抗震计算—xxx二级公路桥墩抗震计算书概论

抗震计算—xxx二级公路桥墩抗震计算书概论
抗震计算—xxx二级公路桥墩抗震计算书概论

一、项目概况

澜沧~勐阿二级公路推荐方案正线全长100.236km,路线总体走向由东向西展布,起点始于澜沧县,连接澜惠二级公路,终点止于孟连县西南部勐阿口岸。大部分地段路线位于老S309三级公路上,途经勐滨坝、阿永、东岗、下新寨、朗勒村、朗勒下寨、勐白、那勒、孟连县城、勐马、勐阿等地,为二级公路标准。普洱市澜沧至孟连段,路线全长60.287km。地震动加速度峰值前5.7km为0.40g (抗震设防烈度为Ⅸ度),之后全线均为0.30g(抗震设防烈度为Ⅷ度)。由于本项目地震烈度较高,在抗震概念设计的基础上,桥梁抗震计算及抗震构造设计显得非常重要,本次设计计算仅计算抗震设防烈度为Ⅷ度区的桥梁,对于Ⅷ度区的桥梁按照《公路桥梁抗震设计细则》JTG/T B02-01_2008 5.1.3条9度以上的B 类桥梁,应根据专门的工程场地安全性评价确定地震作用,《澜沧至孟连至勐阿公路重点桥隧工程场地地震安全性评价报告》中6个场地均处于峰值加速度0.30g的区域,未涉及0.4g的区域,本次计算以多振型反应谱法为主,采用1940,EI波进行动力时程分析对计算结果进行验证,抗震构造措施设防等级采用9度(按照《公路桥梁抗震设计细则》JTG/T B02-01_2008 进行相关强度、变形验算)。

二、结构型式初步拟定

(1)、桥跨布置型式

本次计算重点考察了以下因素对桥梁地震反应的影响:结构形式、联长布置、墩高、顺桥向墩高差、横桥向柱高差、场地类别、支座设置、桥台约束、基础刚度。

跨径20米、30米的预制预应力混凝土简支转连续T梁桥,柱式台、双柱式桥墩,现选取几种典型结构及墩高组合计算抗震,为本项目桥梁抗震设计提供依据。详细选取类型见下表:

注:墩高组合中“15+12+8”表示1号墩高15米,2号墩高12米,3号墩高8米,以下类推。

根据公路桥梁抗震设计细则(JTG/T B02-01-2008),一般情况下,公路桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向和横桥向的地震作用。在顺桥向地震作用影响下,由于矮墩相对刚度较大,承担的力也相应较大。因此,高低墩搭配情况下对矮墩更不利;横桥向地震作用下,高低墩搭配情况下对高墩更不利。据此考虑,选取上述几种墩高组合进行抗震计算。

(2)结构方案拟定

初步拟定三种方案进行结构计算在满足作用等级要求的前提下,进一步优化设计。

方案一

1、支座类型:

20米T形连续梁

小于等于3孔采用GYZΦ350×85支座,大于3孔一联在桥台伸缩缝和桥墩墩高小于10米的伸缩缝处采用GYZF

Φ350×87支座,其余情况采用GYZΦ350

4

×85。连续端支座采用GYZΦ450×99支座,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZΦ450×114。

30米T形连续梁

在桥台伸缩缝和墩高小于10米的伸缩缝处采用GYZF

Φ400×101支座,其余

4

情况采用GYZ400×99支座。连续端支座采用GYZΦ550×110,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZΦ550×130。

2、墩柱选取原则及配筋率

20m跨径,墩高小于等于10m采用1.4m柱径,对应1.5m桩径;墩高大于10m 小于等于20m采用1.6m柱径,对应1.8m桩径;墩高大于20m小于30m采用1.8m 柱径,对应2.0m桩径。

30m跨径,墩高小于等于10m采用1.6m柱径,对应1.8m桩径;墩高大于10m 小于等于20m采用1.8m柱径,对应2.0m桩径;墩高大于20m小于30m采用2.0m 柱径,对应2.2m桩径,;墩高大于30m小于46m采用2.0×2.0m矩形墩,对应承台桩基础。

具体布置情况见附图。

方案二

1、支座类型:

20米T形连续梁

小于等于3孔采用GYZΦ350×85支座,大于3孔一联在桥台伸缩缝和桥墩

Φ350×87支座,其余情况采用GYZΦ350墩高小于10米的伸缩缝处采用GYZF

4

×85。连续端支座采用GYZΦ450×99支座,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZΦ450×114。

30米T形连续梁

Φ400×101支座,其余在桥台伸缩缝和墩高小于10米的伸缩缝处采用GYZF

4

情况采用GYZ400×99支座。连续端支座采用GYZΦ550×110,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZΦ550×130。

2、墩柱选取原则及配筋率

墩高小于等于10m采用采用1.3m柱径,对应1.5m桩径;墩高大于10m小于等于15m采用1.4m柱径,对应1.6m桩径;墩高大于15m小于20m采用1.5m柱径,对应1.7m桩径;墩高大于20m小于等于30m采用1.6m柱径,对应1.8m桩

径。具体布置情况见附图。

方案三 1、支座类型: 20米T 形连续梁

小于等于3孔采用GYZ Φ350×85支座,大于3孔一联在桥台伸缩缝和桥墩墩高小于10米的伸缩缝处采用GYZF 4Φ350×87支座,其余情况采用GYZ Φ350×85。连续端支座采用GYZ Φ450×99支座,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZ Φ450×114。

30米T 形连续梁

在桥台伸缩缝和墩高小于10米的伸缩缝处采用GYZF 4Φ400×101支座,

其余情况采用GYZ400×99支座。连续端支座采用GYZ Φ550×110,对于在一联中相对高差较大墩高较小的连续桥墩采用GYZ Φ550×130。 2、墩柱选取原则及配筋率

墩高小于等于10m 采用采用1.3m 柱径,对应1.5m 桩径;墩高大于10m 小于小于20m 采用1.5m 柱径,对应1.7m 桩径;墩高大于20m 小于等于30m 采用1.6m 柱径,对应1.8m 桩径。具体布置情况见附图。

三、 桥梁模型

1、 地震作用

按照《公路桥梁抗震设计细则》JTG/T B02-01_2008 3.1.2条,本次抗震计算桥梁抗震设防类别拟定为B 类;地震动加速度峰值0.30g (抗震设防烈度为

