zigbee 传输协议

zigbee 通信协议PAN ID:56 34 并在LCD1602上实时显示

短地址在LCD1602上实时显示

节点类型:coordinator 和router 必须可由按键控制

频道:22(2460mhz)可以由按键控制选择频道

点对点数据传输方式:0xfd+数据长度+目的地址(短地址)+数据限定:每个数据包为8字节间隔250ms左右传输

透明传输数据接收:数据+短地址

ZigBee 协议架构

根据应用和市场需要定义了ZigBee 协议的分层架构,其协议的体系结构如图1 所示,其中物理层(physical layer,PHY)和媒介访问控制层(medium access control sub-layer,MAC)是由IEEE802.15.4-2003 标准定义的,在这个底层协议的基础上ZigBee 联盟定义了网络层(network layer,PHY)和应用层(application layer,APL)架构. 图1 zigbee协议栈体系结构 物理层规范 物理层定义了它与MAC 层之间的两个接口:数据服务接口PD-SAP 和管理服务接口PLME-SAP,其中PD-SAP 接口还为物理层提供了相应的数据服务,负责从无线物理信道上收发数据,而PLME-SAP 接口同时为物理层提供相应的管理服务,用于维护一个由物理层相关数据组成的数据库。物理层负责数据的调制、发送和接收、空闲信道评估(clear channel assessment,CCA)信道能量的监测(energy detect,ED)和链接质量指示(link quality indication,LQI)等。物理层帧结构由同步头、物理层帧头和物理层有效载荷三部分组成,如表1 所示。

同步头又包括32bit 的前同步码和8bit 的帧定界符,前同步码用来为数据收发提供码元或数据符号的同步;帧界定符用来标识同步域的结束及数据的开始。物理层帧头包括7bit 的帧长度和1bit 的预留位,帧长度定义了物理层净荷的字节数。物理层有效载荷就是MAC层的帧内容。 表一物理层帧格式 媒体接入控制层规范 MAC 层定义了它与网络层之间的接口,包括提供给网络层的数据服务接口MLDE-SAP 和管理服务接口MLME-SAP,同时提供了MAC 层数据服务和MAC 层管理服务。MAC层数据服务主要实现数据帧的传输;MAC 层管理服务主要负责媒介访问控制、差错控制等。 MAC 层主要功能包括以下几个方面: (1)ZigBee 协调器产生网络信标 (2)设备与信标同步 (3)支持节点加入或着退出操作 (4)信道接入方式采用免冲突载波检测多路访问(CSMA-CA)机制 (5)建立并维护保护时隙机制 (6)为设备提供安全支持 MAC 帧格式由三个基本部分组成:MAC 帧头、MAC 帧载荷和MAC 帧尾。不同类型的MAC 帧,其帧头和帧尾都是一样的,只是MAC 帧载荷有差别,通用MAC 帧格式如表2所示。 表二通用MAC帧格式 网络层规范 网络层定义了它与应用层之间的接口,包括提供给应用层的数据服务接口NLDE-SAP和管理服务接口NLME-SAP , 同时提供了网络层数据服务和网络层管理服务。网络层主要负责拓扑结构的建立和网络的维护,具体的功能如下:(1)初始化网络,即建立一个新的包含协调器、路由器和终端设备的网络(2)设备连接和断开时所采用的机制 (3)对一跳邻居节点的发现和相关节点信息的存储 (4)ZigBee 协调器和路由器为新加入节点分配短地址

