动到Q ,然后冲上光滑斜面到达N 点,由机械能守恒定律得12mv 2

0=mgy N ,解得y N =1.25 m (2)小物块在传送带上相对传送带滑动的位移 x =v 0t -Δx =2.5 m

产生的热量Q =μmgx =12.5 J

(3)设在坐标为x 1处轻轻将小物块放在传送带上,最终刚能到达M 点,由能量守恒得μmg (L -x 1)=mgy M

代入数据解得x 1=7 m

故小物块放在传送带上的位置坐标范围为0≤x <7 m 【答案】(1)1.25 m (2)12.5 J (3)0≤x <7 m

如图所示,在水平面的上方有一固定的水平运输带,在运输带的左端A 处用一小段光滑的圆弧与一光滑的斜面平滑衔接,该运输带在电动机的带动下以恒定的向左的速度v 0=2 m/s 运动.将一可以视为质点的质量为m =2 kg 的滑块由斜面上的O 点无初速度释放,其经A 点滑上运输带,经过一段时间滑块从运输带最右端的B 点离开,落地点为C .已知O 点与A 点的高度差为H 1=1.65 m ,A 点与水平面的高度差为H 2=0.8 m ,落地点C 到B 点的水平距离为x =1.2 m ,重力加速度g =10 m/s 2.

(1)求滑块运动到C 点时的速度大小.

(2)如果仅将O 点与A 点的高度差变为H 1′=0.8 m ,且当滑块刚好运动到A 点时,撤走斜面,求滑块落在水平面上时的速度大小.

(3)在第(2)问情况下滑块在整个运动过程中因摩擦而产生的热量有多少?

【解析】(1)设滑块滑至运输带的右端时速度为v 1,滑块自运输带右端飞出至落地的时间为t ,则在水平方向上,x =v 1t 在竖直方向上,H 2=12

gt 2

设滑块落地时的速度为v ,根据机械能守恒定律得 12mv 21+mgH 2=12

mv 2 联立解得v 1=3 m/s ,v =5 m/s

(2)设滑块从高H 1=1.65 m 处的O 点由静止开始下滑到运输带上,再滑到运输带右端过程中,摩擦力对滑块做功为W f ,由功能关系得mgH 1+W f =12mv 21

解得W f =-24 J

滑块从高H 1′=0.8 m 处的O 点由静止开始下滑到运输带上,由于mgH 1′<|W f |,在滑到运输带右端前滑块的速度就减为零,然后滑块要向左运动,设滑块从高H 1′=0.8 m 处由静止开始下滑到达运输带左端的速度为v 0′,则mgH 1′=12mv ′20

解得v 0′=4 m/s

因为v 0<v 0′故滑块在运输带上向左运动的过程中,先加速至与运输带速度相同,后匀速运动至运输带左端做平抛运动,设滑块从运输带左端抛出,落地时的速度大小为v 2,根据机械能守恒定律得12mv 20+mgH 2=12mv 22 解得v 2=2 5 m/s

(3)设滑块与运输带间的动摩擦因数为μ,滑块从高H 1′=0.8 m 处由静止开始下滑,在运输带上减速到零的过程中,滑块在运输带上运动的时间为t 1,滑块与运输带摩擦所产生的热量为Q 1,则有Q 1=μmg ???

?v 0′

2t 1+v 0t 1 对滑块,由动能定理得-μmg v 0′2t 1=0-1

2mv ′20

设滑块后来又向运输带左端运动的过程中,滑块加速至v 0运动的时间为t 2,滑块与运输带摩擦所产生的热量为Q 2,则Q 2=μmg ????v 0t 2-v 0

2t 2 对滑块,由动能定理得μmg v 02t 2=12

mv 2

0-0

则滑块自释放至落地全过程中滑块与运输带摩擦所产生的热量Q =Q 1+Q 2 解得Q =36 J

【答案】(1)5 m/s (2)2 5 m/s (3)36 J

(完整word版)高中物理传送带模型总结

“传送带模型” 1.模型特征一个物体以速度v0(v0≥0)在另一个匀速运动的物体上开始运动的力学系统可看做“传送带”模型,如图(a)、(b)、(c)所示. 2.建模指导 水平传送带问题:求解的关键在于对物体所受的摩擦力进行正确的分析判断.判断摩擦力时要注意比较物体的运动速度与传送带的速度,也就是分析物体在运动位移x(对地)的过程中速度是否和传送带速度相等.物体的速度与传送带速度相等的时刻就是物体所受摩擦力发生突变的时刻. 水平传送带模型: 1.传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L=5 m,并以v0=2 m/s的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g取10 m/s2 .(1)求旅行包经过多长时间到达传送带的右端; (2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少? 2.如图所示,一质量为m=0.5kg的小物体从足够高的光滑曲面上自由滑下,然后滑上一水平传送带。已知物体与传送带之间的动摩擦因数为μ=0.2,传送带水平部分的长度L=5m,两端的传动轮半径为R=0.2m,在电动机的带动下始终以ω=15/rads的角速度沿顺时针匀速转运, 传送带下表面离地面的高度h不变。如果物体开始沿曲面下滑时距传送带表面 的高度为H,初速度为零,g取10m/s2.求: (1)当H=0.2m时,物体通过传送带过程中,电动机多消耗的电能。 (2)当H=1.25m时,物体通过传送带后,在传送带上留下的划痕的长度。 (3) H在什么范围内时,物体离开传送带后的落地点在同一位置。