Ⅷ度);抗震设防措施等级为9度;根据工程地质勘察报告,场地类型为Ⅱ类;分区特征周期0.45s;场地重要性系数1.00;阻尼调整系数1.00;抗震重要性系数E1作用下采用0.43,E2作用下采用1.3。参数具体选取详见下图。

①E1作用

②E2作用

计算依据公路桥梁抗震设计细则(JTG/T B02-01-2008),分别计算E1、E2地震作用下结构内力及位移。因本项目暂无地震安全性评价报告,计算采用多阵型反应谱分析方法(满足《公路桥梁抗震设计细则》的要求),另外选取1940, El Centro Site, 270 Deg(顶点 = 0.3569 g ,持续时间 = 29.98 sec,特征周期=0.544s(本项目特征周期为0.45s,但在做动力时程分析时按照《澜沧至孟连至勐阿公路重点桥隧工程场地地震安全性评价报告》50年超越概率的设计地震动特征周期Tg为0.5s误差8.8%小于10%采用EI波进行时程分析具有可行性),峰值加速度=0.3569g,有效峰值加速度=0.2954g)地震波,放大系数拟定为0.3/0.2945=1.02(模拟E2作用),采用20m墩高考虑桩土相互作用,将上部荷载转换为支座反力(动力分析中转换为质量)施加于盖梁顶部对反应谱进行验证,计算模型见下图2。另外考虑到HDR高阻尼支座的耗能作用,建立全桥动力弹塑性时程模型仅选取4-30米进行验算,地震波同样采用1940,EI波。

2、其它作用及作用效应组合

本次计算按照公路桥梁抗震设计细则(JTG/T B02-01-2008)3.4条规定永久包括结构重力(恒载)、预应力;地震作用,包括地震动的作用和地震水压力等。

作用效应组合包括永久作用效应+地震作用效应,组合方式包括各种效应的最不利组合。E1作用下:恒载+预应力+地震作用+地震水压力组合系数均为1.0。E2作用下:恒载+预应力+地震作用组合系数均为1.0。

其中地震水压力按照公路桥梁抗震设计细则(JTG/T B02-01-2008)5.5.3条规定,按照水位计算成果初步拟定一般冲刷深度为 2.0m,设计水位距离河床底面平均水深为3.0m,按照公式5.5.3-1计算得Ew为0.16kN至0.18kN,作用力相对较小,忽略不计。

3、桥梁模型

建模的基本原则为:

在正确的模拟上部结构质量分布的同时尽量简化模型;

选取适当的模型对支座进行模拟以合理反映结构上下部的连接形式;

选取适当的边界的条件以恰当的反映结构边界特性。

本次计算考虑了桩土作用,采用“m”法确定土弹簧刚度。

基础刚度对部分桥墩的地震相应影响显著,且基础刚度取大值对桥墩略不

利,故基础刚度计算时地基土m

动值取2.5倍m

37500kN/m4。

按照《公路桥梁抗震设计细则》的建模思想,对于横向抗震挡块、纵向防落梁构造、伸缩缝、桥台背墙防震橡胶体等抗震构造措施在模型中不与模拟,仅在概念设计及抗震构造设计中进行具体设计,以满足多级设防的抗震设计理念。

①多振型反应谱分析

内力、位移采用MIDAS程序计算,按梁格法建模,4-20米跨径模型如下图1 对于上部结构采用Midas梁格法进行模拟,纵向主梁采用实际结构,横向采用不计自重的虚拟横梁,本模型对于横隔板、中横梁和端隔板在结构上同样采用

不计自重的虚拟横梁模拟,其质量贡献以梁单元荷载的方式进行模拟,在将荷载转换为质量。

支座采用midas中的弹性连接进行模拟,得各支座的剪切刚度如下:

GYZΦ350×85 支座剪切刚度为1893kN/m;

GYZΦ450×99 支座剪切刚度为2688kN/m;

GYZΦ450×110 支座剪切刚度为2328kN/m;

GYZΦ400×99 支座剪切刚度为2124kN/m;

GYZΦ550×110 支座剪切刚度为3564kN/m;

GYZΦ550×130 支座剪切刚度为3001kN/m。

图 1

结构边界的模拟,上部结构采用主从节点的方式以主梁的上缘为主节点,向下一倍梁高处建立从属节点,盖梁与桥墩交界处模拟方式同上,以盖梁的顶缘为主节点,向下一倍盖梁高度处建立从属节点。桥台建立盖梁及桥墩模型,但不模拟桩基础,仅在柱底施加固定约束。对于桥墩以节点弹簧连接模拟桩土相互作用,柱基础下端采用固定约束进行模拟。

对于桥墩在E2作用下的刚度折减,采用P-M-Φ曲线进行进行模拟,具体计算结果见后续内容。

②单墩动力时程分析

采用单独的桥墩建立动力时程分析模型,在多振型反应谱分析的基础上提取恒载作用下的支座反力施加与盖梁对应节点位置,在动力分析中将其转化为节点质量。盖梁及下部基础的模拟同多振型反应谱分析模型。桥墩单元采用纤维模型建立塑性铰分布于桥墩及桩基础单元。

图 2

③全桥动力时程分析

模型的主体结构与多振型反应谱分析模型基本一致,桥墩单元同样采用纤维模型建立塑性铰(采用骨架模型进行了对比两者计算结果相差不大)分布于桥墩及桩基础单元。

4、结构动力特性计算结果

采用子空间迭代法计算得到的混凝土连续梁方案动力特性计算结果见下表,主要振型图下图。

动力特性计算表

No. 频率(Hz) 周期(sec) 振型特征

1 0.424280 2.356935 主梁纵飘

2 0.71212

3 1.404251 主梁横飘

3 0.897682 1.113980 主梁反对称扭曲

4 1.605897 0.62270

5 主梁对称扭曲

第1阶振型频率f=0.424Hz(主梁纵飘)第2阶振型频率f=0.712Hz(主梁横飘)

第3阶振型频率f=0.898Hz 第4阶振型频率f=1.606Hz

(主梁反对称扭曲)(主梁对称扭曲)

主要振型图

取结构的前60阶振型进行组合(X、Y方向参与质量均超过99%),振型组合方法采用CQC法。

地震响应分析作用工况:顺桥向地震输入+横向地震输入;不同地震动输入方向的效应组合方法采用SRSS法。

(注:上述阵型仅以方案一4-30m墩高组合10+17+9为例,仅列举前4阶振型)四、截面P—M—Φ曲线计算

桥墩塑性铰采用midas,M—Φ曲线计算,本构关系采用mander model模型。在MIDAS中定义桥墩塑性铰特性值之后,使用MIDAS进行计算。本项目桥墩均为双柱式桥墩,根据公路桥梁抗震设计细则第6.2.2条,计算顺桥向地震作用时桥墩底部为潜在塑性铰区域,计算横桥向地震作用时桥墩顶、底部为潜在塑性铰区域。

