阵列信号处理中几种关键技术的研究

阵列信号处理中几种关键技术的研究
阵列信号处理中几种关键技术的研究

 第25卷第4期

杭州电子科技大学学报V ol.25,N o.4 2005年8月Journal of Hangzh ou Dianzi University Aug.2005 

阵列信号处理中几种关键技术的研究

王文勇1,陆安南2

(1.杭州电子科技大学通信工程学院,浙江杭州310018;

2.中国电子科技集团第36研究所,浙江嘉兴314001)

收稿日期:2004-09-17

作者简介:王文勇(1976-),男,安徽凤阳人,在读研究生,信号处理.

摘要:阵列信号处理技术的工程化研究日益成为其走向实际应用的重要步骤。该文首先介绍了阵

列信号处理实验系统的硬件组成,并在此基础上,分析了两种阵列信号处理的关键技术———谱估

计法中M USIC 算法和空间零点预处理波束形成技术,最后文章通过该实验系统对此两种处理技术

的有效性进行了验证。实验结果表明:M USIC 算法具有良好的测向精度,而空间零点预处理波束

形成技术具有较强信号分离能力。

关键词:阵列信号处理;空间谱估计;数字波束形成

中图分类号:T N914.53 文献标识码:A 文章编号:1001-9146(2005)04-0016-03

0 引 言

阵列信号处理是现代信号处理的一个重要分支,其本质是利用空间分散排列的传感器阵列和多通道接收机来获取信号的时域和空域等多维信息,以达到检测信号和提取其参数的目的。迄今为止,阵列信号处理的应用范围已经涉及诸如雷达、声纳、导航等领域。阵列信号处理的主要内容可分为波束形成技术、零点技术及空间谱估计技术等方面,它们都是基于对信号进行空间采样的数据进行处理,因此这些技术是相互渗透和相互关联的。波束形成技术的主要目的是要使阵列天线方向图的主瓣指向所需的方向,零点技术的主要目的是使天线的零点对准干扰方方向,前者是提高阵列输出所需要信号的强度,后者是减小干扰信号的强度,实质上都是提高阵列输出的信噪比的问题。而空间谱估计则主要研究信号到达方向(DOA )的问题。若将这几种技术结合,就会对空域信号处理的性能有很大的提高。

1 系统组成

一般阵列信号处理实验系统主要由3个部分组成:阵列天线、多通道接收机、以及阵列信号处理器。如图1所示

图1 阵列信号处理实验系统硬件基本结构

该文采用的阵列天线为9单元均匀圆阵,阵列半径为0.56m 。多通道数字接收机完成下变频、D/A 以及数字信号的Hilbert 变换。阵列信号处理器是实验系统的核心部分,进行的计算包括空间谱估计、波束形成及信号分离。由于考虑阵列信号处理的计算量巨大,其中包括有复矩阵的计算,为了满足对计算速度和实时性的要求,在本系统中阵列信号处理器采用两片高速数字信号处理专用芯片(DSP ),一片用来实现空间谱估计,另一片用来实现波束形成和信号分离。处理器的结构原理如图2所示。

由图2可见,信号既可以通过PCI 接口进入处理器,也可以通过DSP 的链路口进入处理器。利用一片接口芯片PCI9054实现和PCI 总线的通信。数字信号处理专用芯片通过两片FIFO 挂到本地总线的数据线上,这样就把双向接口设计为两个单项接口,即在当DSP 需要传输数据时,先把数据放入FIFO 中,然后通知主机已有数据输出,主机在任意时刻读出数据,完成DSP 到主机的数据传输;反之亦然。这样

图2 阵列信号处理器的结构原理

主机和DSP 之间有两根状态通知线,电路结构与传统方法相比大大简化。由于PCI9054工作在同步方式,它与存储器和I/O 的接口需要一些控制逻辑,这些控制逻辑通过CP LD 实现比较方便。通过CP LD 实现的时序状态机接收来自总线主设备的数据和控制信号,加以分析处理,并管理该设备的PCI 控制信号,引导它们做出正确的时序响应,以保证总线作业的正确完成。

2 基本理论

2.1 空间谱估计

目前,空间谱估计的方法大致可分为两大类:一类是以最大似然算法为代表;另一类是参数谱的方法。其中在参数谱的方法当中又以M USIC 算法最为经典。M USCI 算法的基本思想是通过对信号协方差矩阵的分解,得到信号的噪声子空间,根据它和阵列流行的正交关系,通过搜索即可得到信号的空间谱估计。