高中物理之平抛运动和斜面组合模型及其应用

平抛运动和斜面组合模型及其应用 平抛运动可以分解为水平方向的匀 速直线运动和竖直方向的自由落体运 动,其运动轨迹和规律如图1所示,会 应用速度和位移两个矢量三角形反映 的规律灵活的处理问题。设速度方向与初速度方向的夹角为速度偏向角φ,位移方向与初速度方向的夹角为位移偏向角θ,若过P点做与初速度平行的直线,则该直线与位移方向的夹角可以看作是构造的虚斜面的倾角,这样平抛运动模型和斜面模型就组合在一起了。在中学物理中有大量的模型,平抛运动和斜面模型是重要的模型,这两个模型组合起来进行考查,是近几年高考的一大亮点。为此,笔者就该组合模型的特点和应用,归纳如下。 一.斜面上的平抛运动问题 例1.(2006·上海)如图2所示,一足够长的固定斜面与水平面的夹角为370,物体A以初速度v 1从斜面顶端水 平抛出,物体B在斜面上距顶端L=15m处同时以 速度v2沿斜面向下匀速运动,经历时间t物体A 和物体B在斜面上相遇,则下列各组速度和时间

中满足条件的是(sin37O =,cos370=,g =10 m/s 2) A .v 1=16 m/s ,v 2=15 m/s ,t =3s B .v 1=16 m/s ,v 2=16 m/s ,t =2s C .v 1=20 m/s ,v 2=20 m/s ,t =3s D .v 1=20m/s ,v 2=16 m/s ,t =2s 解析:设物体A 平抛落到斜面上的时间为t , 由平抛运动规律得 t v x 0=,22 1gt y = 由位移矢量三角形关系得 x y =θtan 由以上三式解得g v t θ tan 20= 在时间t 内的水平位移g v x θtan 220=;竖直位移g v y θ 220tan 2= 将题干数据代入得到3v 1=20t ,对照选项,只有C 正确。 将v 1=20 m/s ,t =3s 代入平抛公式,求出x ,y A s ==75m , B s =v 2t =60m , 15A B s s L m -==,满足题目所给已知条件。 结论1:物体自倾角为θ的固定斜面抛出,若落在斜面上,飞行

高中物理弹簧专题总结

高中物理弹簧专题总结弹簧涉及的力学问题通常是动态的,常与能量、电场、简谐振动相结合,综合性强、能力要求高,且与日常生活联系密切,近几年来成为高考的热点。下面从几个角度分析弹簧的考查。 一弹簧中牛顿定律的考查与弹簧相连的物体运动时通常会引起弹力及合力发生变化,给物体的受力分析带来一定难度,这类问题关键是挖掘隐含条件,结合牛顿第二定律的瞬时性来分析。 例1 如图1 所示,竖直光滑杆上套有一个小球和两根弹簧,两弹簧的一端各与小球相连,另一端分别用销钉M 、N 固定于杆上,小球处于静止状态。设拔去销钉M 瞬间,小球加速度的大小为12m/s2,若不拔去销钉M 而拔去销钉N 瞬间,小球的加速度可能是(g 取10m/s2)(BC )A、22 m/s2,竖直向上B、22 m/s2,竖直向下 C、2 m/s2,竖直向上 D、2 m/s2,竖直向下 解析:开始小球处于平衡状态所受的合力为零,拔去销钉M 瞬间小球受的合力与上面弹簧弹力大小相等方向相反。若此时加速度方向向上,则上面弹簧弹力F= m × 12, 方向向下。若拔去销钉N 瞬间则小球受到本身的重力和F,故加速度a=22m/s2,方向竖直向下; 反之则为C。 图2 图1 练习1如图 2 所示,质量为m 的物体A,放置在质量为连,它们一起在光滑的水平面上做简谐运动,振动过程中的物体 B 上,B与轻质弹簧相 A、B 之间无相对运动,设弹簧的劲 度系数为k,当物体离开平衡位置的位移为x时,A、B 间的摩擦力的大小等于( mm kx D 、kx M M m A 、0 B、kx C、D、 练习2如图3所示,托盘 A 托着质量为m的重物B, 弹簧的上端悬于O 点,开始时弹簧竖直且为原长。今让托盘 速直线运动,其加速度为a(a