由于现行公路桥梁抗震设计细则(JTG/T B02-01-2008)的抗震理念为延性设计,将结构划分为耗能构件和能力保护构件两类,按照能力保护原则进行设计,其核心即为P—M—Φ(轴力-弯矩-曲率曲线)曲线,并在此基础上进行构件设计,为更好的进行桥梁结构抗震设计,下面对不同截面在不同轴力作用下的M—Φ曲线进行计算分析,并在此基础上进行后续结构计算。

根据计算对应各柱径,并考虑到由于横桥向地震作用引起的横桥向同一盖梁梁柱的压力重分配影响,计算得各柱径在不同压力下的M—Φ曲线(轴力-弯矩-曲率曲线),并在“桥跨一联内各墩的组合刚度尽量相近”原则的基础上,进行桥梁抗震概念设计:

本次设计选取4-20(30)m一联出于以下几点考虑:

③4-20(30)m一联在本次设计中较为常见;

④3-20(30)m一联虽然在地震作用下,下部墩柱受力更为不利,但是墩柱组

合过少,不能很好的反应不同墩高组合下,结构受力的规律;

⑤5-20(30)m 一联相对于4-20(30)m一联从结构受力上差别不大,且在刚

度分配较均匀的基础上,4-20(30)m一联的单墩受力更为不利;

针对各方案的具体计算结果详见附录一。

四、抗震计算结果

方案一

多振型反应谱法

1、E1抗震计算

根据公路抗震设计细则,E1地震作用下桥梁结构处于弹性状态,计算采用轴力-弯矩-曲率曲线中的首次屈服弯矩进行控制,若E1地震作用下塑性铰区的

弯矩小于首次屈服弯矩即认为桥梁结构处于弹性状态,计算结果见下表:

E1顺桥向抗弯验算

E1横桥向抗弯验算

(其中括号内(固)、(滑)分别代表此墩采用固定支座或滑动支座)

2、E2抗震计算

A、墩柱计算结果

根据公路抗震设计细则,E2地震作用下延性构件(墩柱)可发生损伤,产生弹塑性变形,耗散地震能量,但延性构件(墩柱)的塑性铰区域应具有足够的塑性变形能力。根据公路抗震设计细则第7.3.4条和第7.4.2条分别验算墩柱塑性铰区域斜截面抗剪强度以及塑性铰区域的塑性转动能力。验算结果如下:

1、塑性铰区域斜截面抗剪强度验算

根据公路抗震设计细则第6.8条及第7.3.4条

某桥梁桩基础设计计算

第一章桩基础设计 一、设计资料 1、地址及水文 河床土质:从地面(河床)至标高32.5m 为软塑粘土,以下为密实粗砂,深度达30m ;河床标高为40.5m ,一般冲刷线标高为38.5m ,最大冲刷线为35.2m ,常水位42.5m 。 2、土质指标 表一、土质指标 3、桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.0m 。拟定采用四根桩,设计直径 1.0m 。桩身混凝土用20号,其受压弹性模量h E =2.6×104MPa 4、荷载情况 上部为等跨25m 的预应力梁桥,混凝土桥墩,承台顶面上纵桥向荷载为:恒载及一孔活载时: 5659.4N KN =∑、 298.8H KN =∑、 3847.7M KN m =∑ 恒载及二孔活载时: 6498.2N KN =∑。桩(直径 1.0m )自重每延米为: 2 1.01511.78/4 q KN m π?= ?= 故,作用在承台底面中心的荷载力为:

5659.4(7.0 4.5 2.025)7234.4298.83847.7298.8 2.04445.3N KN H KN M KN =+???===+?=∑∑∑ 恒载及二孔活载时: 6498.2(7.0 4.5 2.025)8073.4N KN =+???=∑ 桩基础采用冲抓锥钻孔灌注桩基础,为摩擦桩 二、单桩容许承载力的确定 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度,设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度 为3h ,则:002221 []{[](3)}2 h i i N p U l m A k h τλσγ==++-∑ 当两跨活载时: 8073.213.311.7811.7842 h N h =+?+? 计算[P]时取以下数据: 桩的设计桩径1.0m ,冲抓锥成孔直径为1.15m ,桩周长 2 22 02021211.15 3.6,0.485,0.7 4 0.9, 6.0,[]550,12/40,120, a a a u m A m m K Kp KN m Kp Kp ππλσγττ?=?== ======== 1 [] 3.16[2.740( 2.7)120]0.700.90.7852 [550 6.012( 3.33)]2057.17 5.898.78k p h h N h m =??+-?+??? +??+-==+∴= 现取h=9m ,桩底标高为26.2m 。桩的轴向承载力符合要求。具体见如图1所示。

