音频信号处理设备的连接方法

音频信号处理设备的连接方法

音频信号处理设备的连接方法

文章来源;专业音响|音响工程|西臣影音_专业音响工程商400-6066-981(本文来自网络)发表时间:2012-10-16 9:38:56

普通把周边设备分为两类,一类是平衡器和压限器这种信号类型的,一类是效果器和鼓励器这种效果类型的。

信号处置类型的周边设备处置能够采用链接方式,就是把设备串接在系统当中,另外一种衔接方式是插入方式,就是把设备经过调音台的INSERT的插孔,把设备串入调音台的信号处置通道里面去。

链式衔接方式普通用于系统平衡的调理,它能够控制整个系统。而断点插入方式普通用于对特定的信号通道停止精密的处置。链式衔接普通要运用均衡式传输,而断点插入普通都是非均衡传输的。效果器的周边设备普通采用调音台辅助输出和返回的信号途径,就是从调音台的辅助输出端口送出信号给设备,经过设备处置后的信号,再返回到调音台的辅助返回或线路输入通道。这类设备也是要采用均衡式的传输方式。

另外,辨别音频处置设备种类的一个小诀窍:质量比拟高的音频处置设备,普通都具有比拟低的输出阻抗,普通设备种类的输出阻抗普通为600欧姆,假如输出阻抗越低,这台设备的后级负载才能和抗干扰就越强。比方说,两台平衡器一台输出阻抗是600欧姆一台是47欧姆,那么肯定后者的质量要高于前者。

数字信号处理的应用和发展前景

数字信号处理的应用与发展趋势 作者:王欢 天津大学信息学院电信三班 摘要: 数字信号处理是应用于广泛领域的新兴学科,也是电子工业领域发展最为迅速的技术之一。本文就数字信号处理的方法、发展历史、优缺点、现代社会的应用领域以及发展前景五个方面进行了简明扼要的阐述。 关键词: 数字信号处理发展历史灵活稳定应用广泛发展前景 数字信号处理的简介 1.1、什么是数字信号处理 数字信号处理简称DSP,英文全名是Digital Signal Processing。 数字信号处理是利用计算机或专用处理设备以数字的形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 DSP系统的基本模型如下: 数字信号处理是一门涉及许多学科且广泛应用于许多领域的新兴学科。它以众多的学科为理论基础,所涉及范围及其广泛。例如,在数学领域、微积分、概率统计、随即过程、数值分析等都是数字信号处理的基本工具;同时与网络理论、信号与系统、控制论、通信理论、故障诊断等学科也密切相关。近年来的一些新兴学科,如人工智能、模式识别、神经网络等,都是与数字信号处理密不可分的。数字信号处理可以说许多经典的理论体系作为自己的理论基础,同时又使自己成为一门新兴学科的理论基础。 1.2、数字信号系统的发展过程 数字信号处理技术的发展经历了三个阶段。 70 年代DSP 是基于数字滤波和快速傅里叶变换的经典数字信号处理, 其系统由分立的小规模集成电路组成, 或在通用计算机上编程来实现DSP 处理功能, 当时受到计算机速度和存储量的限制,一般只能脱机处理, 主要在医疗电子、生物电子、应用地球物理等低频信号处理方面获得应用。 80 年代DSP 有了快速发展, 理论和技术进入到以快速傅里叶变换(FFT) 为主体的现代信号处理阶段, 出现了有可编程能力的通用数字信号处理芯片, 例如美国德州仪器公司(TI公司) 的TMS32010 芯片, 在全世界推广应用, 在雷达、语音通信、地震等领域获得应用, 但芯片价格较贵, 还不能进 入消费领域应用。 90 年代DSP 技术的飞速发展十分惊人, 理论和技术发展到以非线性谱估计为代表的更先进的信号处理阶段, 能够用高速的DSP 处理技术提取更深层的信息, 硬件采用更高速的DSP 芯片, 能实时地完成巨大的计算量, 以TI 公司推出的TMS320C6X 芯片为例, 片内有两个高速乘法器、6 个加法器, 能以200MHZ 频率完成8 段32 位指令操作, 每秒可以完成16 亿次操作, 并且利用成熟的微电子工艺批量生产,使单个芯片成本得以降低。并推出了C2X 、C3X 、C5X 、C6X不同应用范围的系列, 新一代的DSP 芯片在移动通信、数字电视和消费电子领域得到广泛应用, 数字化的产品性能价 格比得到很大提高, 占有巨大的市场。 1.3、数字信号处理的特点