电磁感应中的能量问题分析高中物理专题.docx

第 10 课时电磁感应中的能量问题分析 一、知识内容: 1、分析:棒的运动过程→ 运动性质→ 遵从规律; 2、掌握能量的转化方向:哪些能量减少,哪些能量增加; 3、电能→内能 Q:I 恒定→Q I 2 Rt ;I变化:用有效值求,或能量守恒; 4、常用知识点:动能定理、能量守恒、W 、P、Q、等。 二、例题分析: 【例 1】如图所示, PQ 、MN 为足够长的两平行金属导轨,它们之间连接一个阻值为R=8 Ω的电阻,导轨间距为 L=1m ,一质量 m=0.1kg,电阻 r=2 Ω的均匀金属杆水平放在 导轨上,它与导轨的滑动摩擦因数 3 / 5 ,导轨平面倾角300,在垂直导轨平面方向有匀强磁场, B=0.5T ,今让金属杆由静止开始下滑,从杆静止开始到杆 AB恰好匀速运动的过程中经过杆的电量q 1C ,求: (1)当 AB 下滑速度为2m/ s时加速度的大小 (2)AB 下滑的最大速度 (3)从静止开始到 AB 匀速运动过程R 上产生的热量? 【例2】如图所示,两根间距为l 的光滑金属导轨(不计电阻),由 一段圆弧部分与一段无限长的水平段部分组成,其水平段加 有竖直向下方向的匀强磁场,其磁感应强度为B,导轨水平段 上静止放置一金属棒cd,质量为2m,电阻为2r,另一质量为 m,电阻为 r 的金属棒ab,从圆弧段M 处由静止释放下滑至 N 处进入水平段,圆弧段 MN 半径为 R,所对圆心角为 60°,求: (1) ab 棒在 N 处进入磁场区速度多大?此时棒中电流是多少? (2) cd 棒能达到的最大速度是多大? (3) cd 棒由静止到达最大速度过程中,系统所能释放的热量是多少? 【例 3】用质量为m、总电阻为R 的导线做成边长为l 的正方形线框MNPQ ,并将其放在倾 光磁静角为θ的平行绝缘导轨上,平行导轨的间距也为l,如图所示。线框与导轨之间是滑的,在导轨的下端有一宽度为l(即 ab=l)、磁感应强度为 B 的有界匀强磁场,场的边界aa′、bb′垂直于导轨,磁场的方向与线框平面垂直。某一次,把线框从 止状态释放,线框恰好能够匀速地穿过磁场区域。若当地的重力加速度为g,求:(1)线框通过磁场时的运动速度; (2)开始释放时, MN 与 bb′之间的距离; (3)线框在通过磁场的过程中所生的焦耳热。

高中物理模型总结汇总

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2 022 121 mv mv - ② 对木块 fs=02 12-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022 )(21v v M m M -? ④ ②+④得 f l =})]([2121{212 12 1 2 120220222 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2 。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

高中物理 斜面模型-word文档 1

斜面模型训练 1、(2021·湖南省长郡中学高三上学期开学摸底)如图所示,倾角为θ的斜面体A固定在电梯里的水平地板上,电梯静止时在斜面体A上轻轻放上一个小斜劈B,斜劈B的上表面水平,下列说法正确的是() A. 若斜劈B恰好静止在斜面体A上,则当电梯匀加速上升时,斜劈B将相对斜面体A加速下滑 B. 若斜劈B恰好静止在斜面体A上,则在斜劈B上再放上一个物块C时,斜劈B和物块C均能静止 C. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再施加一个竖直向下的力时,斜劈B的加速度不变 D. 若斜劈B沿斜面匀加速下滑,则在斜劈B上再放上一个物块C时(斜劈B、物块C相对静止),斜劈B的加速度变大 2.、如图所示,质量为m的物体A在沿斜面向上的拉力F作用下沿斜面匀速下滑,此过程中斜面体B仍静止,斜面体的质量为M, 则以下说法正确的是( ) A. 水平地面对斜面体无摩擦力 B. 水平地面对斜面体有水平向左的摩擦力 C. 水平地面对斜面体支持力为(m+M)g D.物体A受的摩擦力小于F 3、如下图所示,物体B叠放在物体A上,A,B的质量均为m,且上、下表面均与斜面平行,它们以共同速度沿倾角为θ的固定斜面C匀速下滑,则( ) A.A、B间没有静摩擦力 B.A受到B的静摩擦力方向沿斜面向上 C.A受到斜面的滑动摩擦力大小为2mgsinθ

D .A 与B 间的动摩擦因数μ=tanθ 4、(2021·辽宁省渤大附中育明高中高三上学期第一次联考)如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A 点,竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心,已知在同一时刻a 、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点;c 球由C 点自由下落到M 点,则( ) A. a 球最先到达M 点 B. b 球最先到达M 点 C. c 球最先到达M 点 D. b 球和c 球都可能最先到达M 点 5、(2021·河北省保定市高三上学期摸底测试)小物块从一固定斜面底端以初速度0v 冲上斜面,如图所示,已知小物块与斜面间动摩擦因数为0.5,斜面足够长,倾角为37?,重力加速度为g 。则小物块在斜面上运动的时间为(cos370.8?=,sin370.6?=)( ) A. 0 2v g B. 03v g C. 0 (51) v g + D. 0 (61) v g + 6、如图所示,用一根细线系住重力为G ,半径为R 的球,其与倾角为α的光滑斜面劈接触,处于静止状态,球与斜面的接触面非常小,当细线悬点O 固定不动,斜面劈缓慢水平向左移动直至绳子与斜面平行的过程中,下述正确的是( ) A .细绳对球的拉力先减小后增大 B .细绳对球的拉力先增大后减小 C .细绳对球的拉力一直增大 D .细绳对球的拉力最小值等于Gsinα

高中物理复习专题 动量与能量(精选.)