桥墩

计算书 摘要: 本设计上部结构为钢筋混凝土简支梁桥,标准跨径为14米×3,桥面净空:净— 8+2×1.0米,采用重力式桥墩和桥台。桥梁全长为42m ,桥面总宽10m ,桥面纵坡为0.3%,桥梁中心处桥面设计高程2.00米,横坡为1.5%;桥垮轴线为直线,设计荷载标准为:公路-Ⅱ级,人群荷载3 kN/m 。本文主要阐述了该桥设计和计算过程,首先对主桥进行总体结构设计,然后对上部结构进行内力、配筋计算,再进行强度,应力及变形验算,最后进行下部结构设计和结构验算。同时,也给出了各部分内容相关的表格与图纸。通过这次设计不但了解设计桥梁的各个步骤,而且也能熟练的运用AUTOCAD 进行制图。 1. 重力式桥墩设计(一号) 1.1. 桥墩设计资料 ①本桥梁桥墩的上部结构为简支梁,横断面内共有5片梁,每片梁宽1.9米,经计算上部结构恒载支点反力为1148.32KN 。标准跨径为m l b 33=(两墩中心线距离);主梁全长13.96m(伸缩缝设计为4m);计算跨径为m l 5.13=(支座重心距离板端18cm );桥面宽度为8.0+2x1m. ②支座为板式橡胶支座,其平面尺寸为mm mm 220180?,支座高度为25mm. ③墩帽采用强度等级为C25的钢筋混凝土,其重度为253/m KN 。 ④桥梁的地基为软岩地基,经取样试验地基允许承载力kPa 400][=σ。 ⑤其他设计资料:a.汽车荷载为公路-Ⅱ级;b.桥墩的高度m H 4.11=;c.桥墩采用 圆端型实体桥墩。 1.2. 拟定桥墩尺寸 1.墩帽尺寸的拟定 (1)顺桥向尺寸 按照上部结构的布置,相邻两孔支座中心距离为0.4m ,支座顺桥向宽度为0.20m ,支座边缘离蹲身的最小距离为0.15m ,两边挑檐宽度设为0.10m ,则墩帽顺桥向德宽度b 按下式计算为: )(1.115.0210.0220.040.0222/2/21'm c c a a f b =?+?++=++++≥ 从抗震为构造措施的角度,梁端至墩台帽边缘的最小距离a(cm),还应当满足《公路桥梁抗震设计细则》(JTG/T B02-01-2008)中的有关规定,则cm cm a 75.76)5.135.070(=?+=,墩帽的宽度为m m 575.1)04.07675.02(=+?,根据以上计算结果,为便于设计计算和施工。取墩帽的宽度为1.6m,墩帽的厚度为0.40m. (2)横桥向尺寸 根据已知条件:整个板的宽度为m m 10)25(=?,两边各加0.05m ,台帽矩形部分长度为10.1m 。梁端各加直径为1.4m 的圆端头,高出墩帽顶面0.30m 作为防

桥梁下部结构通用图计算书

目录 第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T梁横断面 (4) 2.2.2 T梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10) 3.2.4 桥墩计算偏心距的增大系数 (11)

3.2.5 墩柱正截面抗压承载力计算 (12) 3.2.6 裂缝宽度验算 (13) 3.3 20米T梁墩柱计算 (13) 3.3.1 计算模型的选取 (13) 3.3.2 15米墩高计算 (14) 3.3.3 30米墩高计算 (18) 3.4 30米T梁墩柱计算 (22) 3.4.1 计算模型的选取 (22) 3.4.2 15米墩高计算 (23) 3.4.3 30米墩高计算 (27) 3.4.4 40米墩高计算 (32) 3.5 40米T梁墩柱计算 (36) 3.5.1 计算模型的选取 (36) 3.5.2 15米墩高计算 (37) 3.5.3 30米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值 (47) 4.2 计算分析 (47) 4.2.1 抗震计算模型 (47) 4.2.2 动力特性特征值计算结果 (48) 4.2.3 E1地震作用验算结果 (49) 4.2.4 E2地震作用验算结果 (49) 4.2.5 延性构造细节设计 (51) 4.3 抗震构造措施 (53)

某桥桥墩结构计算

设计计算书 设计人:日期:复核人:日期:审核人:日期: 2017年2月

F匝道桥桥墩计算 一、概述 本桥上部结构采用2×(4×25)+4×(3×25)PC连续箱梁+1×43.5简支钢箱梁+4×17钢筋砼连续箱梁+1×33简支钢箱梁+(18+20.5)+3×21+3×46+4×25米PC连续箱梁,下部桥墩采用花瓶墩、板式墩配桩基础。现选取其中有代表性的21#墩(花瓶墩(1.7x2.2米),上部为43.5米钢箱梁接4x17米钢筋砼现浇梁)、23#墩(板式墩(4x1.8米),上部为4x17米钢筋砼现浇梁)、25#墩(花瓶墩(1.5x2.0米),上部为33米钢箱梁接4x17米钢筋砼现浇梁),相应构造见下图: 21#墩构造(单位:cm)

23#墩构造(单位:cm) 25#墩构造(单位:cm) 材料:墩身:C40砼 承台:C30砼 桩基:C25砼 其中21#墩墩高:32.3m,23#墩墩高:33.4m,25#墩墩高:32.9m。 二、使用阶段荷载效应 1)结构恒载 2)活载:包含活载引起的竖向反力及引活载引起的纵横向弯矩

3)风荷载:按规范JTG D60-2004第4.3.7条计算:单独风荷载作用时选用27.4m/s(1/100),风荷载与其它荷载共同作用时选用25.8 m/s(1/50) 4)船撞击力:根据《荆东互通水中桥墩群防撞设施设计说明》确定,并考虑1.1的安全系数: 主要荷载工况: ①恒载+活载+风荷载 ②恒载+活载+船撞力 ③恒载+风荷载+船撞力 ④恒载+风荷载(百年一遇) 三、结构内力计算 1)单项结构内力计算

2)组合内力计算 3)结构验算取用内力 根据上述计算,结构横桥向强度由恒载+风荷载+船撞力(偶然组合)控制,顺桥向强度由恒载+活载+船撞力(偶然组合)控制,结构正常使用阶段由恒载+活载+风荷载组合控制。 四、截面配筋验算

桩基础的设计计算

1 第四章桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的“m”法、就属此种方法,本节将主要介绍“m”法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法,“m”法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律 1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,

2 使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力zx σ,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 z zx Cx =σ (4-1) 式中: zx σ——横向土抗力,kN/m 2; C ——地基系数,kN/m 3; z x ——深度Z 处桩的横向位移,m 。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念 地基系数C 表示单位面积土在弹性限度内产生单位变形时所需施加的力,单位为kN/m 3或MN/m 3。 (2)确定方法 地基系数大小与地基土的类别、物理力学性质有关。 地基系数C 值是通过对试桩在不同类别土质及不同深度进行实测z x 及zx σ后反算得到。大量的试验表明,地基系数C 值不仅与土的类别及其性质有关,而且也随着深度而变化。由于实测的客观条件和分析方法不尽相同等原因,所采用的C 值随深度的分布规律也各有不同。常采用的地基系数分布规律有图下所示的几种形式,因此也就产生了与之相应的基桩内力和位移的计算方法。