DSP是TMSTM系列DSP产品中的定点数字信号处理器

第1章绪论 TMS320C54x TM DSP是TMS320TM系列DSP产品中的定点数字信号处理器。C54x DSP 满足了实时嵌入式应用的一些要求,例如通信方面的应用。 C54x的中央处理单元(CPU)具有改进的哈佛结构,它的特点是最小化的功耗和高度的并行性。除此之外,C54x中多样化的寻址方式和指令集也大大提高了整个系统的性能。 1.1 TMS320系列DSP简介 TMS320TM系列DSP包括定点DSP、浮点DSP和多处理器DSP(也称DSPs),其结构是专门为实时的信号处理设计的。TMS320系列DSP有以下一些特性使得该系列的产品有着广阔的应用领域: ?非常灵活的指令集。 ?固有的操作灵活性。 ?高速运行的性能。 ?创新的并行结构。 ?成本效率高。 ?对C语言的友好的结构。 1.1.1 TMS320系列DSP的历史、发展和优势 1982年,德州仪器公司(TI)推出了TMS320系列中第一代定点DSP产品——TMS320C10。在这一年年末,《电子产品》杂志赠予TMS320C10“年度产品”的称号。TMS320C10成为后续的TMS320系列DSP的模型。 今天,TMS320 DSP系列包括三大DSP平台:TMS320C2000TM、TMS320C5000TM和TMS320C6000TM。在C5000TM DSP平台中又包含三代产品:TMS320C5x TM、TMS320C54x TM 和TMS320C55x TM系列。 C5000 DSP平台中的器件都采用了相同的CPU结构,但结合了不同的片内存储器和外设结构。这些不同的结构满足了世界范围内电子市场的很多领域的需要。当把存储器、外设和CPU结合起来集成到单个芯片上时,整个系统的费用就大大地降低了,电路板的体积也减小了。图1-1所示为TMS320系列器件的演化过程。

数字信号处理技术及器件应用

有线电视技术 1数字信号处理技术 数字信号处理技术是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、压缩、识别等处理,以得到符合人们需要的信号形式。数字信号处理技术是以众多学科为理论基础的,它所涉及的范围极其广泛。近年来新兴的一些学科,如人工智能、模式识别、神经网络等,都与数字信号处理技术密不可分。可以说,数字信号处理技术是把许多经典的理论体系作为自己的理论基础,同时又使自己成为一系列新兴学科的理论基础。 数字信号处理技术是围绕着数字信号处理的理论、实现和应用等几个方面发展起来的。数字信号处理技术在理论上的发展推动了数字信号处理应用的发展。反过来,数字信号处理技术的应用又促进了数字信号处理理论的提高。而数字信号处理的实现则是理论和应用之间的桥梁。 2数字信号处理器件DSP 2.1数字信号处理器件DSP简介 DSP(Digital Signal Processing,DSP),就是数字信号处理微处理器,是一种特别适合于进行数字信号处理运算的微处理器件,其工作原理是对数字信号进行各种数学处理的算法操作,最终得到我们想要的信号。它不仅具有可编程性,而且其实时运行速度可达每秒几百万、上千万次乘加运算(MAC),远远超过通用微处理器(例如单片机),其主要应用是实时快速地实现各种数字信号处理算法。它强大的数据处理能力和高效的运行速度是最值得称道的两大特色。从广义上讲,DSP、微处理器和微控制器(单片机)等都属于处理器,可以说DSP是一种CPU。DSP和一般的CPU 又不同,最大的区别在于:CPU是冯·诺伊曼结构的,而DSP是数据和地址空间分开的哈佛结构。 2.2DSP芯片的发展 世界上第一个单片DSP芯片是1978年AMI公司发布的S2811,1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个主要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的D7720是第一个具有乘法器的商用DSP芯片。在这之后,最成功的DSP芯片是美国德州仪器公司(Texas Instruments,简称TI)的一系列产品。如今,TI公司的一系列DSP产品已经成为当今世界上最有影响的DSP芯片。TI公司也成为世界上最大的DSP芯片供应商,其DSP市场份额占全世界份额近50%。目前,DSP处理器市场仍被TI、AGERE、ADI等占领,产品受外国大企业控制。国内发展DSP的厂商并不多,而主要的应用产品是DVD与无线电话等,因此国内DSP的产值并不高。而在产品应用上,目前重要的DSP应用产品,如移动电话、调制解调器、HDD等个人计算机与通讯领域应用产品,都是采用国际大厂的DSP solution。 自从DSP芯片诞生以来,DSP芯片得到了飞速的发展。DSP芯片高速发展,一方面得益于集成电路的发展,另一方面也得益于巨大的市场。DSP技术应用到我们生活的每一个角落,从军用到民用,从航空航天到生产生活,都越来越多地使用DSP。DSP技术在 李武银国家广电总局无线局开发处 摘要:本文从数字信号处理技术入手,主要介绍了数字信号处理器-DSP的发展、基本结构、优点、芯片选型以及在广播电视技术中音频处理器和调制控制系统中的应用。 关键词:数字信号处理DSP微处理器 设备器件

数字信号处理技术及发展趋势

数字信号处理技术及发展趋势 贵州师范大学物电学院电子信息科学与技术 罗滨志 120802010051 摘要 数字信号处理的英文缩写是DSP,而数字信号处理又是电子设计领域的术语,其实现的功能即是用离散(在时间和幅度两个方面)所采样出来的数据集合来表示和处理信号和系统,其中包括滤波、变换、压缩、扩展、增强、复原、估计、识别、分析、综合等的加工处理,从而达到可以方便获得有用的信息,方便应用的目的【1】。而DPS实现的功能即是对信号进行数字处理,数字信号又是离散的,所以DSP大多应用在离散信号处理当中。 从DSP的功能上来看,其发展趋势日益改变着我们的科技的进步,也给世界带来了巨大的变化。从移动通信到消费电子领域,从汽车电子到医疗仪器,从自动控制到军用电子系统中都可以发现它的身影【2】。拥有无限精彩的数字信号处理技术让我们这个世界充满变化,充满挑战。 In this paper Is the abbreviation of digital signal processing DSP, the digital signal processing (DSP) is the term in the field of electronic design, the function of its implementation is to use discrete (both in time and amplitude) sampling represented data collection and processing of signals and systems, including filtering, transformation, compression, extension, enhancement, restoration, estimation, identification, analysis, and comprehensive processing, thus can get useful information, convenient for the purpose of convenient application [1]. And DPS the functions is to digital signal processing, digital signal is discrete, so most of DSP applications in discrete signal processing. From the perspective of the function of DSP, and its development trend is increasingly changing our of the progress of science and technology, great changes have also brought the world. From mobile communication in the field of consumer electronics, from automotive electronics to medical equipment, from automatic control to the military electronic systems can be found in the figure of it [2]. Infinite wonderful digital signal processing technology to let our world full of changes, full of challenges