专题三动量与能量 思想方法提炼 牛顿运动定律与动量观点和能量观点通常称作解决问题的三把金钥匙.其实它们是从三个不同的角度来研究力与运动的关系.解决力学问题时,选用不同的方法,处理问题的难易、繁简程度可能有很大差别,但在很多情况下,要三把钥匙结合起来使用,就能快速有效地解决问题. 一、能量 1.概述 能量是状态量,不同的状态有不同的数值的能量,能量的变化是通过做功或热传递两种方式来实现的,力学中功是能量转化的量度,热学中功和热量是内能变化的量度. 高中物理在力学、热学、电磁学、光学和原子物理等各分支学科中涉及到许多形式的能,如动能、势能、电能、内能、核能,这些形式的能可以相互转化,并且遵循能量转化和守恒定律,能量是贯穿于中学物理教材的一条主线,是分析和解决物理问题的主要依据。在每年的高考物理试卷中都会出现考查能量的问题。并时常发现“压轴题”就是能量试题。 2.能的转化和守恒定律在各分支学科中表达式 (1)W合=△E k包括重力、弹簧弹力、电场力等各种力在内的所有外力对物体做的总功,等于物体动能的变化。(动能定理) (2)W F=△E除重力以外有其它外力对物体做功等于物体机械能的变化。(功能原理) 注:(1)物体的内能(所有分子热运动动能和分子势能的总和)、电势能不属于机械能 (2)W F=0时,机械能守恒,通过重力做功实现动能和重力势能的相互转化。 (3)W G=-△E P重力做正功,重力势能减小;重力做负功,重力势能增加。重力势能 变化只与重力做功有关,与其他做功情况无关。 (4)W电=-△E P 电场力做正功,电势能减小;电场力做负功,电势能增加。在只有重力、电场力做功的系统内,系统的动能、重力势能、电势能间发生相互转化,但总和保持不变。 注:在电磁感应现象中,克服安培力做功等于回路中产生的电能,电能再通过电路转化为其他形式的能。 (5)W+Q=△E物体内能的变化等于物体与外界之间功和热传递的和(热力学第一定律)。 (6)mv02/2=hν-W 光电子的最大初动能等于入射光子的能量和该金属的逸出功之 差。 (7)△E=△mc2在核反应中,发生质量亏损,即有能量释放出来。(可以以粒子的动

高中物理 电磁感应现象中的能量问题

电磁感应现象中的能量问题 能的转化与守恒,是贯穿物理学的基本规律之一。从能量的观点来分析、解决问题,既是学习物理的基本功,也是一种能力。 电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功。此过程中,其他形式的能量转化为电能。当感应电流通过用电器时,电能又转化为其他形式的能量。“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能。同理,安培力做功的过程,是电能转化为其它形式能的过程。安培力做了多少功,就有多少电能转化为其它形式的能。 认真分析电磁感应过程中的能量转化、熟练地应用能量转化和守恒定律是求解较复杂的电磁感应问题的常用方法,下面就几道题目来加以说明。 一、安培力做功的微观本质 1、安培力做功的微观本质 设有一段长度为L、矩形截面积为S的通电导体,单位体积中含有的自由电荷数为n,每个自由电荷的电荷量为q,定向移动的平均速率为v,如图所示。 所加外磁场B的方向垂直纸面向里,电流方向沿导体水平向右,这个电流是由于自由电子水平向左定向运动形成的,外加磁场对形成电流的运动电荷(自由电子)的洛伦兹力使自由电子横向偏转,在导体两侧分别聚集正、负电荷,产生霍尔效应,出现了霍尔电势差,即在导体内部出现方向竖直向上的横向电场。因而对在该电场中运动的电子有电场力f e的作用,反之自由电子对横向电场也有反作用力-f e作用。场强和电势差随着导体两侧聚集正、负电荷的增多而增大,横向电场对自由电子的电场力f e也随之增大。当对自由电子的横向电场力f e增大到与洛伦兹力f L相平衡时,自由电子没有横向位移,只沿纵向运动。导体内还有静止不动的正电荷,不受洛伦兹力的作用,但它要受到横向电场的电场力f H的作用,因而对横向电场也有一个反作用力-f H。由于正电荷与自由电子的电量相等,故正电荷对横向电场的反作用-f H和自由电子对横向电场的反作用力-f e相互抵消,此时洛伦兹力f L与横向电场力f H相等。正电荷是导体晶格骨架正离子,它是导体的主要部分,整个导体所受的安培力正是横向电场作用在导体内所有正电荷的力的宏观表现,即F=(nLS)f H=(nLS)f L。 由此可见,安培力的微观本质应是正电荷所受的横向电场力,而正电荷所受的横向电场力正是通过外磁场对自由电子有洛伦兹力出现霍尔效应而实现的。