Zigbee协议栈原理基础

1Zigbee协议栈相关概念 1.1近距离通信技术比较: 近距离无线通信技术有wifi、蓝牙、红外、zigbee,在无线传感网络中需求的网络通信恰是近距离需求的,故,四者均可用做无线传感网络的通信技术。而,其中(1)红外(infrared):能够包含的信息过少;频率低波衍射性不好只能视距通信;要求位置固定;点对点传输无法组网。(2)蓝牙(bluetooth):可移动,手机支持;通信距离10m;芯片价格贵;高功耗(3)wifi:高带宽;覆盖半径100m;高功耗;不能自组网;(4)zigbee:价格便宜;低功耗;自组网规模大。?????WSN中zigbee通信技术是最佳方案,但它连接公网需要有专门的网关转换→进一步学习stm32。 1.2协议栈 协议栈是网络中各层协议的总和,其形象的反映了一个网络中文件传输的过程:由上层协议到底层协议,再由底层协议到上层协议。 1.2.1Zigbee协议规范与zigbee协议栈 Zigbee各层协议中物理层(phy)、介质控制层(mac)规范由IEEE802.15.4规定,网络层(NWK)、应用层(apl)规范由zigbee联盟推出。Zigbee联盟推出的整套zigbee规范:2005年第一版ZigBeeSpecificationV1.0,zigbee2006,zigbee2007、zigbeepro zigbee协议栈:很多公司都有自主研发的协议栈,如TI公司的:RemoTI,Z-Stack,SimpliciTI、freakz、msstatePAN 等。 1.2.2z-stack协议栈与zigbee协议栈 z-stack协议栈与zigbee协议栈的关系:z-stack是zigbee协议栈的一种具体实现,或者说是TI公司读懂了zigbee 协议栈,自己用C语言编写了一个软件—---z-stack,是由全球几千名工程师共同开发的。ZStack-CC2530-2.3.1-1.4.0软件可与TI的SmartRF05平台协同工作,该平台包括MSP430超低功耗微控制器(MCU)、CC2520RF收发器以及CC2591距离扩展器,通信连接距离可达数公里。 Z-Stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。其中核心部分的代码都是编译好的,以库文件的形式给出的,比如安全模块,路由模块,和Mesh自组网模块。与z-stack 相比msstatePAN、freakz协议栈都是全部真正的开源的,它们的所有源代码我们都可以看到。但是由于它们没有大的商业公司的支持,开发升级方面,性能方面和z-stack相比差距很大,并没有实现商业应用,只是作为学术研究而已。 还可以配备TI的一个标准兼容或专有的网络协议栈(RemoTI,Z-Stack,或SimpliciTI)来简化开发,当网络节点要求不多在30个以内,通信距离500m-1000m时用simpliciti。 1.2.3IEEE802.15.4标准概述 IEEE802.15.4是一个低速率无线个人局域网(LowRateWirelessPersonalAreaNetworks,LR-WPAN)标准。定义了物理层(PHY)和介质访问控制层(MAC)。 LR-WPAN网络具有如下特点: ◆实现250kb/s,40kb/s,20kb/s三种传输速率。 ◆支持星型或者点对点两种网络拓扑结构。 ◆具有16位短地址或者64位扩展地址。 ◆支持冲突避免载波多路侦听技术(carriersensemultipleaccesswithcollisionavoidance,CSMA/CA)。(mac层) ◆用于可靠传输的全应答协议。(RTS-CTS) ◆低功耗。 ◆能量检测(EnergyDetection,ED)。 ◆链路质量指示(LinkQualityIndication,LQI)。 ◆在2.45GHz频带内定义了16个通道;在915MHz频带内定义了10个通道;在868MHz频带内定义了1个通道。 为了使供应商能够提供最低可能功耗的设备,IEEE(InstituteofElectricalandElectronicsEngineers,电气及电子工程师学会)定义了两种不同类型的设备:一种是完整功能设备(full.functionaldevice,FFD),另一种是简化功能设备

2020年Zigbee协议栈中文说明免费

1.概述 1.1解析ZigBee堆栈架构 ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。 1.1.1ZigBee堆栈层 每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。 设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件。 图1-1 zigbe堆栈框架 从应用角度看,通信的本质就是端点到端点的连接(例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮)。 端点之间的通信是通过称之为簇的数据结构实现的。这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。图1-1-2就是设备及其接口的一个例子:

图1-1-2 每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。一共有二个特殊的端点,即端点0和端点255。端点0用于整个ZigBee设备的配置和管理。应用程序可以通过端点0与ZigBee 堆栈的其它层通信,从而实现对这些层的初始化和配置。附属在端点0的对象被称为ZigBee设备对象 (ZD0)。端点255用于向所有端点的广播。端点241到254是保留端点。 所有端点都使用应用支持子层(APS)提供的服务。APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。APS使用网络层(NWK)提供的服务。NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。应用层可以通过ZigBee设备对象(ZD0)对网络层参数进行配置和访问。 1.1.2 80 2.15.4 MAC层 IEEE 802.15.4标准为低速率无线个人域网(LR-WPAN)定义了OSI模型开始的两层。PHY层定义了无线射频应该具备的特征,它支持二种不同的射频信号,分别位于2450MHz波段和868/915MHz 波段。2450MHz波段射频可以提供250kbps的数据速率和16个不同的信道。868 /915MHz波段中,868MHz支持1个数据速率为20kbps的信道,915MHz支持10个数据速率为40kbps的信道。MAC层负责相邻设备间的单跳数据通信。它负责建立与网络的同步,支持关联和去关联以及MAC 层安全:它能提供二个设备之间的可靠链接。 1.1.3 关于服务接入点 ZigBee堆栈的不同层与802.15.4 MAC通过服务接入点(SAP)进行通信。SAP是某一特定层提供的服务与上层之间的接口。 ZigBee堆栈的大多数层有两个接口:数据实体接口和管理实体接口。数据实体接口的目标是向上层提供所需的常规数据服务。管理实体接口的目标是向上层提供访问内部层参数、配置和管理数据的机制。 1.1.4 ZigBee的安全性 安全机制由安全服务提供层提供。然而值得注意的是,系统的整体安全性是在模板级定义的,这意味着模板应该定义某一特定网络中应该实现何种类型的安全。 每一层(MAC、网络或应用层)都能被保护,为了降低存储要求,它们可以分享安全钥匙。SSP是通过ZD0进行初始化和配置的,要求实现高级加密标准(AES)。ZigBee规范定义了信任中心的用

zigbee协议,源代码

竭诚为您提供优质文档/双击可除 zigbee协议,源代码 篇一:揭开zigbee20xx协议栈z-stack的”开源“面纱 揭开zigbee20xx协议栈z-stack的”开源“面纱 (20xx-11-2216:06)分类:zigbee技术学习 我们都在说zigbee20xx协议栈z-stack是开源的,但是这个协议栈到底是全部开源的,还是只是开源一部分,让我们来揭开它的“开源”面纱?z-stack是在20xx年4月,德州仪器推出业界领先的zigbee协议栈, z-stack符合zigbee20xx规范,支持多种平台,z-stack 包含了网状网络拓扑的几近于全功能的协议栈,在竞争激烈的zigbee领域占有很重要地位。配合osal完成整个协议栈的运行。 z-stack只是zigbee协议的一种具体的实现,我们要澄清的是zigbee不仅仅有z-stack这一种,也不能把z-stack 等同于zigbee20xx协议,现在也有好几个真正开源的zigbee 协议栈,例如:msstatepan协议栈,freakz协议栈,这些都是zigbee协议的具体实现,而且是全部真正的开源的,