现代光电信息处理技术样本

1、 在空域中, 如何利用d 函数进行物光场分解。( 5分) 答: 根据δ函数的筛选性质, 任何输入函数都能够表示为 ()()()ηξηξδηξd d y x f y x f 1??∞ ∞-111--=,,, 上式表明, 函数()1y x f 1, 能够分解成为在1y x 1, 平面上不同位置处无穷多个δ函数的线性组合, 系数()ηξ,f 为坐标位于()ηξ, 处的δ函数在叠加时的权重。函数()1y x f 1,经过系统后的输出为 () ()()??????--=??∞∞-112ηξηξδηξd d y x f y x g 2,,,L 根据线性系统的叠加性质, 算符{} L 与对基元函数积分的顺序能够交换, 即可将算符{} L 先作用于各基元函数, 再把各基元函数得到的响应叠加起来 ()()(){}ηξηξδηξd d y x f y x g 2??∞ ∞-112--=,, ,L ( 1.4) (){ }ηξδ--11y x ,L 的意义是物平面上位于()ηξ, 处的单位脉冲函数经过系统后的输出, 可把它定义为系统的脉冲响应函数( 图1.3) ()(){}ηξδηξ--=112y x y x h 2,,; ,L ( 1.5) 2、 卷积与相关各表示什么意义? 在运算上有什么差异? ( 5分) 答: 函数()y x g ,和()y x h ,的卷积定义为 ()()()()ηd ξd ηy ξx h ηξg y x h y x g ??∞ ∞---=*,,,, 则 ()(){}()()y x y x f f H f f G y x h y x g ,,,,F ?=* 即空间域中两个函数的卷积的傅里叶变换等于它们对应傅里叶变换的乘积。另一方面有

DSP是TMS320TM系列DSP产品中的定点数字信号处理器

DSP是TMS320TM系列DSP产品中的定点数字信 号处理器 TMS320C54x TM DSP是TMS320TM系列DSP产品中的定点数字信号处理器。C54x DSP 满足了实时嵌入式应用的一些要求,例如通信方面的应用。 C54x的中央处理单元(CPU)具有改进的哈佛结构,它的特点是最小化的功耗和高度的并行性。除此之外,C54x中多样化的寻址方式和指令集也大大提高了整个系统的性能。 1.1 TMS320系列DSP简介 TMS320TM系列DSP包括定点DSP、浮点DSP和多处理器DSP(也称DSPs),其结构是专门为实时的信号处理设计的。TMS320系列DSP有以下一些特性使得该系列的产品有着宽敞的应用领域: ?专门灵活的指令集。 ?固有的操作灵活性。 ?高速运行的性能。 ?创新的并行结构。 ?成本效率高。 ?对C语言的友好的结构。 1.1.1 TMS320系列DSP的历史、进展和优势 今天,TMS320 DSP系列包括三大DSP平台:TMS320C2000TM、TMS320C5000TM和TMS320C6000TM。在C5000TM DSP平台中又包含三代产品:TMS320C5x TM、TMS320C54x TM 和TMS320C55x TM系列。 C5000 DSP平台中的器件都采纳了相同的CPU结构,但结合了不同的片内储备器和外设结构。这些不同的结构满足了世界范畴内电子市场的专门多领域的需要。当把储备器、外设和CPU结合起来集成到单个芯片上时,整个系统的费用就大大地降低了,电路板的体积也减小了。图1-1所示为TMS320系列器件的演化过程。

控制最优化平台高效益平台 高性能平台 图1-1 TMS320系列DSP的演化过程 1.1.2 TMS320系列DSP的典型应用 表1-1列出了TMS320系列DSP的一些典型的应用。TMS320 系列DSP与标准的微处理器/微运算机器件相比,能够为传统信号处理咨询题提供更合适的处理方式,例如处理语音合成和滤波咨询题。TMS320系列DSP也支持多个操作需要同时进行处理的复杂应用场合。 表1-1 TMS320 系列DSP的典型应用