桥墩设计计算

摘要 随着我国社会的发展与进步和人民的生活水平的日益提高,交通的便利程度和安全性得到了人们的广泛关注,桥梁又是现代交通中不可缺少的组成部分,我国桥梁工程无论在建设规模上,还是在科技水平上,均已跻身世界先进行列。 本设计为S17线金昌至永昌高速公路河东庄大桥(两联4×25m预应力混凝土连续箱梁)下部结构设计,在设计过程中,参考了诸如桥梁工程、土力学、桥涵水文、材料力学、专业英语等相关书籍和文献,根据《公路桥涵设计手册》系列丛书,依照交通部颁发的有关公路桥涵设计规范(JTG系列)拟定设计而成。 设计中考虑了各种尺寸与材料的选用符合规范中对强度、应力、局部承压强度的要求,并且产生在规范容许范围内的变形,使桥梁在正常使用的情况下能够达到安全,稳定和耐久的标准。在可预期偶然荷载下仍能达到基本正常使用的标准。设计时还充分考虑河东庄大桥所处区域的地质和水文条件,既保证符合规范要求,同时保证因地制宜并且便于施工和维护,并且兼顾桥梁本身的美观性与社会经济性,既要设计合理,又要起到良好的社会经济效益。 关键词:河东庄大桥下部结构桥墩桥台美观性经济性

Abstract With the development and progress of our society and people's rising living standards, transportation convenience and safety to get the wide attention of people, the bridge is also an indispensable part of modern transportation, bridge works in China in terms of construction scale, or in the level of science and technology, have been among the advanced ranks in the world. The design for the S17line of Jinchang to Yongchang Expressway East Village Bridge ( double4 ×25m prestressed concrete continuous box girder ) substructure design, during the design process, the reference such as bridge engineering, soil mechanics, material mechanics, hydrology of bridge and culvert, English and other related books and literature, according to the" manual" design of highway bridges and culverts series, in accordance with the Ministry of Communications issued by the relevant design specifications for highway bridges and culverts ( JTG Series ) protocol is designed. Design consideration of senior high school entrance examination of various sizes and material selection in conformity with the specifications of strength, stress, local bearing strength requirements, and produced in standard allowable deformation of the bridge in the normal use, can achieve the safety, stability and durability of the standard. In the expected accidental loads can still achieve the basic normal use standard. The design also fully consider the Hedong Village Bridge where regional geological and hydrological conditions, both to ensure compliance with specifications, while ensuring that the suit one's measures to local conditions and easy construction and maintenance, and take into account the bridge itself appearance and social economy should not only reasonable design, but also has good social and economic benefits. Key words: He dong zhuang bridge Substructure pier abutment beauty economy

连续梁 下部结构计算书

**公路二期工程*大桥 3×30m连续梁下部结构计算书 1.工程概况 桥梁上部为3×30m跨预应力混凝土连续梁,主梁总宽度为12m,梁高为1.6m。主梁采用单箱双室断面,其中主梁悬臂长 2.0m,标准断面箱室顶板厚0.22m,底板厚0.2m,腹板厚0.45m,中支点及边支点断面箱室顶板厚0.37m,底板厚0.32m,腹板厚0.65m,两断面间设长2.5m的渐变段。混凝土主梁采用C50混凝土现场浇注,封端采用C45混凝土。主梁中墩采用两根直径1.6m圆柱,下接直径1.8m桩基,左侧中墩高7m,右侧墩柱高8.5m。主梁边墩采用盖梁+直径1.6m双柱中墩,下接直径1.8m桩基形式;中、边墩横桥向中心距均为5.6m。 主梁边支点采用普通板式橡胶支座,中墩与主梁固结。 2.设计规范 《城市桥梁设计准则》(CJJ11—93); 《城市桥梁设计荷载标准》(CJJ77—98); 《公路工程技术标准》(JTGB01-2003); 《公路桥涵设计通用规范》(JTG D60-2004); 《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62-2004)); 《公路桥涵地基与基础设计规范》(JTG D63—2007); 《公路桥梁抗震设计细则》(JTG/T B02-01-2008); 《公路桥涵施工技术规范》(JTJ041-2000); 3.静力计算 3.1 计算模型 由于主梁支撑中心与其中心线斜正交,且主梁平面基本为直线,因此建立平面杆系模型计算结构的内力及变形。桥梁内力及位移的计算均采用桥梁博士3.0有限元程序进行,其中边支点仅采用竖向支撑,中墩底部采用弹性支撑,其支撑刚度根据m法计算(m0=1.2×105kN/m4,K水平=2.4×106kN/m,K弯曲=1.1×107kN.m/rad)。 根据桥梁结构受力特点,其计算模型见下图。

桥墩桩基础设计计算书

桥墩桩基础设计计算书 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】

基础工程课程设计一.设计题目:00 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长,计算跨径,桥面宽13m (10+2×),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高,河床标高为,一般冲刷线标高,最大冲刷线标高处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN;

墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*=150KN (2)活载 一跨活载反力:N5=,在顺桥向引起的弯矩:M1= kN·m; 两跨活载反力:N6=+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩; 风力:H2= kN,对承台顶力矩 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×。承台平面尺寸:长×宽=7×,厚度初定,承台底标高。拟采用4根钻孔灌注桩,设计直径,成孔直径,设计要求桩底沉渣厚度小于300mm。 5、其它参数 结构重要性系数γso=,荷载组合系数φ=,恒载分项系数γG=,活载分项系数γQ= 6、设计荷载 (1)桩、承台尺寸与材料 承台尺寸:××初步拟定采用四根桩,设计直径1m,成孔直径。桩身及承台

桥墩桩基础设计计算书

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋;

4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m 3 。承台平面尺寸:长×宽 =7×4.5m 2 ,厚度初定2.5m ,承台底标高20.000m 。拟采用4根钻孔灌注桩,设计直径1.0m ,成孔直径1.1m ,设计要求桩底沉渣厚度小于300mm 。 5、其它参数 结构重要性系数γso =1.1,荷载组合系数φ=1.0,恒载分项系数γG =1.2,活载分项系数γQ =1.4 6、 设计荷载 (1) 桩、承台尺寸与材料 承台尺寸:7.0m ×4.5m ×2.5m 初步拟定采用四根桩,设计直径1m ,成孔直径1.1m 。桩身及承台 混凝土用30号,其受压弹性模量h E =3×4 10MPa 。 (2) 荷载情况 上部为等跨30m 的预应力箱梁桥,混凝土桥墩,作用在承台底面中心的荷载为: 恒载及一孔活载时: 1.2(158054008009751507 4.5 2.515 1.42835.751571 3.55N KN =?+++-+???+?=∑) 1.4(300 2.7)42 3.78H KN =?+=∑ [3334.3300(2.5 6.5) 2.7 4.75 2.5 1.48475.425M KN =+?++? +?=∑()] 恒载及二孔活载时: 1.2(158054008009751507 4.5 2.515N =?+++-+????∑)+1.45830.04=19905.556KN 桩(直径1m )自重每延米为: q= 2 11511.781/4 KN m ??=π(已扣除浮力) 三、计算 1、根据《公路桥涵地基与基础设计规范》反算桩长 根据《公路桥涵地基与基础设计规范》中确定单桩容许承载力的经验公式,初步反算桩的长度, 设该桩埋入最大冲刷线以下深度为h ,一般冲刷线以下深度为h 2,则: [][]{} )3(2 1 22200-++==∑h k A m l U P N i i h γσλτ