它们的所有源代码我们都可以看到,而z-stack中的很多关键的代码是以库文件的形式给出来,也就是我们只能用它们,而看不到它们的具体的实现。那下面我们就以 z-stack1.4.3-1.2.0看看它的组织架构,那些功能是开源的,那些是以库文件的形式提供给我们的。我们利用z-stack开发应用,只能知道怎么做和做什么也就是“how”和“what”,而不能准确的知道“为什么”,“why”.我们也可以通过真正这些开源的zigbee协议栈了解为什么。 我们可以从ti的官方网站下载最新的协议栈,/zigbee 我这里的是zigbee20xx版本为版本的。下载完以后我们可 以点击exe文件进行安装,默认会在c盘的根目录下建立texasinstruments目录,该目录下面的子目录就是安装 z-stack的文件。下面的这个图就是z-stack协议栈的目录 结构, 根目录下有一个gettingstartedguidecc2430.pdf文件,是安装卸载协议栈的说明文件,另外三个文件夹分别是documentscomponents和project。 1.documents documents文件夹包含了对整个协议栈进行说明的所有 文档信息,下面有很多的pdF格式的文档,内容比较多,不过也无需全部的细读,我们可以把它们当做参考手册,根据需要来阅读。

zigbee协议位于osi的哪层

竭诚为您提供优质文档/双击可除zigbee协议位于osi的哪层 篇一:zigbee无线网络协议层各层的作用 zigbee无线网络协议层各层的作用 zigbee无线网络协议层共分为4层,分别为phy层,mac 层,nwk层和apl层,各层作用的简单介绍如下。 1.phy层 在zigbee无线网络中,phy层位于协议层的最底层,是距离硬件最近的层,它直接控制并与无线收发器通信。phy 层负责激活发送或接受数据包的无线设备。phy层还选择信道的频率并确保该频道当前没有被任何一个其他网络中的设备所使用。 2.mac层 mac层为phy层和nwk层提供了接口,它负责产生信标和为信标(beacon-enabled网络)同步设备,mac层还提供建立连接和解除连接的服务。 3.nwk层 nwk层接口负责管理网络形成和路径选择。路径选择就是选择将信息转发到目标设备的路径。zigbeecoordinator

和router负责发现和维护网络中的路径,zigbee终端设备不能执行发现路径。zigbeecoordinator或者router将代表终端执行路径发现,zigbeecoordinator的nwk层负责建立一个新的网络和选择网络拓扑(树型,星型,或网状网络拓扑),zigbeecoordinator还为网络中的设备分配网络地址。 4.apl层 apl层是zigbee无线网络中的最高协议层并且管理应用对象。生产商开发应用对象来为各种应用定制一款设备,在zigbee设备中,应用对象控制和管理协议层,单个的设备中最多可以有240个应用对象。 在开发一个应用时,zigbee标准提供了使用应用框架的选择。应用框架是一系列关于特定应用消息格式和处理动作的协议。使用应用框架可以使不同供应商开发的同一款应用的产品之间有更好的互操作性。 篇二:网络题目+答案 选择: 1.ip、telnet、udp分别是osi参考模型的哪一层协议? a.1、2、3b.3、4、5c.4、5、6d.3、7、4 2.如何跟踪Rip路由更新的过程? a.showiprouteb.debugiprip c.showipripd.cleariproute* 3.Rip的最大跳数是:__________________

ZigBee协议架构

编号:_______________本资料为word版本,可以直接编辑和打印,感谢您的下载 ZigBee协议架构 甲方:___________________ 乙方:___________________ 日期:___________________

(application layer,APL )架构. 图1 zigbee协议栈体系结构 物理层规范 物理层定义了它与MAC层之间的两个接口:数据服务接口PD-SAP和管理服务接口PLME-SAP其中PD-SAP接口还为物理层提供了相应的数据服务,负责从无线物理信道上收发数据,而PLME-SAPg口同时为物理层提供相应的管理服务,用丁维护一个由物理层相关数据组成的数据库。物理层负责数据的调制、发送和接收、空闲信道评估(clear channel assessment,CCA)信道能量的监测(energy detect,ED )和链接质量指示(link quality indication , LQI)等。物理层帧结构由同步头、物理层帧头和物理层*效载荷三部分组成,如表1所示。 同步头乂包括32bit的前同步码和8bit的帧定界符,前同步码用来为数据收发提供码元或数据符号的同步;帧界定符用来标识同步域的结束及数据的开始。物理层帧头包括7bit的帧长度和1bit的预留位,帧长度定义了物理层净荷的字节数。物理层有效载荷就是MAC层的帧内容。 表一物理层帧格式