数字信号处理的新技术及发展

数字信号处理的新技术及发展 摘要:数字信号处理是一门涉及许多学科而又广泛应用于许多领域的新兴学科。本文简述了数字信号处理技术的发展过程,分析了数字信号处理技术在多个领域应用状况,介绍了数字信号处理技术的最新发展,对数字信号处理技术的发展前景进行了展望。 关键词:信号数字信号处理信息技术DSP 0引言 自从数字信号处理(Digital Signal Processor)问世以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生,并到迅速的发展。由于它具有高速、灵活、可编程、低功耗和便于接口等特点,已在图形、图像处理,语音、语言处理,通用信号处理,测量分析,通信等领域发挥越来越重要的作用。随着技术成本的降低,控制界已对此产生浓厚兴趣,已在不少场合得到成功应用。 1数字信号处理技术的发展历程 DSP的发展大致分为三个阶段: 在数字信号处理技术发展的初期(二十世纪50-60年代),人们只能在微处理器上完成数字信号的处理。直到70年代,有人才提出了DSP的理论和算法基础。一般认为,世界上第一个单片DSP芯片应当是1978年AMI公司发布的S281l。1979年美国Intel公司发布的商用可编程器件2920是DSP芯片的一个重要里程碑。这两种芯片内部都没有现代DSP芯片所必须有的单周期乘法器。1980年,日本NEC公司推出的mPD7720是第一个具有硬件乘法器的商用DSP芯片,从而被认为是第一块单片DSP器件。 随着大规模集成电路技术的发展,1982年美国德州仪器公司推出世界上第一代DSP芯片TMS32010及其系列产品,标志了实时数字信号处理领域的重大突破。Ti公司之后不久相继推出了第二代和第三代DSP芯片。90年代DSP发展最快。Ti公司相继推出第四代、第五代DSP芯片等。 随着CMOS技术的进步与发展,日本的Hitachi公司在1982年推出第一个基于CMOS工艺的浮点DSP芯片,1983年日本Fujitsu公司推出的MB8764,其指

DSP数字信号处理

数字信号处理是将信号以数字方式表示并处理的理论和技术。数字信号处理与模拟信号处理是信号处理的子集。 简介 简单地说,数字信号处理就是用数值计算的方式对信号进行加工的理论和技术,它的英文原名叫digital signal processing,简称DSP。另外DSP也是digital signal processor的简称,即数字信号处理器,它是集成专用计算机的一种芯片,只有一枚硬币那么大。有时人们也将DSP看作是一门应用技术,称为DSP 技术与应用。 《数字信号处理》这门课介绍的是:将事物的运动变化转变为一串数字,并用计算的方法从中提取有用的信息,以满足我们实际应用的需求。 本定义来自《数字信号处理》杨毅明著,由机械工业出版社2012年发行。 特征和分类 信号(signal)是信息的物理体现形式,或是传递信息的函数,而信息则是信号的具体内容。 模拟信号(analog signal):指时间连续、幅度连续的信号。 数字信号(digital signal):时间和幅度上都是离散(量化)的信号。 数字信号可用一序列的数表示,而每个数又可表示为二制码的形式,适合计算机处理。 一维(1-D)信号: 一个自变量的函数。 二维(2-D)信号: 两个自变量的函数。 多维(M-D)信号: 多个自变量的函数。 系统:处理信号的物理设备。或者说,凡是能将信号加以变换以达到人们要求的各种设备。模拟系统与数字系统。 信号处理的内容:滤波、变换、检测、谱分析、估计、压缩、识别等一系列的加工处理。 多数科学和工程中遇到的是模拟信号。以前都是研究模拟信号处理的理论和实现。 模拟信号处理缺点:难以做到高精度,受环境影响较大,可靠性差,且不灵活等。数字系统的优点:体积小、功耗低、精度高、可靠性高、灵活性大、易于大规模集成、可进行二维与多维处理 随着大规模集成电路以及数字计算机的飞速发展,加之从60年代末以来数字信号处理理论和技术的成熟和完善,用数字方法来处理信号,即数字信号处理,已逐渐取代模拟信号处理。 随着信息时代、数字世界的到来,数字信号处理已成为一门极其重要的学科和技术领域。 数字信号处理器 DSP芯片,也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器,其主要应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法;

3数字信号处理器

Words and Expressions follow v.遵循memory n.存储器 register n.寄存器access v.访问 overlap v. 重叠pipelining n. 流水线操作multiplier n. 乘法器accumulator n. 累加器shifter n.移位器reference n. 寻址mantissa n.尾数exponent n. 指数 cycle n. 机器周期customize v.定制,用户化package v.封装 digital signal processor 数字信号处理器von Neumann architecture 冯·诺伊曼结构shared single memory 单一共享存储器program instruction 程序指令 harvard architecture 哈佛结构 fetch from 从…获取 circular buffer 循环缓冲区,环形缓冲区address generator 地址产生器 fixed point 定点 floating point 浮点 binary point 二进制小数点 available precision 可用精度 dynamic range 动态范围 scale range 量程 smallest Resolvable Difference 最小分辨率scientific notation 科学计数法assembly language 汇编语言 multi-function instructions 多功能指令parallel architecture 并行结构 looping scheme 循环机制 sampling frequency 采样频率on-chip memory 片内存储器 well-matched 非常匹配 software tools 软件开发工具 low level programming language 低级编程语言high level programming language 高级编程语言third party software 第三方软件 board level product 板级产品 data register 数据寄存器 ALU=Arithmetic Logical Unit 运算逻辑单元program sequencer 程序定序器 peripheral sections 外设 single integrated circuit 单片集成电路 cellular telephone 蜂窝电话 printed circuit board 印刷电路板 licensing agreement 专利使用权转让协定custom devices 定制器件 extra memory 附加存储器 stand alone 单机 third party developer 第三方开发商multimedia operations 多媒体操作 merged into 融合 calculation-intensive algorithm运算密集型算法