9米路宽30m连续箱梁下部结构计算书

桥涵通用图 30米现浇预应力混凝土箱梁 下部构造(路基宽9.0米,R=80m) 计 算 书 计算:汪晓霞 复核: 审核: 二〇一九年八月

第一部分基础资料 一、计算基本资料 1技术标准与设计规范: 1)中华人民共和国交通部标准《公路工程技术标准》(JTG B01-2014) 2)中华人民共和国交通部标准《公路桥涵设计通用规范》(JTG D60-2015) 3)中华人民共和国交通部标准《公路钢筋混凝土及预应力混凝土桥涵设计规 范》(JTG 3362-2018) 4)交通部标准《公路桥涵地基与基础设计规范》(JTG D63-2007) 2桥面净空:净-8.0米 3汽车荷载:公路Ⅰ级,结构重要性系数1.1 4材料性能参数 1)混凝土C30砼:墩柱、墩柱系梁, 主要强度指标: 强度标准值f ck=20.1MPa,f tk=2.01MPa 强度设计值f cd=13.8MPa,f td=1.39MPa 弹性模量E c=3.0x104Mpa 2)普通钢筋 a)HPB300钢筋其主要强度指标为: 抗拉强度标准值f sk=300MPa 抗拉强度设计值f sd=250MPa 弹性模量E s=2.1x105MPa b)HRB400钢筋其主要强度指标为: 抗拉强度标准值f sk=400MPa 抗拉强度设计值f sd=330MPa 弹性模量E s=2.0x105MPa c)HRB500钢筋其主要强度指标为: 抗拉强度标准值f sk=500MPa

抗拉强度设计值f sd=415MPa 弹性模量E s=2.0x105MPa 5主要结构尺寸 上部结构为2×30m~4×30m一联,现浇连续预应力箱形梁。每跨横向设2个支座。 桥墩墩柱计算高取10、15、17米,直径1.4、1.6米。因无法预计各桥的实际布置情况及地形、地质因素,墩顶纵向水平力,分别按2跨一联、3跨一联、4跨一联,墩柱取等高度及等刚度计算。应用本通用图时,应根据实际分联情况,核实桥墩构造尺寸及配筋是否满足受力要求。本次验算不含桩基计算。 二、计算采用程序 下部结构计算数据采用桥梁博士对上部结构的分析结果。 三、计算说明与计算模型 1.计算说明 计算中,外荷载数据取自上部结构电算结果。 2.桥墩计算模型 根据上部箱梁计算所得相关数据,进行手工计算。 第二部分墩柱计算结果 Ⅰ、墩柱计算 按2跨一联、3跨一联、4跨一联分别进行计算,一联两端为桥台,中间为双柱式墩桥台上设活动支座,桥墩墩顶均为盆式橡胶支座,一排支座为2个。桥墩墩柱D1=1.4、1.6m。 经核算2X30米箱梁下部因水平力(主要是制动力、离心力)过大,采用双圆柱墩无法满足受力要求,故墩柱形式拟采用花瓶墩,不进行本次双圆柱墩计算分析。经对3X30米及4X30米箱梁下部受力分析比较,以3跨一联下部构造双圆柱墩计

土木5桥梁桩基础课程设计word文档

桥梁桩基础课程设计任务书

1、桥墩组成:该桥墩基础由两根钻孔灌注桩组成。桩径采用φ=1.2m ,墩柱直径采用φ=1.0m 。桩底沉淀土厚度t = (0.2~0.4)d 。局部冲刷线处设置横系梁。 2、地质资料:标高25m 以上桩侧土为软塑亚粘土,其各物理性质指标为:容量γ=18.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量%21=ω,液限 %7.22=l ω,塑限%3.16=p ω。标高25m 以下桩侧及桩底土均为硬塑性亚粘土,其物理性质指标为:容量γ=19.5kN /m 3,土粒比重G=2.70g/3cm ,天然含水量 %8.17=ω,液限%7.22=l ω,塑限%3.16=p ω。 3、桩身材料:桩身采用25号混凝土浇注,混凝土弹性模量 αMP E h 41085.2?=,所供钢筋有Ⅰ级钢和Ⅱ级纲。 4、计算荷载 ⑴ 一跨上部结构自重G=2350kN ; ⑵ 盖梁自重G 2=350kN ⑶ 局部冲刷线以上一根柱重G 3应分别考虑最低水位及常水位情况; ⑷公路Ⅱ级 : 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 支座对桥墩的纵向偏心距为3.0=b m (见图2)。计算汽车荷载时考虑冲击力。 ⑸ 人群荷载: 双孔布载,以产生最大竖向力; 单孔布载,以产生最大偏心弯矩。 ⑹ 水平荷载(见图3) 制动力:H 1=22.5kN (4.5); 盖梁风力:W 1=8kN (5); 柱风力:W 2=10kN (8)。采用常水位并考虑波浪影响0.5m ,常水位按45m 计,以产生较大的桩身弯矩。W 2的力臂为11.25m 。

图4 5、设计要求 ⑴确定桩的长度,进行单桩承载力验算。 ⑵桩身强度验算:求出桩身弯矩图(用座标纸画),定出桩身最大弯矩值及其相应截面位置和相应轴力,配置钢筋,验算截面强度(采用最不利荷载组合及常水位)。 ⑶计算主筋长度、螺旋钢筋长度及钢筋总用量。 ⑷用A3纸绘出桩的钢筋布置图。 二、应交资料 1、桩基础计算书 2、桩基础配筋图 3、桩基础钢筋数量表

渡槽结构计算书

目录 1. 工程概况.............................................. 错误!未定义书签。2.槽身纵向内力计算及配筋计算............................ 错误!未定义书签。 (1)荷载计算..........................................错误!未定义书签。 (2)内力计算..........................................错误!未定义书签。 (3)正截面的配筋计算..................................错误!未定义书签。 (4)斜截面强度计算....................................错误!未定义书签。 (5)槽身纵向抗裂验算..................................错误!未定义书签。3.槽身横向内力计算及配筋计算............................ 错误!未定义书签。 (1)底板的结构计算....................................错误!未定义书签。 (2)渡槽上顶边及悬挑部分的结构计算 ....................错误!未定义书签。 (3)侧墙的结构计算....................................错误!未定义书签。 (4)基地正应力验算....................................错误!未定义书签。