媒体接入控制层规范 MAC层定义了它与网络层之间的接口,包括提供给网络层的数据服务接口MLDE-SAFffi管理服务接口MLME-SAP同时提供了MAC层数据服务和MAC层管理服务。MA@数据服务主要实现数据帧的传输;MAC层管理服务主要负责媒介访问控制、差错控制等。 MAC层主要功能包括以下几个方面: (1) ZigBee协调器产生网络信标 (2) 设备与信标同步 (3) 支持节点加入或着退出操作 (4) 信道接入方式采用免冲突载波检测多路访问(CSMA-CA机制 (5) 建立并维护保护时隙机制 (6) 为设备提供安全支持 MAC帧格式由三个基本部分组成:MAC帧头、MAC帧载荷和MAC帧尾。不同类型的MAC帧,其帧头和帧尾都是一样的,只是MAC帧载荷有差别,通用MAC帧格式如表2所小。 表二通用MA#格式 网络层规范 网络层定义了它与应用层之间的接口 ,包括提供给应用层的数据服务接口 NLDE-SAP管理服务接口NLME-SAP,同时提供了网络层数据服务和网络层管理 服务。网络层主要负责拓扑结构的建立和网络的维护,具体的功能如下: (1) 初始化网络,即建立一个新的包含协调器、路由器和终端设备的网络 (2) 设备连接和断开时所采用的机制 (3) 对一跳邻居节点的发现和相关节点信息的存储 (4) ZigBee协调器和路由器为新加入节点分配短地址 (5)确保MAC正常工作,并且为应用层提供合适的服务接口 网络层帧结构包括网络层帧头(Network header, NHR和网络层载荷(Network payload,NPL)两部分,其中网络层帧头域由帧控制域、目的设备地址、源设备地址、广播半径和广播序列号等部分组成,通用网络帧的结构如表3所示。 表3通用网络层帧结构

Zigbee模块通信协议

ZigBee模块无线数据通信通用协议Version 1.2.7 浙江瑞瀛网络科技有限公司

版权声明 本文档所包含的所有信息均为浙江瑞瀛网络科技有限公司(以下简称“瑞瀛”或“本公司”)版权所有。未经本公司书面许可,不得向本公司雇员、代理商、合作方或授权许可方以外的任何第三方泄露本文档内容,不得以任何形式擅自复制或传播本文档。若使用者违反本版权保护的约定,本公司有权追究使用者由此产生的法律责任。 版本更新 V1.0.0 2011-01-01 初稿 V1.0.1 2011-03-15 修改了一些笔误 V1.1.0 2011-04-06 根据用户需求重新排列了对象字典 V1.1.1 2011-04-20 对操作范例中的数据进行了解释 V1.1.2 2011-04-22 增加用户自定义参数 V1.1.3 2011-05-17 增加默认参数值和对应AT指令说明 V1.2.0 2011-06-01 完善了数据通信方式的说明 V1.2.6 2011-09-11 对细节进行了补充说明 V1.2.7 2011-12-21 修改模块信息参数以及触发参数使用说明

目录 1. 概述 (4) 1.1. 节点类型 (4) 2. 帧格式 (6) 2.1. 串口帧格式 (6) 2.2. 通用帧格式 (6) 2.3. 应用层数据帧(ADF)格式 (8) 2.3.1. 读(Read)命令帧:ID = 0x20 (8) 2.3.2. 写(Write)命令帧:ID = 0x25 (8) 3. 对象字典(OD)定义 (10) 3.1. 模块信息参数 (10) 3.2. 网络参数 (10) 3.3. 当前时间参数 (12) 3.4. 执行控制参数 (13) 3.5. 应用配置参数 (15) 3.6. 用户自定义参数 (16) 3.7. 虚拟参数 (16) 3.7.1. UART端口映射参数 (16) 3.7.2. 触发参数 (17) 3.7.3. 节点信息参数 (18) 4. 无线通信密码交换过程 (20) 4.1. COO建立网络 (20) 4.2. 节点加入网络 (20) 5. 操作范例 (21) 5.1. UART数据传递 (21) 5.2. 访问本地节点参数 (23) 6. 用户数据的传递方式 (27) 6.1. 写UART端口映射参数 (27) 6.2. 带目的地址的半透传 (29) 6.3. 全透传方式 (31) 7. 参数默认值以及对应AT指令 (33) 7.1. 网络参数 (33) 7.2. 当前时间参数 (33) 7.3. 执行控制参数 (34) 7.4. 应用配置参数 (34)

ZigBee测试与协议分析

无线通信在嵌入式系统中的应用讲座(28) ZigBee 测试与协议分析 1.1 前言 ZigBee 协议栈包括物理层协议[IEEE802.15.4]和上层软件协议[ZigBee 2007(以及其他的ZigBee 网络协议)],本文将从这两方面来了解这些协议,通过介绍如何捕获,如何理解关键参数,使得我们得以深层次剖析ZigBee 技术,有了这些本质性的认识,对于分析解决无线产品应用问题,会有很大的帮助。 1.2 物理层分析 ZigBee 的物理层为IEEE802.15.4标准所规定,定义了ZigBee 底层的调制编码方式,这些规约大多是芯片设计者需要关心的,对于应用开发来说,我们更关心的是衡量一个芯片一个射频系统好坏的一个参数,在过去的文章中,我们了解过了输出功率,接收灵敏度和链路预算等参数,这一次我们更深入的去了解一个调制质量的参数:EVM 。 EVM 指的是误差向量(包括幅度和相位的失量),表征在一个给定时刻理想无误差基准信号与实际发射信号的向量差,如图 1所示,从EVM 参数中,我们可以了解到一个输出信号的: ? 幅度误差; ? 相位误差。 图 1 矢量误差EVM 示意图 EVM 是衡量一个RF 系统总体调制质量指标,定义为信号星座图上测量信号与理想信号之间的误差,它用来表示发射器的调制精度,调制解调器、PA 、混频器、收发器等对它都会有影响。