高中物理模型总结整理

l v 0 v S v 0 A B v 0 A B v 0 l 滑块、子弹打木块模型之一 子弹打木块模型:包括一物块在木板上滑动等。μNS 相=ΔE k 系统=Q ,Q 为摩擦在系统中产生的热量。②小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动 :包括小车上悬一单摆单摆的摆动过程等。小球上升到最高点时系统有共同速度(或有共同的水平速度);系统内弹力做功时,不将机械能转化为其它形式的能,因此过程中系统机械能守恒。 例题:质量为M 、长为l 的木块静止在光滑水平面上,现有一质量为m 的子弹以水平初速v 0射入木块,穿出时子弹速度为v ,求子弹与木块作用过程中系统损失的机械能。 解:如图,设子弹穿过木块时所受阻力为f ,突出时木块速度为V ,位移为S ,则子弹位移为(S+l)。水平方向不受外力,由动量守恒定律得:mv 0=mv+MV ① 由动能定理,对子弹 -f(s+l )=2022121 mv mv - ② 对木块 fs=0212-MV ③ 由①式得 v= )(0v v M m - 代入③式有 fs=2022)(21v v M m M -? ④ ②+④得 f l =})]([2121{21212121 202202220 v v M m M mv mv MV mv mv -+-=-- 由能量守恒知,系统减少的机械能等于子弹与木块摩擦而产生的内能。即Q=f l ,l 为子弹现木块的相对位移。 结论:系统损失的机械能等于因摩擦而产生的内能,且等于摩擦力与两物体相对位移的乘积。即 Q=ΔE 系统=μNS 相 其分量式为:Q=f 1S 相1+f 2S 相2+……+f n S 相n =ΔE 系统 1.在光滑水平面上并排放两个相同的木板,长度均为L=1.00m ,一质量 与木板相同的金属块,以v 0=2.00m/s 的初速度向右滑上木板A ,金属 块与木板间动摩擦因数为μ=0.1,g 取10m/s 2。求两木板的最后速度。 2.如图示,一质量为M 长为l 的长方形木块B 放在光滑水平面上,在其右端放一质量为m 的小木块A ,m <M ,现以地面为参照物,给A 和B 以大小相等、方向相反的初速度 (如图),使A 开始向左运动,B 开始向右运动,但最后A 刚好没有滑离 B 板。以地面为参照系。 ⑴若已知A 和B 的初速度大小为v 0,求它们最后速度的大小和方向; ⑵若初速度的大小未知,求小木块A 向左运动到最远处(从地面上看)到出发点的距离。 3.一平直木板C 静止在光滑水平面上,今有两小物块A 和B 分别以2v 0和v 0的初速度沿同一直线从长木板

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高三物理电流的磁效应和电磁感应中的能量问题

电流的磁效应和电磁感应中的能量问题 原平市第一中学朱东平 1820年丹麦物理学家奥斯特发现:把一段直导线平行地放在小磁针的上方,当导线中有电流通过时小磁针就会发生偏转,这说明不仅磁铁能产生磁场,电流也能产生磁场,这就是电流的磁效应。电流的磁效应发现以后,人们很自然地想到:利用磁场是不是也能产生电流呢?英国物理学家法拉第经过十年坚持不懈的努力,终于取得重大突破,在1983年发现了由磁场产生电流的条件和规律。由磁场产生电流的现象称为电磁感应现象。在这里我就这两类问题中的能量转化情况谈谈我的看法: 一、在电流产生磁场的现象中: 无论是通电直导线产生磁场的现象,还是通电线圈产生磁场的现象,都是原来空间没有磁场,现在有了磁场,这个过程中必然有了磁场能量的增加。磁场的能量显然是来源于给导线或线圈提供电流的电源。 二、在电磁感应现象中: 原来电路中没有电流,现在发生电磁感应产生了电流,电流通过有电阻的导体转化成了焦耳热;或者电流通过化学电源给其充电;总之,消耗了电能,那么这个电能从哪里来呢?是来源于磁场能量吗?在电磁感应中一部分情况感应电流的电能是来源于磁场能量;而还有一部分感应电流的电能不是消耗了磁场能量,而是以磁场为桥梁实现的其他形式的能量和电能的相互转化或者转移。我们分情况来讨论: 1、闭合电路中的部分导线(或线圈)与磁场相对运动而产生的电磁感应现象中(切割类)的情况下,显然电能是来源于磁铁、导线、导线框的机械能或者控制它们运动的人的内能或者其他物体的能量。 例1、在含有电阻的水平光滑导轨上有一导 体棒AB,整个装置处在竖直向下的匀强磁场中; 导体棒开始具有初速度v,试分析AB运动中的 能量转化情况? 分析:导体棒向右运动时由于切割磁感线 而产生了感应电流,而导体棒就会受到向左的 安培力;导体棒就做向右的减速运动;导体棒克服安培力做功动能减少转化成了回路中的电能。如果要保持导体棒匀速运动人或者其他物体必须对导体棒做正功,而导体棒对人或者物体做负功,从而消耗人或者其他物体的能量转化成回路中的电能。在这里磁场只是个载体,磁场能量没有变化。 例2、右下图(甲)和(乙)中,线圈和磁铁之 间有相对运动时;试分析能量转化情况? 分析:(甲)图中线圈不动,磁铁向下运动时, 在线圈中产生了感应电流,线圈就对磁铁产生了向 上的磁场力,阻碍磁铁向下运动,磁铁克服磁场力 做功其机械能减少转化成了线圈中的电能,线圈不 是超导体时电能就转化成了焦尔热能。而在(乙) 图中磁铁不动,线圈向下运动,线圈中产生感应电 流,从而受到磁铁对它向上的磁场力;线圈克服磁场力做功,机械能减少