1. 工程概况 重建渡槽带桥,原渡槽后溢洪道断面下挖,以满足校核标准泄洪要求。目前,东方红干渠已整修改造完毕,东方红干渠设计成果显示,该渡槽上游侧渠底设计高程为165.50m,下游侧渠底设计高程为165.40m。本次设计将现状渡槽拆除,按照上述干渠设计底高程,结合溢洪道现状布置及底宽,在原渡槽位重建渡槽带桥,上部桥梁按照四级道路标准,荷载标准为公路-Ⅱ级折减,建筑材料均采用钢筋砼,桥面总宽5m。 现状渡槽拆除后,为满足东方红干渠的过流要求及溢洪道交通要求,需重建跨溢洪道渡槽带桥。新建渡槽带桥轴线布置于溢洪道桩号0+,同现状渡槽桩号,下底面高程为165.20m,满足校核水位+0.5m超高要求,桥面高程167.40m,设计为现浇结合预制混凝土结构,根据溢洪道设计断面,确定渡槽带桥总长51m,8.5m×6跨。上部结构设计如下:渡槽过水断面尺寸为×1.6m,同干渠尺寸,采用C25钢筋砼,底及侧壁厚20cm,顶壁厚30cm,筒型结构,顶部两侧壁水平挑出1.25m,并在顺行车方向每隔2m设置一加劲肋,维持悬挑板侧向稳定,桥面总宽5m,路面净宽4.4m,设计荷载标准为公路-Ⅱ级折减,两侧设预制C20钢筋砼栏杆,基础宽0.5m。下部结构设计如下:下部采用C30钢筋混凝土双柱排架结构,并设置横梁, 由于地基为砂岩,基础采用人工挖孔端承桩,尺寸为×1.2m,基础深入岩层弱风化层1.0m,盖梁尺寸为4××1.2m。 2.槽身纵向内力计算及配筋计算 根据支承形式,跨宽比及跨高比的大小以及槽身横断面形式等的不同,槽身应力状态与计算方法也不同,对于梁式渡槽的槽身,跨宽比、跨高比一般都比较大,故可以按

(整理)基础工程计算书 -

基础工程 课程设计 题目:铁路桥墩桩基础设计指导教师:郑国勇 姓名: 专业: 学号:

2014年9月28日 基础工程课程设计任务书 ——铁路桥墩桩基础设计一.设计资料 1. 线路:双线、直线、坡度4‰、线间距5m,双块式无碴轨道及双侧1.7m 宽人行道,其重量为44.4kN/m。 2. 桥跨:等跨L=31.1m无碴桥面单箱单室预应力混凝土梁,梁全长32.6m,梁端缝0.1m;梁高3m,梁宽1 3.4m,每孔梁重8530kN,简支箱梁支座中心距梁端距离0.75m,同一桥墩相邻梁支座间距1.6m。轨底至梁底高度为3.7m,采用盆式橡胶支座,支座高0.173m,梁底至支座铰中心0.09m。 3. 建筑材料:支承垫石、顶帽、托盘采用C40钢筋混凝土,墩身采用C30混凝土,桩身采用C30混凝土。 4. 地质及地下水位情况: 土层平均重度γ=20kN/m3,土层平均内摩擦角? =28°。地下水位标高:+30.5。 5. 标高:梁顶标高+53.483m,墩底+35.81。 6. 风力:w=800Pa (桥上有车)。 7. 桥墩尺寸:如图1。 二.设计荷载

1. 承台底外力合计: 双线、纵向、二孔重载: N=18629.07kN,H=341.5kN,M= 4671.75kN·m 双线、纵向、一孔重载: N=17534.94kN,H=341.5kN,M=4762.57kN·m 2. 墩顶外力: 双线、纵向、一孔重载: H=253.44 kN,M =893.16 kN·m。 三.设计要求 1. 选定桩的类型和施工方法,确定桩的材料、桩长、桩数及桩的排列。 2. 检算下列项目 (1) 单桩承载力检算(双线、纵向、二孔重载); (2) 群桩承载力检算(双线、纵向、二孔重载); (3) 墩顶水平位移检算(双线、纵向、一孔重载); (4) 桩身截面配筋计算(双线、纵向、一孔重载); (5) 桩在土面处位移检算(双线、纵向、一孔重载)。 3. 设计成果: (1) 设计说明书和计算书一份 (2) 设计图(计算机绘图) 一张 四.附加说明 1. 如布桩需要,可变更图1中承台尺寸; 2. 任务书中荷载系按图1尺寸进行计算的结果,如承台尺寸变更,应对其竖向荷载进行相应调整。

简支梁桥下部结构计算书

计算书 工程名称: 设计编号: 计算内容:桥梁计算书 共页 计算年月日校核年月日审核年月日专业负责年月日

目录 一、计算资料.......................................... 错误!未定义书签。 二、桥梁纵向荷载计算.................................. 错误!未定义书签。 1.永久作用........................................... 错误!未定义书签。 2.可变作用........................................... 错误!未定义书签。 三、桥墩、桥台盖梁抗弯、抗剪承载力计算及裂缝宽度计算.. 错误!未定义书签。 四、墩台桩基竖向承载力计算............................ 错误!未定义书签。 五、桥台桩身内力计算.................................. 错误!未定义书签。 1、桥台桩顶荷载计算................................... 错误!未定义书签。 2、桥台桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥台桩身内力............................... 错误!未定义书签。 六、桥墩桩身内力计算.................................. 错误!未定义书签。 1、桥墩墩柱顶荷载计算................................. 错误!未定义书签。 2、桥墩桩基变形系数计算............................... 错误!未定义书签。 3、m法计算桥墩桩身内力............................... 错误!未定义书签。 七、桥台、桥墩桩基桩身强度校核........................ 错误!未定义书签。 1、桥台桩基桩身强度校核............................... 错误!未定义书签。 2、桥墩桩基桩身强度校核............................... 错误!未定义书签。 一、计算资料