图 2 EVM数据和眼图 了解完这个参数之后,我们看看实际测试中,是如何获取EVM参数的。 ZigBee物理层的测试,在产品研发、生产和维护阶段,分别使用以下三种仪器测试:1.产品研发阶段 要测量EVM参数,需要使用带协议解析的频谱仪,最好是自带相应协议插件的仪器i,可以使用安捷伦PXA N9030A频谱分析仪+8960B插件[选配了ZigBee分析插件]。这些仪器可以测试出ZigBee调制信号的星座图,实时数据和眼图等信息,在芯片级开发过程中,需要考量高频电容电感以及滤波器等的单个及组合性能,特别需要注意的是ZigBee信号的临道抑制参数,利用PXA N9030A的高分辨率,可以查看点频的带外信号,这些细节在更换射频器件供应商时,需要仔细测量,一般数字电路抄板比较容易,因为器件性能的影响不是很大,只要值和封装对了就可以,但是射频前端的设计上,即使原样的封装、容值和感值,供应商不一样,射频参数也是不一样的,板材的选用也极大的影响着阻抗匹配,因此复制和再开发都有较大难度。合格的测试工具,加上有质量保证的射频器件供应商资源,方能真正具备RF设计能力。 图 3 安捷伦PXA N9030A 2.批量生产阶段 在批量生产中,不可能将实验室的研发测试仪器搬到工厂,因此,需要便携小巧的测试设备,这时可用罗德与斯瓦茨公司的热功率探头,如NRP-Z22,做一个2.4Ghz的输出功率测试,保证能够输出公差允许的功率信号即可,因为在生产中,射频器件的焊接不良、馈线连接头的接触不良,都会造成输出功率的下降甚至消失。需要注意的是,探头非常容易被静电损坏,必须要带上防静电手套进行操作,返修过程如需要经过德国,则时间长,经费也不便宜,不是很严重的损坏倒是可以在深圳维修中心处理。

zigbee协议名词解释

zigbee协议重要名词解释及英文缩写(转载) 网络层功能: 1.加入和退出网络 2.申请安全结构 3.路由管理 4.在设备之间发现和维护路由 5.发现邻设备 6.储存邻设备信息 当适当的重新分配地址联合其他设备,ZIGBEE2006可以依赖于网络协调者建立一个新网络. ZIGBEE应用层由APS(应用支持)、AF(应用结构)、ZDO(ZIGBEE设备对象)和厂商自定义应用对象组成。 APS功能 1.绑定维持工作台,定义一个两个合拢的设备进行比较建立他们的需要和服务。 2.促进信息在设备之间的限制 3.组地址定义,移除和过滤组地址消息 4.地址映射来自于64位IEEE地址和16位网络地址 5.分裂、重新组装和可靠数据传输 ZDO功能 1.定义设备内部网络(ZigBee协调者和终端接点) 2.开始和/或回答绑定请求 3.在网络设备中建立一个网络安全关系 4.在网络中发现设备和决定供给哪个应用服务 ZDO同样有责任在网络中发现设备和为他们提供应用服务。 1.1.4网络拓扑 ZIGBEE网络层支持星状、树状和网状拓扑。在星状拓扑中网络受约束与单个设备,呼叫COORD。COORD有责任建立和维持在网络中发现的设备和其他所有设备,都知道的终端接点直接和COORD 通信。在网状和树状拓扑中,COORD有责任建立一个网络和选择几个关键网络参数,但是网络有有可能直接应用于ZigBee路由器。在树状网络中,利用分等级路由策略完成路由传输数据和控制消息直通网络。树状网络在802.15.4-2003中可以采用信标引导通信。网状网络将允许所有对等网络通信。ZIGBEE 路又将不能在网状网络中发射规则的IEEE802.15.4-2003信标。

Zigbee网关通信协议

无线传感器网络(Zigbee)网关的的通信协议网关是通过串口与PC 机相连的。PC 机可以通过串口发送采集命令和收集采集数据,为了能有效管理这些数据,需要执行统一的数据通信格式。 下面介绍该系统中所使用的通用数据格式。 每一帧数据都采用相同的帧长度,且都带有帧头、数据和帧尾。具体格式如下: 如上所示,每一帧数据的长度都是32字节。除帧头和帧尾,每一帧数据都由命令头、发送地址、有效数据和校验和组成。 命令头:所执行的命令。 地址:所访问模块的长(前8字节)/短地址(后2字节)。 数据:传送各个参数、变量与返回值及各种需要突发发送的数据。 校验和:从命令头到数据尾的加和校验,用于确定数据正确与否。注:命令头、地址的长地址部分和数据都采用ASCII码。 这个系统的命令分为3种,分别为 ?读命令R(ead):包括读各个传感器或网络状态命令。 ?测试命令T(est):测试LED、BEEP或电池寿命命令。 ?扩展板命令E(xtend):控制和读扩展板命令。

下面介绍具体命令格式。 1.读命令 1) RAS RAS(ReadallSensor):读传感器。 RAS具体格式如下: 需要加入地址和数据——地址:传感器模块地址;数据:GM***/WD***。传感器种类包括光敏:GM;温度:WD;可调电位器:AD。 (1)读取成功返回格式如下: 地址:加入传感器模块地址。 数据:传感器+ 测量值(ASSII码)。其中光敏:GM+ * * * (3 字节ASII 码);温度:WD +***(3字节ASII码);可调电位器:AD+*** (3字节ASII 码)。