关于高级高中物理模型总结归纳

1、追及、相遇模型 火车甲正以速度v 1向前行驶,司机突然发现前方距甲d 处有火车乙正以较小速度v 2同向匀速行驶,于是他立即刹车,使火车做匀减速运动。为了使两车不相撞,加速度a 应满足什么条件? 故不相撞的条件为d v v a 2)(2 21-≥ 2、传送带问题 1.(14分)如图所示,水平传送带水平段长L =6米,两皮带轮直径均为D=0.2米,距地面高度H=5米,与传送带等高的光滑平台上有一个小物体以v 0=5m/s 的初速度滑上传送带,物块与传送带间的动摩擦因数为,g=10m/s 2,求: (1)若传送带静止,物块滑到B 端作平抛 运动 的水平距离S 0。 (2)当皮带轮匀速转动,角速度为ω,物 体平抛运动水平位移s ;以不同的角速度ω值重复 上述过程,得到一组对应的ω,s 值,设皮带轮顺时针转动时ω>0,逆时针转动时ω<0,并画出s —ω关系图象。 解:(1))(12110m g h v t v s === (2)综上s —ω关系为:?? ? ??≥≤≤≤s rad s rad s rad s /707/70101.0/101ωωω ω 2.(10分)如图所示,在工厂的流水线上安装有水平传送带,用水平传送带传送工件,可以大大提高工作效率,水平传送带以的 工 恒定的速率s m v /2=运送质量为kg m 5.0=

件,工件都是以s m v /10=的初速度从A 位置滑上传送带,工件与传送带之间的动摩擦因数2.0=μ,每当前一个工件在传送带上停止相对滑动时,后一个工件立即滑上传送带,取2/10s m g =,求: (1)工件滑上传送带后多长时间停止相对滑动 (2)在正常运行状态下传送带上相邻工件间的距离 (3)在传送带上摩擦力对每个工件做的功 (4)每个工件与传送带之间由于摩擦产生的内能 解:(1)工作停止相对滑动前的加速度2/2s m g a ==μ ① 由at v v t +=0可知:s s a v v t t 5.02 1 20=-=-= ② (2)正常运行状态下传送带上相邻工件间的距离m m vt s 15.02=?==? ③ (3)J J mv mv W 75.0)12(5.02 12121 222 02=-??=-= ④ (4)工件停止相对滑动前相对于传送带滑行的距离 )21(20at t v vt s +-=m )5.022 1 5.01(5.022??+?-?=m m 25.0)75.01(=-=⑤ J mgs fs E 25.0===μ内 ⑥ 3、汽车启动问题 匀加速启动 恒定功率启动 4、行星运动问题 [例题1] 如图6-1所示,在与一质量为M ,半径为R ,密度均匀的球体距离为R 处有一质量为m 的质点,此时M 对m 的万有引力为F 1.当从球M 中挖去一个半径为R/2的小球体时,剩下部分对m 的万有引力为F 2,则F 1与F 2的比是多少?

高中物理模型-斜面模型

模型组合讲解——斜面模型 康世界 [模型概述] 斜面模型是中学物理中最常见的模型之一,各级各类考题都会出现,设计的内容有力学、电学等。相关方法有整体与隔离法、极值法、极限法等,是属于考查学生分析、推理能力的模型之一。 [模型讲解] 一. 利用正交分解法处理斜面上的平衡问题 例1. 相距为20cm 的平行金属导轨倾斜放置(见图1),导轨所在平面与水平面的夹角为?=37θ,现在导轨上放一质量为330g 的金属棒ab ,它与导轨间动摩擦系数为50.0=μ,整个装置处于磁感应强度B=2T 的竖直向上的匀强磁场中,导轨所接电源电动势为15V ,内阻不计,滑动变阻器的阻值可按要求进行调节,其他部分电阻不计,取2 /10s m g =,为保持金属棒ab 处于静止状态,求: (1)ab 中通入的最大电流强度为多少? (2)ab 中通入的最小电流强度为多少? 解析:导体棒ab 在重力、静摩擦力、弹力、安培力四力作用下平衡,由图2中所示电流方向,可知导体棒所受安培力水平向右。当导体棒所受安培力较大时,导体棒所受静摩擦力沿导轨向下,当导体棒所受安培力较小时,导体棒所受静摩擦力沿导轨向上。