音频信号处理设备SpeechSense和AmbientSense环境检测技

音频信号处理设备SpeechSense和AmbientSense环境检测技 音频信号处理设备先后经历了工作方式由模拟到数字;处理模块由固化式到开放式;处理功能由单一音频处理到集成逻辑控制;系统架构由单台设备集中处理经多台设备分布处理到多台设备集中处理的变化;音频信号处理和逻辑控制模块的功能越来越强大,处理模块的新算法越来越先进、音频处理及应用越来越精准,逻辑控制越来越智能,这些都是数字音频信号处理的发展方向。 音频喜好处理设备包含很多技术应用,本文着重介绍SpeechSense(发言感应技术)和(AmbientSense)环境检测技术的应用。 一、SpeechSense(发言感应)技术 人声有两个重要特点:摩擦音和爆破音,这两类声音环境噪声是无法创造的,只要是人类的语言,不管哪一个语种都具有这种特点,发言感应技术能够自动感应音频信号频率成分是否为人声,该技术可应用于AGC(自动增益控制)。 应用场景描述 会议室内有多只用于拾取发言者语音的会议话筒,这些会议话筒品牌和型号完全相同,扩声系统中会议话筒所对应通道的位置也完全相同,但在使用中发言人距离话筒的距离和发言人音量的大小则不尽相同。这就导致会议话筒的电平大小不一,发言扩声音量有大有小。采用AGC(自动增益控制)电路,可对大信号自动压缩,小信号自动提升。

传统的自动增益控制是通过提前预设一个阈值,当话筒拾取的音频信号低于阈值时,自动增益控制会自动给与这个音频信号增益提升,令其接近阈值位置;当话筒拾取的音频信号高于阈值时,自动增益控制会自动给与这个音频信号增益衰减,令其接近阈值位置,这基本可以保证话筒输入信号电平值的恒定。发言感应技术的应用 传统的自动增益控制电路在实际应用中,会议话筒除了会拾取到人声,还会拾取到其它的声音,如翻书、放杯子及键盘敲打等声音,这些声音大都会小于自动增益控制的阈值,当话筒拾取到这些声音信号后,自动增益控制电路就会马上工作,把这些声音信号放大,再经过功率放大器放大至音箱扩声,原本细小的声音就变成了较大的环境噪声。这种现象在会议室音频扩声系统中是不希望出现的。而发言检测算法的很大作用就是让自动增益控制能分辨人类发言的声音和非人类发言的声音,仅对人类发言声音进行提升或衰减,小于自动增益控制阀值的环境噪声则不会被自动增益控制电路进行放大。这样有了发言感应技术算法自动增益控制电路工作就更加精准及智能。 二、AmbientSense(环境检测)技术 环境声,如空调、投影机风扇及灯光镇流器的交流声等,他们没有摩擦音和爆破音这个属性,它是不同强度复合频率的集合。环境检测技术能够检测音频信号频率成分是否为环境声。环境声检测算法可应用于ANC(环境噪声补偿)。 应用场景描述 公共区域扩声系统,若背景音乐或寻呼音源的电平值恒定时,往往环境噪声的声压级大小是不确定的,人多的时候环境噪声的声压级就比较大,可能会把背景音乐或寻呼音源掩盖掉(声音的掩蔽效应);人少或空场的时候环境噪声声压级较小,感觉背景音乐或寻呼音源的声压级较大。所以需要一个能够精确判断环境噪声大小,并能够精确调节背景音乐或寻呼音源的音量大小的DSP处理模块,这个DSP模块就是ANC(环境噪声补偿)模块。

DSP数字信号处理器特性

DSP数字信号处理器特性 周晓昱(龙口中隆计控公司) 现在,数字信号处理技术已经被广泛应用到各种工业仪器仪表上。近十年来,国内越来越多的生产厂家,也将该技术应用到科氏力质量流量计的信号处理上。使国产质量流量计的稳定性、准确度都得到了很大的提高。与国际先进水平的差距越来越小。 科里奥利质量流量计的工作原理是:用激振使测量管在固有频率下振动。当管道内的介质处于静止时,测量管上所受到的科里奥利力(简称科氏力),是大小相同,方向相同的。而当测量管中的介质流动时,测量管两侧所受的科氏力,大小相同而方向相反。在这两个力的作用下,测量管就会产生微量的扭转弹性变形。测量管两侧的振动相位差就发生了改变。相位差的大小与介质流过的质量成一定规律。因此,可以通过测量相位差的变化,确定介质的流量大小。 当有外来振动源产生一个或多个“噪声”频率时,会在测量管上产生一个附加力来干扰科氏力,从而造成测量的误差。要准确地计量质量流量,必须排除这些干扰。例如,流量计附近有产生机械振动的设备,周围动力电(如电焊机等)的耦合等。都会产生不确定频率或固定频率的干扰。如何清除这些干扰?采用模拟电路进行信号处理时,一般是采取各种滤波的办法。但效果并不理想。 数字信号处理器(简称DSP)是一个实时处理信号的微处理器。使用DSP技术与使用时间常量去阻抑和稳定信号相比,其优点是能够以一个被提高了的采样率去过滤实时信号。减少了流量计对流量的阶跃变化的响应时间。使用多参数数字处理器(MVD)变送器的响应时间比使用模拟信号处理的传统变送器快2~4倍,更快的响应时间会提高短批量控制的效率和精确度。