(2)读取失败返回格式如下: 2) RND RND:无线网络发现。 RND 具体格式如下: 需要加入地址和数据———地址:无;数据:无,只需要命令头。 (1)读取成功返回格式如下: 返回网络中节点的性质:RFD(终端节点)/ROU(路由器)+地址+第几个。例如:如果返回第1个RFD 节点,则数据段为RFD01。具体格式如下: (2)读取成功结束格式如下:

(完整版)《Zigbee协议合同书原理与应用》习题

精心整理 《Zigbee协议原理与应用》习题 一、选择题 1、下列哪个不是Zigbee的特点。() A、近距离 B、高功耗 C、低复杂度 D、低数据速率 2、当超过有效载荷消息(Payload)长度的限制时,可以使用分割组装,这只在()特征集中出现。 3、作为Zigbee 4、Zigbee 分别为()。 A、255,65533 B、258,65534 C 5、()函数便开始运行 A、osal_int_disable() C、D、osal_start_system() 6 A B、为帧运用安全功能; C D、发送信标或检测、跟踪信标。 7、Zigbee所涉及的无线通信技术有()。 A、CCA B、DSSS C、CSMA/CA D、以上都是。 8、以下不是Zigbee应用层的是()。 A、APS; B、应用程序框架(AF); C、ZDO和制造商定义的应用对象; D、PD-SAP。

9、分布式网络地址分配机制中的16位地址由下面()决定。 A、网络的最大深度(Lm) B、每个父设备拥有的子设备数(Cm); C、子设备中有几个是路由器(Rm) D、以上都是 10、所有Zigbee设备必须提供的功能中,错误的是()。 A、加入一个网络; B、离开一个网络; C、重新加入一个网络; D、维护一个相邻设备的列表。 11、以下不是路由选择流程的是()。 A、路由搜索的初始化;B C、接收路由应答命令帧;D 12、NIB由()维护。 A、MAC B、PHY C、 13、Zigbee A、连接密钥B D、对称密钥 14、对于Zigbee A、 B C、若无预告装载,则设备信任中心默认是Zigbee的协调器或协调器指定的设备; D、网络密钥归Zigbee的所有层使用。 15、当目的地址DstAddr参数设置为0xFFFFH时,进行的是()。 A、广播 B、单播 C、多播 D、信标传输 16、Zigbee使用的是()频段,共有()信道。 A、ISM,24 B、ISM,27 C、K,26 D、K,27

Zigbee协议术语

Zigbee协议术语 ZigBee学习时,需要理解几个基本术语:簇(Cluster)、端点(Endpoint)、属性(Attribute),配置文件(profile)。 概念如下: 配置文件(profile):Zigbee协议的配置文件是对逻辑组件及其相关接口的描述,是面向某个应用类别的公约、准则.通常没有程序代码与配置文件相关联. 属性(attribute):设备之间通信的每一种数据像开关的状态或温度计值等皆可称为属性.每个属性可得到唯一的ID值. 簇(cluster):多个属性的汇集形成了簇,每个簇也拥有一个唯一的ID.虽然个体之间传输的通常是属性信息,但所谓的逻辑组件的接口指的却是簇一级的操作,而非属性一级. 终端(endpoint):每个支持一个或多个簇的代码功能块称为终端.不同的设备通过它们的终端及所支持的簇来进行通信. 配置文件定义了属性ID与簇ID,使之看起来就像设备的某种特性.以家庭智能控制系统为例,灯配置文件设定了远程控制设备的簇OnOffDRC含有一种属性OnOff,且该属性为无符号8位值,值0XFF意味着"开",0X00为关,0XF0则为无效。通常,配置文件也为设备定义了,哪些簇是强制托管的,哪些簇是可选择的。另外,配置文件还定义了一些可选择的Zigbee协议托管服务. 基于簇及配置所定义的服务,用户可使用配置文件中定义的属性编写所需的函数.改写自己的程序代码.因此,配置文件使得ZigBee 设备可以互操作。任何遵循某一标准配置文件的节点都可以与其他实现相同配置文件的节点进行互操作。也就是说,在使用同一标准配置文件进行设计的基础上,即使生产开关的厂家与生产控制器的厂家不同,他们生产的产品仍可实现协同操作. 以家庭智能系统中的灯光控制为例,灯配置文件定义了6个设备,协议栈通过带有以下信息的报头文件对此配置提供支持:配置(profile)ID,设备ID及版本,簇ID,属性ID,属性数据类型. 下图(1)显示了不同术语之间的关系,对于家庭智能控制系统的灯光配置,图中给出了两种设备(相当于两个节点).每种设备各有一个终端(当然可以有多个终端,终端1-终端240).负荷切换控制器的终端中仅有一个输入簇,而远程转换控制终端则有两个簇,且分别为一个输入一个输出.数据的传输基于簇而进行.