(1 )ab 中通入最大电流强度时受力分析如图2,此时最大静摩擦力N f F F μ=沿斜面向下,建立直角坐标系,由ab 平衡可知,x 方向: )sin cos (sin cos max θθμθ θμ+=+=N N N F F F F y 方向:)sin (cos sin cos θμθθμθ-=-=N N N F F F mg 由以上各式联立解得: A BL F I L BI F N mg F 5.16,6.6sin cos sin cos max max max max max ====-+=有θ μθθθμ (2)通入最小电流时,ab 受力分析如图3所示,此时静摩擦力N f F F ''μ=,方向沿斜面向上,建立直角坐标系,由平衡有: x 方向:)cos (sin 'cos 'sin 'min θμθθμθ-=-=N N N F F F F y 方向:)cos sin ('cos 'sin 'θθμθθμ+=+=N N N F F F mg 联立两式解得:N mg F 6.0cos sin cos sin min =+-=θ θμθμθ 由A BL F I L BI F 5.1,min min min min === 评点:此例题考查的知识点有:(1)受力分析——平衡条件的确定;(2)临界条件分析的能力;(3)直流电路知识的应用;(4)正交分解法。 说明:正交分解法是在平行四边形定则的基础上发展起来的,其目的是用代数运算来解决矢量运算。正交分解法在求解不在一条直线上的多个力的合力时显示出了较大的优越性。建立坐标系时,一般选共点力作用线的交点为坐标轴的原点,并尽可能使较多的力落在坐标

高考物理专题电磁感应中的动力学和能量综合问题及参考复习资料

高考专题:电磁感应中的动力学和能量综合问题 一.选择题。(本题共6小题,每小题6分,共36分。1—3为单选题,4—6为多选题) 1.如图所示,“U ”形金属框架固定在水平面上,处于竖直向下的匀强磁场中棒以水平初速度v 0向右运动,下列说 法正确的是( ) 棒做匀减速运动 B.回路中电流均匀减小 点电势比b 点电势低 棒受到水平向左的安培力 2.如图,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行。已知在0到1的时间间隔内,直导线中电流i 发生某种变化,而线框中感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右。设电流i 正方向与图中箭头方向相同,则i 随时间t 变化的图线可能是( ) 3.如图所示,在光滑水平桌面上有一边长为L 、电阻为R 的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界 与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动=0时导线框的右边恰与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v -t 图象中,可能正确描述上述过程的是( ) A B C D 4.如图1所示,两根足够长、电阻不计且相距L =0.2 m 的平行金属导轨固定在倾角θ=37°的绝缘斜面上,顶端接有一盏额定电压U =4 V 的小灯泡,两导轨间有一磁感应强度大小B =5 T 、方向垂直斜面向上的匀强磁场.今将一根长为L 、质量为m =0.2 、电阻r =1.0 Ω的金属棒垂直于导轨放置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒 与导轨间的动摩擦因数μ=0.25,已知金属棒下滑到速度稳定时,小灯泡恰能正常发光,重力加速度g 取10 2, 37°=0.6, 37°=0.8,则( ) 班级 姓名 出题者 徐利兵 审题者 得分 密 封 线

高中物理连体模型总结

精讲3 牛顿运动定律连体问题 ?在实际问题中,常常会碰到几个物体(连接)在一起在外力作用下运动,求解它们的运动规律及所受外力和相互作用力,这类问题被称为连接体问 题。 常见的连体模型:①用轻绳连接②直接接触 ③靠摩擦接触 a

连接体常会处于某种相同的运动状态,如处于平衡态或以相同的加速度运动。处理方法:整体法与隔离法相结合 整体法:就是把整个系统作为一个研究对象来分析的方法。不必考虑系统内力的影响,只考虑系统受到的外力,根据牛顿第二定律列方程求解. 例1:如图所示,U形框B放在粗糙斜面上刚好静止。若将物体A放入放入U形框B内,问B是否静止。 隔离法:是把系统中的各个部分(或某一部分)隔离,作为一个单独的研究对象来分析的方法。 此时系统内部各物体间的作用力(内力)就可能成为研究对象的外力,在分析时要加以注意。需要求内力时,一般要用隔离法。

例2 如图所示,为研究a与F、m关系的实验装置,已知A、B质量分别为m、M,当一切摩擦力不计时,求绳子拉力。原来说F约为mg,为什么? 拓展:质量分别为m=2kg和M=3kg的物体A和B,挂在弹簧秤下方的定滑轮上,如图所示,当B加速下落时,弹簧秤的示数是。(g取10m/s2) 例3:用力F推,质量为M的物块A和质量为m的物块B,使两物体一起在光滑水平面上前进时,求物体M对m的作用力F N。