特别是对于气体流量的测量,DSP技术就更具优势。因为高速气体通过流量计容易引起较严重的噪声。DSP技术因能够用数字技术更好地滤波,同时进一步减小了质量流量计对噪声的敏感度。因此,可以将混杂在流量信号中的噪声减至最小。实践证明,采用MVD变送器测量气体介质,比以前采用模拟信号变送器,在重复性和精确度上都有了显著提高。 DSP技术为科氏力质量流量计提供了一个更好地处理掉来自于外界干扰信号的手段。它使得这些干扰信号无所遁形。从而极大地提高了质量流量计的测量精度,以及运行的稳定性。 运用DSP技术,再加之对密度信号的监测与分析。还有希望解决一直困扰着科氏力质量流量计运行过程中,因介质产生气化,测量管内壁沉淀或挂壁造成的计量误差问题。使科氏力质量流量计再上一个台阶。

数字信号处理

电气与电子信息工程学院 数字信号处理课程设计报告 设计题目:IIR数字滤波器 专业班级:******* 学生姓名:************* 学号:**************** 指导教师:******************* 设计时间:2014.01.06-2014.01.10 一、设计目的 数字滤波是数字信号分析中最重要的组成部分之一,与模拟滤波相比,它具有精度和稳定性高、系统函数容易改变、灵活性强、便于大规模集成和可实现多维滤波等特点。

课程设计是理论学习的延伸,是掌握所学知识的一种重要手段,对于贯彻理论联系实际、提高学习质量、塑造自身能力等于有特殊作用。本次课程设计一方面通过MATLAB 仿真设计内容,使我们加深对理论知识的理解,同时增强其逻辑思维能力,另一方面对课堂所学理论知识作一个总结和补充。 二、设计内容 1. 设计题目:IIR 数字滤波器的设计 设计内容:已知通带截止频率kHz f p 2.0=,通带最大衰减dB P 1=α,阻带截止频率kHz f s 3.0=,阻带最小衰减dB s 25=α,T=1ms ,按照以上技术要求,用脉冲响应不变法和双线性变换法设计巴特沃斯数字低通滤波器,并观察所设计数字滤波器的幅频特性曲线。 三、设计原理 3.1数字低通滤波器的设计原理 滤波器从广义上来说对特定的频点或频点以外的频率进行有效滤波的电路,这种电路保留输入信号中的有用信息,滤除不需要的信息,从而达到信号的检测、提取、识别等不同的目的。如果处理的信号是时域离散信号,那么相应的处理系统就称为数字滤波器,由于在实际工作中被处理的信号都是幅度量化的数字信号,因此,数字滤波器实际上是用有限精度的算法实现一个线性时不变的时域离散系统。 在许多科学技术领域中,广泛应用线性滤波和频谱分析对信号进行加工处理,模拟滤波是处理连续信号,数字滤波则是处理离散信号,而后者是在前者的基础上发展起来的。我们知道,无源或有源模拟滤波器是分立元件构成的线性网络,他们的性能可以用线性微分方程来描述,而数字滤波器是个离散线性系统, 要用差分方程来描述,并以离散变换方法来分析。这些方程组可以用专用的或通用的数字计算机进行数字运算来实现。因此,数字滤波器的滤波过程是一个计算过程,它将输入信号的序列数字按照预定的要求转换成输出数列。 数字滤波器是一种用来过滤时间离散信号的数字系统,通过对抽样数据进行数学处理来达到频域滤波的目的。数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤除某些频率成分的数字器件或程序。因此,数字滤波的概念和模拟滤波相同,只是信号的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可以通过A/DC 和D/AC ,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 数字滤波器的种类很多,分类方法也不同,滤波器在功能上总的可分为四 类,即低通(LP)、高通(HP)、带通(BP)、带阻(BS)滤波器等,每一种又有模拟滤波器和数字滤波器两种形式。如果滤波器的输人和输出都是离散时间信号,则该滤波器的冲击响应也必然是离散的,这种滤波器称之为数字滤波器。 3.2变换方法的原理