Zigbee协议

基于Zigbee协议的RF收发QPSK编码调制实现多路开关控制 一、Zigbee:全新无线网络数据通信技术 Zigbee技术是随着工业自动化对于无线通信和数据传输的需求而产生的,Zigbee网络省电、可靠、成本低、容量大、安全,可广泛应用于各种自动控制领域。 Zigbee的由来:在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷。对工业,家庭自动化控制和遥测遥控领域而言,蓝牙技术显得太复杂,功耗大,距离近,组网规模太小等,......而工业自动化对无线通信的需求越来越强烈。正因此,经过人们长期努力,Zigbee协议在2003年中通过后,于2004正式问世了。 二、Zigbee是什么: Zigbee是一个由可多到65000个无线数传模块组成的一个无线数传网络平台,十分类似现有的移动通信的CDMA网或GSM网,每一个Zigbee网络数传模块类似移动网络的一个基站,在整个网络范围内,它们之间可以进行相互通信;每个网络节点间的距离可以从标准的75米,到扩展后的几百米,甚至几公里;另外整个Zigbee网络还可以与现有的其它的各种网络连接。例如,你可以通过互联网在北京监控云南某地的一个Zigbee控制网络。不同的是,Zigbee网络主要是为自动化控制数据传输而建立,而移动通信网主要是为语音通信而建立;每个移动基站价值一般都在百万元人民币以上,而每个Zigbee"基站"却不到1000元人民币;每个Zigbee 网络节点不仅本身可以与监控对对象,例如传感器连接直接进行数据采集和监控,它还可以自动中转别的网络节点传过来的数据资料; 除此之外,每一个Zigbee网络节点(FFD)还可在自己信号覆盖的范围内,和多个不承担网络信息中转任务的孤立的子节点(RFD)无线连接。每个Zigbee网络节点(FFD和RFD)可以可支持多到31个的传感器和受控设备,每一个传感器和受控设备终可以有8种不同的接口方式。可以采集和传输数字量和模拟量。 三、Zigbee技术的应用领域: Zigbee技术的目标就是针对工业,家庭自动化,遥测遥控,汽车自动化、农业自动化和医疗护理等,例如灯光自动化控制,传感器的无线数据采集和监控,油田,电力,矿山和物流管理等应用领域。另外它还可以对局部区域内移动目标例如城市中的车辆进行定位。(成都西谷曙光数字技术公司的专利技术)。通常,符合如下条件之一的应用,就可以考虑采用Zigbee技术做无线传输: 1、需要数据采集或监控的网点多; 2、要求传输的数据量不大,而要求设备成本低; 3、要求数据传输可性高,安全性高; 4、设备体积很小,不便放置较大的充电电池或者电源模块; 5、电池供电; 6、地形复杂,监测点多,需要较大的网络覆盖; 7、现有移动网络的覆盖盲区; 8、使用现存移动网络进行低数据量传输的遥测遥控系统。 9、使用GPS效果差,或成本太高的局部区域移动目标的定位应用。

zigbee协议重要名词解释及英文缩写

【引用】zigbee协议重要名词解释及英文缩写 原文地址:zigbee协议重要名词解释及英文缩写(原文作者:小峰 欢迎转载学习,但请注明办公室来源【成都无线龙通讯科技有限公司上海办事处https://www.360docs.net/doc/cb18505959.html,/zigbee/主营项目:无线传感网络无线透传无线覆盖地区:上海上海】 网络层功能: 1. 加入和退出网络 2. 申请安全结构 3. 路由管理 4. 在设备之间发现和维护路由 5. 发现邻设备 6. 储存邻设备信息 当适当的重新分配地址联合其他设备,ZIGBEE2006可以依赖于网络协调者建立一个 新网络. ZIGBEE应用层由APS(应用支持)、AF(应用结构)、ZDO(ZIGBEE设备对象)和厂商自定义应用对象组成。 APS功能 1. 绑定维持工作台,定义一个两个合拢的设备进行比较建立他们的需要和服务。 2. 促进信息在设备之间的限制 3. 组地址定义,移除和过滤组地址消息 4. 地址映射来自于64位IEEE地址和16位网络地址 5. 分裂、重新组装和可靠数据传输 ZDO功能 1. 定义设备内部网络(ZigBee协调者和终端接点) 2. 开始和/或回答绑定请求 3. 在网络设备中建立一个网络安全关系

4. 在网络中发现设备和决定供给哪个应用服务 ZDO同样有责任在网络中发现设备和为他们提供应用服务。 1.1.4 网络拓扑 ZIGBEE网络层支持星状、树状和网状拓扑。在星状拓扑中网络受约束与单个设备,呼叫COORD。COORD有责任建立和维持在网络中发现的设备和其他所有设备,都知道的终端接点直接和COORD通信。在网状和树状拓扑中,COORD有责任建立一个网络和选择几个关键网络参数,但是网络有有可能直接应用于ZigBee路由器。在树状网络中,利用分等级路由策略完成路由传输数据和控制消息直通网络。树状网络在802.15.4-2003中可以采用信标引导通信。网状网络将允许所有对等网络通信。ZIGBEE路又将不能在网状网络中发射规则的IEEE802.15.4-2003信标。 缩写含义 AIB:应用支持层消息 AF:应用结构 APDU:应用支持层以下数据单位 APL:应用层 APS:应用支持层 APSDE:应用支持层以下数据实体 APSDE-SAP:应用支持层数据实体—服务通道 APSME:应用支持层管理实体 APSME-SAP:应用支持层管理实体—服务通道 ASDU:APS服务数据单位 BRT:广播重试计时器 BTR:广播处理记录 BTT:广播处理工作台 CCM*: CSMA-CA:载波多重监听通道——避免碰撞 FFD:全部功能设备 GTS:担保时间跟踪