假设空间有P 个相互独立的信号源。阵列天线采用M 元均匀圆阵。阵列输出过程为:X (t )=AS (t )+N

(t ),在t =t 0时,X (t 0)=AS (t 0)+N (t 0)。当信源和噪声相互独立并假定噪声为高斯白噪声时,R =AP A H +σ2I 。

设阵列流行为α(θ,γ),分解协方差R 的得到的噪声子空间为e 1,e 2,…,e M -p ,则M USIC 谱定义为:

P M (θ,γ)=1/∑M -p i =1

|e H i a (θ,γ)|2(1)

2.2 空间零点预处理波束形成为了更好地分离出所需要的信号,需要能够控制波束的零点,使其位于其余(P -1)个信号方向的位置上。采用空间零点预处理波束形成器,可以得到非常好的“零陷效果”。

设P 个信号到达方向为{α(θ1,γ1),α(θ2,γ2),…,α(θ

p ,γp )},并假设所需信号的方向为α(θ1,γ1),用加权矢量W 对阵列输出X (t )进行加权,使其能消去α(θ2,γ2),…,α(θp ,γp )方向上的信号(形成零点),即满足:W

A (θ,γ)=(b ,0,0,…,0),其中,W =[w 1,w 2,…,w M ],A (θ,γ)=[α(θ2,γ2),…,α(θ

p ,γp )]T ,b 为一个复常数。设A 1(θ,γ)=[α(θ2,γ2),…,α(θp ,γ

p )]T ,对A 1(θ,γ)进行奇异值分解,可得: A 1(θ,γ)=UG V H

(2)式中,G 为由A 1(θ,γ)的奇异值构成的对角矩阵。U =(u 1,u 2,…u M ),V =(v 1,v 2,…v p )。

如果取W N =(u p ,u p +1,…,u M ),则所需要的权向量W 为:

W =W N W H N A 1(θ,γ)

(3)7

1第4期 王文勇等:阵列信号处理中几种关键技术的研究

图3 单信号测向结果

3 实验结果

3.1 单信号测向精度实验

在距离圆心(放置接收天线阵的地方)100m 的圆周

上,方位角每隔放置一个信号源,每个信号源发射9个

不同频率的信号,天线阵列在每个频率点记录10个快

拍矩阵。通过实验系统对单信号进行的多次测向结

果,通过MUSIC 算法计算得到单信号测向精度的均方

误差为(1°,0.8°

),如图3所示。3.2 信号分离实验

在方位角相隔30°的两个位置放置两个信号源,它

们同时发射不同频率的正弦信号,阵列天线接收到信

号后,先进行测向,然后在空域通过零点预预处理波束

形成算法进行信号分离,结果如图4所示。

通过这个例子可以看出,

实验系统取得了较好的图4 信号分离结果

信号分离效果,分离出的信号经过解调后看不出明显的失真。

4 结束语

本文在介绍了阵列信号处理实验系统的基础上,对其中的核心部分提出了一种有效的硬件结构。在实验系统上进行了测向和信号分离实验并取得了较好的效果。

参考文献

[1] Capon J.High Res olution Frequency -Wave Number S pectrum Analysis[J ].Proc IEEE ,1969,57(8):1408-1418.

[2] Schmidt R O.Multiple Emitter Location and S ignal Parameter Estimation[J ].T rans IEEE ,1986,34(3):276-280.

[3] 杨小牛,楼才义,徐建良.软件无线电原理与应用[M].北京:电子工业出版社,2001.213-226.

Some R esearches on Array Signal Processing

WANG Wen 2yong 1,L U An 2nan 2

(1.School of Communication Engineering ,Hangzhou Dianzi University ,Hangzhou Zhejiang 310018,China;

2.The 36th Research Institute of CETC ,Jiaxing Zhejiang 314001,China )

Abstract :The engineering of array signal processing is becoming m ore and m ore im portant to the practical applica 2tions.This article introduces the parts of the experiment system of array signal processing ,for its key part ,a kind of hardware structure is represented.By the experiment system ,the performances of alg orithm of array signal pro 2cessing in practical application are analyzed and tested.

K ey w ords :array signal processing ;spatial spectrum estimation ;digital beam forming 81