光电信号处理习题答案模板

光电信号处理习题 1 光电探测器按物理原理分为哪两类,各有何特点? 一类是利用各种光子效应的光子探测器,特点是入射光子直接和材料中的电子发生相互作用,即光电子效应;一类是利用温度变化效应的热探测器,特点是基于材料吸收光辐射能量以后温度升高的现象,即光热效应。 2 分别画出主动、被动光电探测系统的结构框图,说明各部分的作用。 被动式: 主动式:需要有光源照射目标。 3 什么是噪声?噪声与干扰有何不同?光电探测系统有哪些噪声?光电探测器有哪些噪声? 噪声:由于元器件内微观粒子随即的无规则运动产生的有害信号,称为噪声。 不同:噪声是来自元器件内部粒子;而干扰是指其他的有害信号,有系统外部的,也可以有内部的。 光电探测系统的噪声:光子噪声,探测器噪声,电路噪声。 光电探测器的噪声:热噪声,散粒噪声,产生-复合噪声,1/f 噪声,温度噪声。 4 等效噪声带宽表示什么意义?与系统的频率带宽有何不同? 将噪声功率谱图按照面积相等变换成矩形,以最大噪声功率为高,则宽就是等效噪声带宽。 系统的频率带宽指在幅频特性曲线中高度为0.707倍峰值的两频率之差。 5 放大器的En-In 噪声模型并说明意义。 放大器的内部噪声可以用串联在输入端的零阻抗电压发生器En 和并联在输入端具有无穷大阻抗的电流发生器In 来表示。两者相关系数为r 。这种模型叫En-In 噪声模型。 意义:可将放大器看作无噪声,对放大器噪声的研究归结为分析En 、In 在电路中的作用。简化了电路系统的噪声计算。 6 什么是噪声系数,证明放大器的噪声系数NF ≧1。 噪声系数:输入端信噪比与输出端信噪比的比值。 //si si ni ni si no no so so no ni so so ni no si P P P P P P P NF P P P P P P P P P ?==== ?? ??? , no ni p P NF P A =? (A p 为放大器功率增益) 放大器的输出噪声功率P no 由两部分组成,一部分为P ni (信号源内阻热噪声)×A p ;另一部分为放大器本身产生的噪声在输出端呈现的噪声P n ; 1no p ni n no n P A P P P P =+=+, 所以噪声系数又为:11p ni n no n n ni p p ni ni p p ni A P P P P P NF P A A P P A A P += ==+=+ 一般情况下,实际Pn 不会为零,所以NF >1;理想情况下NF=1。得证。 7 证明最佳源电阻R sopt =E n /I n 噪声系数有表示式:2222222222 1ns n n s n n s ns ns ns E E I R E I R N F E E E ++==++ (等效输入噪声比信号源噪声)

如何选择DSP芯片(精)

1 速度: DSP 速度一般用MIPS 或FLOPS 表示,即百万次/秒钟。根据您对处理速度的要求选择适合的器件。一般选择处理速度不要过高,速度高的DSP ,系统实现也较困难。 2 精度: DSP 芯片分为定点、浮点处理器,对于运算精度要求很高的处理,可选择浮点处理器。定点处理器也可完成浮点运算,但精度和速度会有影响。 3 寻址空间:不同系列DSP 程序、数据、I/O空间大小不一,与普通MCU 不同,DSP 在一个指令周期内能完成多个操作,所以DSP 的指令效率很高,程序空间一般不会有问题,关键是数据空间是否满足。数据空间的大小可以通过DMA 的帮助,借助程序空间扩大。 4 成本:一般定点DSP 的成本会比浮点DSP 的要低,速度也较快。要获得低成本的DSP 系统,尽量用定点算法,用定点DSP 。 5 实现方便:浮点DSP 的结构实现DSP 系统较容易,不用考虑寻址空间的问题,指令对C 语言支持的效率也较高。 6 内部部件:根据应 DSP 应用选型举例 面向数字控制、运动控制的DSP 系统开发的DSP 芯片选型 面向数字控制、运动控制主要有磁盘驱动控制、引擎控制、激光打印机控制、喷绘机控制、马达控制、电力系统控制、机器人控制、高精度伺服系统控制、数控机床等。当然这些主要是针对数字运动控制系统设计的应用,在这些系统的控制中,不仅要求有专门用于数字控制系统的外设电路,而且要求芯片具有数字信号处理器的一般特征。 例如在控制直流无刷电动机的DSP 控制系统中,直流无刷电机运行过程要进行两种控制,一种是转速控制,也即控制提供给定子线圈的电流;另一种是换相控制,在转子到达指定位置改变定子导通相,实现定子磁场改变,这种控制实际上实

dsp公司各主流芯片比较.doc

DSP芯片介绍及其选型 引言 DSP芯片也称数字信号处理器,是一种特别适合于进行数字信号处理运算的微处理器具,其主机应用是实时快速地实现各种数字信号处理算法。根据数字信号处理的要求,DSP芯片一般具有如下主要特点: (1)在一个指令周期内可完成一次乘法和一次加法; (2)程序和数据空间分开,可以同时访问指令和数据; (3)片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问; (4)具有低开销或无开销循环及跳转的硬件支持; (5)快速的中断处理和硬件I/O支持; (6)具有在单周期内操作的多个硬件地址产生器; (7)可以并行执行多个操作; (8)支持流水线操作,使取指、译码和执行等操作可以重叠执行。 在我们设计DSP应用系统时,DSP芯片选型是非常重要的一个环节。在DSP系统硬件设计中只有选定了DSP芯片,才能进一步设计其外围电路及系统的其他电路。因此说,DSP芯片的选择应根据应用系统的实际需要而确定,做到既能满足使用要求,又不浪费资源,从而也达到成本最小化的目的。 DSP实时系统设计和开发流程如图1所示。

主要DSP芯片厂商及其产品 德州仪器公司 众所周知,美国德州仪器(Texas Instruments,TI)是世界上最知名的DSP芯片生产厂商,其产品应用也最广泛,TI公司生产的TMS320系列DSP芯片广泛应用于各个领域。TI公司在1982年成功推出了其第一代DSP芯片TMS32010,这是DSP应用历史上的一个里程碑,从此,DSP 芯片开始得到真正的广泛应用。由于TMS320系列DSP芯片具有价格低廉、简单易用、功能强大等特点,所以逐渐成为目前最有影响、最为成功的DSP系列处理器。 目前,TI公司在市场上主要有三大系列产品: (1)面向数字控制、运动控制的TMS320C2000系列,主要包括TMS320C24x/F24x、TMS320LC240x/LF240x、TMS320C24xA/LF240xA、TMS320C28xx等。 (2)面向低功耗、手持设备、无线终端应用的TMS320C5000系列,主要包括TMS320C54x、TMS320C54xx、TMS320C55x等。 (3)面向高性能、多功能、复杂应用领域的TMS320C6000系列,主要包括TMS320C62xx、TMS320C64xx、TMS320C67xx等。