若两物体与地面摩擦因数均为μ时,相互作用力F N是否改变?为什么? 例4.如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球。开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的一半,则小球在下滑过程中,木箱对地面的压力是多少? 拓展:如图所示,A、B的质量分别为m1和m2,叠放于光滑的水平面上,现用水平力拉A时,A、B一起运动的最大加速度为a1,若用水平力改拉B物体时,A,B一起运动的最大为a2,则a1:a2等于() A.1:1 B.m1:m2 C.m2:m1D.m12:m22

高中物理重要方法典型模型突破9-模型专题(1) - 斜面模型

专题九模型专题(1)斜面模型 【模型解读】 在高中物理学习过程中,把物理问题进行抽象化处理,建立物理模型,在具体的物理问题的分析、解决的过程中,物理模型方法是解决问题的桥梁和工具作用,进一步培养通过建构模型来应用物理学知识和科学方法的意识,体会到物理问题解决过程中要有简化、抽象等科学思维 斜面模型是高中物理中最常见的模型之一,斜面问题千变万化,斜面既可能光滑,也可能粗糙;既可能固定,也可能运动,运动又分匀速和变速;斜面上的物体既可以左右相连,也可以上下叠加。物体之间可以细绳相连,也可以弹簧相连。求解斜面问题,能否做好斜面上物体的受力分析,尤其是斜面对物体的作用力(弹力和摩擦力)是解决问题的关键。 图示或释义 与斜面相关的滑块运动问题 规律或方法(1)μ=tan θ,滑块恰好处于静止状态(v0=0)或匀速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变 (2)μ>tan θ,滑块一定处于静止状态(v0=0)或匀减速下滑状态(v0≠0),此时若在滑块上加一竖直向下的力或加一物体,滑块的运动状态不变(加力时加速度变大,加物体时加速度不变) (3)μ

关于高中物理知识点总结之能量守恒定律与能源知识点

关于高中物理知识点总结之能量守恒定 律与能源知识点 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。这就是能量守恒定律,如今被人们普遍认同。 1.化学能:由于化学反应,物质的分子结构变化而产生的能量。 2.核能:由于核反应,物质的原子结构发生变化而产生的能量。 3.能量守恒定律:能量既不会消灭,也不会创生,它只会从一种形式转化为另一种形式,或者从一个物体转移到另一个物体,而能的总量保持不变。 ●内容:能量既不会消灭,也不会创生,它只会从一种形式转化为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量保持不变。 即 E机械能1+E其它1=E机械能2+E其它2 ●能量耗散:无法将释放能量收集起来重新利用的现象叫能量耗散,它反映了自然界中能量转化具有方向性。 1.可再生能源:可以长期提供或可以再生的能源。 2.不可再生能源:一旦消耗就很难再生的能源。

3.能源与环境:合理利用能源,减少环境污染,要节约能源、开发新能源。 1.太阳能 2.核能 3.核能发电 4、其它新能源:地热能、潮汐能、风能。 能源品种繁多,按其来源可以分为三大类:一是来自地球以外的太阳能,除太阳的辐射能之外,煤炭、石油、天然气、水能、风能等都间接来自太阳能;第二类来自地球本身,如地热能,原子核能(核燃料铀、钍等存在于地球自然界);第三类则是由月球、太阳等天体对地球的引力而产生的能量,如潮汐能。 【一次能源】指在自然界现成存在,可以直接取得且不必改变其基本形态的能源,如煤炭、天然气、地热、水能等。由一次能源经过加工或转换成另一种形态的能源产品,如电力、焦炭、汽油、柴油、煤气等属于二次能源。 【常规能源】也叫传统能源,就是指已经大规模生产和广泛利用的能源。表2-1所统计的几种能源中如煤炭、石油、天然气、核能等都属一次性非再生的常规能源。而水电则属于再生能源,如葛洲坝水电站和未来的三峡水电站,只要长江水不干涸,发电也就不会停止。煤和石油天然气则不然,它们在地壳中是经千百万年形成的(按现在的采用速率,石

高中物理解题模型详解总结

高考物理解题模型 目录 第一章运动和力................................................. 一、追及、相遇模型............................................ 二、先加速后减速模型.......................................... 三、斜面模型................................................. 四、挂件模型................................................. 五、弹簧模型(动力学)........................................ 第二章圆周运动................................................. 一、水平方向的圆盘模型........................................ 二、行星模型................................................. 第三章功和能 ................................................... 一、水平方向的弹性碰撞........................................ 二、水平方向的非弹性碰撞...................................... 三、人船模型................................................. 四、爆炸反冲模型 ............................................. 第四章力学综合................................................. 一、解题模型: ............................................... 二、滑轮模型................................................. 三、渡河模型................................................. 第五章电路...................................................... 一、电路的动态变化............................................ 二、交变电流................................................. 第六章电磁场 ................................................... 一、电磁场中的单杆模型........................................ 二、电磁流量计模型............................................ 三、回旋加速模型 ............................................. 四、磁偏转模型 ...............................................

相关文档
最新文档