zigbee协议规范

zigbee协议概述 1.1.1ZigBee堆栈层 ZigBee堆栈是在IEEE 802.15.4标准基础上建立的,定义了协议的MAC和PHY层。ZigBee设备应该包括IEEE802.15.4(该标准定义了RF射频以及与相邻设备之间的通信)的PHY和MAC层,以及ZigBee堆栈层:网络层(NWK)、应用层和安全服务提供层。图1-1给出了这些组件的概况。 图1-1 zigbe堆栈框架 每个ZigBee设备都与一个特定模板有关,可能是公共模板或私有模板。这些模板定义了设备的应用环境、设备类型以及用于设备间通信的簇。公共模板可以确保不同供应商的设备在相同应用领域中的互操作性。 设备是由模板定义的,并以应用对象(Application Objects)的形式实现(见图1-1)。每个应用对象通过一个端点连接到ZigBee堆栈的余下部分,它们都是器件中可寻址的组件从应用角度看,通信的本质就是端点到端点的连接(例如,一个带开关组件的设备与带一个或多个灯组件的远端设备进行通信,目的是将这些灯点亮)。 端点之间的通信是通过称之为簇的数据结构实现的。这些簇是应用对象之间共享信息所需的全部属性的容器,在特殊应用中使用的簇在模板中有定义。图1-1-2就是设备及其接口的一个例子: 每个接口都能接收(用于输入)或发送(用于输出)簇格式的数据。一共有二个特殊的端点,即端点0和端点255。端点0用于整个ZigBee设备的配置和管理。应用程序可以通过端点0与ZigBee堆栈的其它层通信,从而实现对这些层的初始化和配置。附属在端点0的对象被称为ZigBee设备对象(ZD0)。端点255用于向所有端点的广播。端点241到254是保留端点。所有端点都使用应用支持子层(APS)提供的服务。APS通过网络层和安全服务提供层与端点相接,并为数据传送、安全和绑定提供服务,因此能够适配不同但兼容的设备,比如带灯的开关。 APS使用网络层(NWK)提供的服务。NWK负责设备到设备的通信,并负责网络中设备初始化所包含的活动、消息路由和网络发现。应用层可以通过ZigBee设备对象(ZDO)网络

Zigbee协议是 IEEE 802

Zigbee是 IEEE 802.15.4协议的代名词。根据这个协议规定的技术是一种短距离、低功耗的无线通信技术。这一名称来源于蜜蜂的八字舞,由于蜜蜂 (bee)是靠飞翔和“嗡嗡”(zig)地抖动翅膀的“舞蹈”来与同伴传递花粉所在方位信息,也就是说蜜蜂依靠这样的方式构成了群体中的通信网络。其特点是近距离、低复杂度、自组织、低功耗、低数据速率、低成本。主要适合用于自动控制和远程控制领域,可以嵌入各种设备。简而言之,ZigBee就是一种便宜的,低功耗的近距离无线组网通讯技术。 Zigbee的起源 Zigbee, 在中国被译为"紫蜂",它与蓝牙相类似.是一种新兴的短距离无线技术. 用于传感控制应用(sensor and control). 此想法在IEEE 802.15工作组中提出,于是成立了TG4工作组,并制定规范IEEE 802.15.4. 2002年,zigbee Alliance成立. 2004年,zigbee V1.0诞生.它是zigbee的第一个规范.但由于推出仓促,存在一些错误. 2006年,推出zigbee 2006,比较完善.

2007年底,zigbee PRO推出 zigbee的底层技术基于 IEEE 802.15.4. 物理层和MAC层直接引用了IEEE 802.15.4 在蓝牙技术的使用过程中,人们发现蓝牙技术尽管有许多优点,但仍存在许多缺陷。对工业,家庭自动化控制和工业遥测遥控领域而言,蓝牙技术显得太复杂,功耗大,距离近,组网规模太小等,而工业自动化,对无线数据通信的需求越来越强烈,而且,对于工业现场,这种无线数据传输必须是高可靠的,并能抵抗工业现场的各种电磁干扰。因此,经过人们长期努力,Zigbee协议在2003年正式问世。另外,Zig bee使用了在它之前所研究过的面向家庭网络的通信协议Home RF Lite。 长期以来,低价、低传输率、短距离、低功率的无线通讯市场一直存在着。自从Bluetooth出现以后,曾让工业控制、家用自动控制、玩具制造商等业者雀跃不已,但是Bluetooth的售价一直居高不下,严重影响了这些厂商的使用意愿。如今,这些业者都参加了IEEE802.15.4小组,负责制定ZigBee的物理层和媒体介入控制层。IEEE802.15.4规范是一种经济、高效、低数据速率(<250kbps)、工作在2.4GHz和86 8/928MHz的无线技术,用于个人区域网和对等网络。它是ZigBee应用屋和网络层协议的基础。ZigBee是一种新兴的近距离、低复杂度、低功耗、低数据速率、低成本的无线网络技术,它是一种介于无线标记技术和蓝牙之间的技术提案。主要用于近距离无线连接。它依据802.15.4标准,在数千个微小的传感器之间相互协调实现通信。这些传感器只需要很少的能量,以接力的方式通过无线电波将数据从一个传感器传到另一个传感器,所以它们的通信效率非常高。 Zigbee无线数据传输网络描述

相关主题
相关文档
最新文档