光电信号处理习题和答案

f I n ?/f E n ?/1.利用低噪声集成运算放大器设计低噪放大电路应遵循哪些原则?如何选择器件? 答:要遵循的原则有:(1)“噪声匹配”原则,即源电阻满足:R s =E n /I n ,此时可以使放大器的噪声系数为最小;(2)多级放大器的噪声系数Friis 公式:从它可以看出多级放大器噪声系数的大小主要取决于第一级的噪声系数,为使总噪声系数小应该尽量减小第一级的噪声系数以及提高第一级的功率放大倍数;(3)放大电路中如果要用耦合网络,耦合网络也要满足下面的三个条件:(a )对于耦合网络中的串联阻抗元件满足: (b )对于耦合网络中的并联阻抗元件 (c )为了减小电阻元件的过剩噪声,(过剩噪声是除了热噪声之外的一种由流过电阻的直流电流所引起的1/f 噪声)必须尽量减小流过电阻的电流,或降低电阻两端的直流压降。由于每一个元件都是一个噪声源,对系统的输出噪声都有贡献,因此为了减小输出端的噪声,提高信噪比,应尽量采用简单的耦合方式, 在可能的情况下,应采用直接耦合方式,从而消除耦合网络所带来的噪声;(4)由于集成放大电路,第一级通常采用差动式放大电路,这是用来克服温漂的措施,是不适于作低噪声前放使用的,差动式的放大电路的噪声是功率增益相同的单级放大电路的2倍,因此低噪声集成放大电路的输入级从理论上说必须采用单管工作方式,并且其负载或偏置电路必须采用电阻而不宜用有源器件代替,否则会增加第一级的噪声但是有些低噪声集成运放,为了兼顾温漂指标,亦采用差动式输入级,此时一般用场效应管作为差动式输入级,因为场效应管的噪声系数在中、低频区比晶体三极管的小得多. 选择器件的方法有: (1) 利用低噪声运放的NF-Rs 曲线选择运放。 (2) 利用E n 、I n 计算E ni ???<<<

DSP及其系统实现(精)

DSP及其系统实现 数字信号处理(Digital Signal Processing,简称DSP是一门涉及许多学科而又广泛应用于许多领域的新兴学科。20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。 DSP的开发工具 数字信号处理器(DSP)作为一种可编程专用芯片,是数字信号处理理论实用化过程的重要技术工具,在语音处理、图像处理等技术领域得到了广泛的应用。但对于算法设计人员来讲,利用汇编语言或C 语言进行DSP 功能开发,具有周期长、效率低的缺点,不利于算法验证和产品的快速开发。 由Ti公司提供专业的开发工具CCS,自带DSP/BIOS操作系统,能够直接编写适合DSP开发工程及文件,满足DSP程序设计要求。 由MathWorks 公司和TI 公司联合开发的DSPMATLAB Link for CCS Development Tools(简称CCSLink)是MATLAB6.5 版本(Release13)中增加的一个全新的工具箱,它提供了MATLAB、CCS 和DSP 目标板的接口,利用此工具可以像操作MATLAB变量一样来操作DSP 器件的存储器和寄存器,使开发人员在MATLAB 环境下完成对DSP 的操作,从而极大地提高DSP 应用系统的开发进程。 MATLAB 具有强大的分析、计算和可视化功能,利用MATLAB 提供的数十个专业工具箱,可以方便、灵活地实现对自动控制、信号处理、通信系统等的算法分析和仿真,是算法设计人员和工程技术人员必不可少的软件工具。 DSP系统的设计过程 DSP系统的设计还没有非常好的正规设计方法。 在设计DSP系统之前,首先必须根据应用系统的目标确定系统的性能指标、信号处理的要求,通常可用数据流程图、数学运算序列、正式的符号或自然语言来描述。第二步是根据系统的要求进行高级语言的模拟。一般来说,为了实现系统的最终目标,需要对输入的信号进行适当的处理,而处理方法的不同会导致不同的系统性能,要得到最佳的系统性能,就必须在这一步确定最佳的处理方法,即数字信号处理的算法(Algo rithm),因此这一步也称算法模拟阶段。例如,语音压缩编码算法就是要在确定的压缩比条件下,获得最佳的合成语音。算法模拟所用的输入数据是实际信号经采集而获得的,通常以计算机文件的形式存储为数据文件。如语音压缩编码算法模拟时所用的语音信号就是实际采集而获得并存储为计算机文件形式的语音数据文件。有些算法模拟时所用的输入数据并不一定要是实际采集的信号数据,只要能够验证算法的可行性,输入假设的数据也是可以的。 在完成第二步之后,接下来就可以设计实时DSP系统,实时DSP系统的设计包括硬件设计和软件设计两个方面。硬件设计首先要根据系统运算量的大小、对运算精度的要求、系统成本限制以及体积、功耗等要求选择合适的DSP芯片。然后设计DSP芯片的外围电路及其他电路。软件设计和编程主要根据系统要求和所选的DSP芯片编写相应的DSP汇编程

相关文档
最新文档