桥梁下部结构通用图计算书

第一部分项目概况及基本设计资料 (1) 1.1 项目概况 (1) 1.2 技术标准与设计规范 (1) 1.3 基本计算资料 (1) 第二部分上部结构设计依据 (3) 2.1 概况及基本数据 (3) 2.1.1 技术标准与设计规范 (3) 2.1.2 技术指标 (3) 2.1.3 设计要点 (3) 2.2 T梁构造尺寸及预应力配筋 (4) 2.2.1 T 梁横断面 (4) 2.2.2 T 梁预应力束 (5) 2.2.3 罗望线T梁构造配筋与部颁图比较 (6) 2.3 结构分析计算 (6) 2.3.1 活载横向分布系数与汽车冲击系数 (6) 2.3.2 预应力筋计算参数 (6) 2.3.3 温度效应及支座沉降 (7) 2.3.4 有限元软件建立模型计算分析 (7) 第三部分桥梁墩柱设计及计算 (8) 3.1 计算模型的拟定 (8) 3.2 桥墩计算分析 (8) 3.2.1 纵向水平力的计算 (8) 3.2.2 竖直力的计算 (9) 3.2.3 纵、横向风力 (10)

3.2.4 桥墩计算偏心距的增大系数................. 错误!未定义书签。

3.2.5 墩柱正截面抗压承载力计算. (12) 3.2.6 裂缝宽度验算. (13) 3.3 20 米T 梁墩柱计算 (13) 3.3.1 计算模型的选取. (13) 3.3.2 15 米墩高计算 (14) 3.3.3 30 米墩高计算 (18) 3.4 30 米T 梁墩柱计算 (22) 3.4.1 计算模型的选取. (22) 3.4.2 15 米墩高计算 (23) 3.4.3 30 米墩高计算 (27) 3.4.4 40 米墩高计算 (32) 3.5 40 米T 梁墩柱计算 (36) 3.5.1 计算模型的选取. (36) 3.5.2 15 米墩高计算 (37) 3.5.3 30 米墩高计算 (41) 第四部分桥梁抗震设计 (47) 4.1 主要计算参数取值. (47) 4.2 计算分析. (47) 4.2.1 抗震计算模型. (47) 4.2.2 动力特性特征值计算结果. (48) 4.2.3 E1 地震作用验算结果 (49) 4.2.4 E2 地震作用验算结果 (49) 4.2.5 延性构造细节设计. (51) 4.3 抗震构造措施. (53) 第一部分项目概况及基本设计资料 1.1 项目概况 贵州省余庆至安龙高速公路罗甸至望谟段,主线全长77.4 公里,项目地形起伏大,山高坡陡,地质、水文条件复杂,桥梁工程规模大,高墩大跨径桥梁较多,通过综合比选,考虑技术、经济、结构耐久、施工方便、维修便利及施工标准化等因素。主线普通桥梁结构主要选择20m 30m 40m装配式预应力砼T梁。

桩基础的设计计算 m值法

桩基础的设计计算 1.本章的核心及分析方法 本节将介绍考虑桩与桩侧土共同抵抗外荷载作用时桩身的内力计算,从而解决桩的强度问题。重点是桩受横轴向力时的内力计算问题。 桩在横轴向荷载作用下桩身的内力和位移计算,国内外学者提出了许多方法。目前较为普遍的是桩侧土采用文克尔假定,通过求解挠曲微分方程,再结合力的平衡条件,求出桩各部位的内力和位移,该方法称为弹性地基梁法。 以文克尔假定为基础的弹性地基梁法从土力学观点看是不够严密的,但其基本概念明确,方法简单,所得结果一般较安全,在国内外工程界得到广泛应用。我国公路、铁路在桩基础的设计中常用的"m"法、就属此种方法,本节将主要介绍"m"法。 2.学习要求 本章应掌握桩单桩按桩身材料强度确定桩的承载力的方法," "法计算单桩内力的各种计算参数的使用方法,多排桩的主要计算参数及其各自的含义。掌握承台计算方法,群桩设计的要点及注意事项,了解桩基设计的一般程序及步骤。本专科生均应能独立完成单排桩和多排桩的课程设计。 第一节单排桩基桩内力和位移计算 一、基本概念 (一)土的弹性抗力及其分布规律

1.土抗力的概念及定义式 (1)概念 桩基础在荷载(包括轴向荷载、横轴向荷载和力矩)作用下产生位移及转角,使桩挤压桩侧土体,桩侧土必然对桩产生一横向土抗力,它起抵抗外力和稳定桩基础的作用。土的这种作用力称为土的弹性抗力。 (2)定义式 (4-1) 式中:--横向土抗力,kN/m2; --地基系数,kN/m3; --深度Z处桩的横向位移,m。 2.影响土抗力的因素 (1)土体性质 (2)桩身刚度 (3)桩的入土深度 (4)桩的截面形状 (5)桩距及荷载等因素 3.地基系数的概念及确定方法 (1)概念

桥墩桩基础设计计算书

桥墩桩基础设计计 算书 1 2020年4月19日

基础工程课程设计 一.设计题目: 某桥桥墩桩基础设计计算 二.设计资料: 某桥梁上部构造采用预应力箱梁。标准跨径30m,梁长29.9m,计算跨径29.5m,桥面宽13m(10+2×1.5),墩上纵向设两排支座,一排固定,一排滑动,下部结构为桩柱式桥墩和钻孔灌注桩基础。 1、水文地质条件: 河面常水位标高25.000m,河床标高为22.000m,一般冲刷线标高20.000m,最大冲刷线标高18.000m处,一般冲刷线以下的地质情况如下: (1)地质情况c(城轨): 2、标准荷载: (1)恒载 2 2020年4月19日

桥面自重:N1=1500kN+8×10kN=1580KN; 箱梁自重:N2=5000kN+8×50Kn=5400KN; 墩帽自重:N3=800kN; 桥墩自重:N4=975kN;扣除浮重:10*2*3*2.5=150KN (2)活载 一跨活载反力:N5=2835.75kN,在顺桥向引起的弯矩:M1=3334.3 kN·m; 两跨活载反力:N6=5030.04kN+8×100kN; (3)水平力 制动力:H1=300kN,对承台顶力矩6.5m; 风力:H2=2.7 kN,对承台顶力矩4.75m 3、主要材料 承台采用C30混凝土,重度γ=25kN/m3、γ‘=15kN/m3(浮容重),桩基采用C30混凝土,HRB335级钢筋; 4、墩身、承台及桩的尺寸 墩身采用C30混凝土,尺寸:长×宽×高=3×2×6.5m3。承台平面尺寸:长×宽=7×4.5m2,厚度初定 2.5m,承台底标高 3 2020年4月19日

相关文档
最新文档