杭州电子科技大学学报 2005年

DSPC2000系列综述及其应用电子

DSPC2000系列综述及其应用电子 ——— 摘要 TI公司生产的C2000系列的DSP主要是针对自动控制领域的需要而设计的。本文主要说明了DSP 的产生和发展,概括了C2000系列的特点,综述了C2000中使用的主要技术。同时阐述了今后的发展趋势,在应用方面做了简要介绍,并给出了一个应用实例。 关键词:C2000;集成外设;JTAG;嵌入式;应用 关键字 C2000 发展状况趋势硬件技术软件技术应用电子 1 DSP的产生背景及其发展 1.1 产生背景 由于计算机和信息技术的发展,出现了数字信号处理。它是利用计算机或专用处理器设备,以数字形式对信号进行采集、变换等处理,以得到符合人们需要的信号形式,是一门涉及并广泛应用于许多领域的新兴学科[1]。20世纪后期,随着计算机、大规模集成电路(LSI)、超大规模集成电路(VLSI)以及微处理器技术的迅猛发展,数字信号处理无论在理论上还是在工程应用中都得到了巨大的发展。 伴随着数字信号理论的产生与发展,在一些应用领域中对需要对相关的数据进行处理,但由于使用普通的计算机不能满足特殊环境的要求,而另一方面,如果使用工业PC机,则不能充分发挥其各种性能,并且体积相对较大,增加成本。这就迫使集成电路生产商家开发出可用于数字信号处理的器件,于是就产生了DSP。 DSP主要用来实现相关的数据处理或者比较复杂的算法,其中最具代表的就是TI公司生产的C5000系列的DSP,该系列的DSP主要用于比较复杂算法、语音处理等领域。在上世纪末随着各种新兴控制理论的不断涌现,在实际应用中使用到的算法也日趋复杂化,为了既能满足控制系统实时性的要求,又能满足传统的控制需要,不少公司相继开发出了针对自动控制领域的DSP,最为代表的器件就是TI公司生产的C2000系列。 1.2 发展状况及其趋势 1979年,美国Intel公司生产的2920可以看做商用DSP的开端,这一芯片内部还没有现代DSP 芯片所必须的单周期硬件乘法器,但是该芯片却内含了一个完整的数字信号处理器。DSP芯片应用的另一个开端是TI公司于1982年发布的TMS32010系列芯片[2]。之后TI又相继推出了第二代、第三代、第四代、第五代(C5000)以及目前速度最快的第六代(C6000)。TI公司目前常用的DSP 芯片主要为3大系列:C2000、C5000和C6000系列,其中C2000主要应用于自动控制领域。在DSP 的发展过程中,除了TI公司研发生产DSP外,还有摩托罗拉、NEC、美国模拟器件公司也在研发和生产DSP并取得了一定成就,在市场中占据相当的份额。 在C2000系列发展历史(如图1所示)中,TI最早推出的16位定点C2xx系列获得了巨大的成功。在1996年TI又推出了第一款带有Flash的DSP。新世纪TI在C24xx系列的基础上,又推出了F/C281x系列。最近为了适应市场的专业化需要,推出了Piccolo F280xx系列。 1 C2000系列发展历史 从DSP技术发展的角度来看,随着集成电路规模日益增大,其相应的芯片电压必将越来越小,将会从目前的3V发展到1V甚至更低,并且功耗也将越来越小。当然其运行速度也将越来越快,实时性能更强。 2 DSPC2000的相关技术

西工大《阵列信号处理》考点整理

西工大《阵列信号处理》复习考点整理 考试形式: 一、8道问答题,每道题5分; 二、六道大题,包括PPT 上老师给出的那一道。 一 1. 均匀线列阵在波束扫描时,波束图怎么变化? 当波束指向法线方向时,波束图具有最窄的主瓣宽度;随着阵元指向逐渐远离法线方向,主瓣一直指向所调方向并且展宽;除了指向法线方向外,主瓣都关于波束倾角轴不对称;当达到某一临界角时不能形成波束,但是在端射方向又可以形成波束。且在端射方向形成一个较宽的主瓣。 2.DI 是什么? DI 表示指向性指数,其表达式为 D 为方向性,是阵列和孔径的一个常用性能度量。 ???=ππ φθθφθπφθ200 ),(sin 41) ,(P d d P D T T 3. DC 加权的特点 (1)旁瓣级给定时,主瓣宽度最小; (2)主瓣宽度给定时,旁瓣级最低; (3)等旁瓣级。 4. 频域快拍模型是什么,步骤是什么,常用的频域快拍取的时间有什么关系? (1)记住《最优阵列处理技术》245页图 5.1 (2)步骤: ①把总的观测时间T 分为K 个不重叠的时间区域,区域长度为△T ; ②对时域快拍进行FT ; ③对频域向量(频域快拍)进行窄带波束形成; ④对上述频域信号进行IFT 。 (3)△T 的选择准则 ①△T 必须远大于平面波通过阵列的传播时间; ②△T 依赖于输入信号的带宽和信号的时域谱,16≥??T B (B*△T 足够大,选用频域快拍模型)。 5. 什么是均匀阵的瑞利限? 常规波束形成分辨率的极限。表达式为 6. 空间白噪声的阵增益的相关计算。 阵列增益ωA 的定义为阵列的输出SNR 和一个阵元上的输入SNR 的比值。下标“ω”表示空域不相关的噪声输入。表达式如下:

数字信号处理技术综述

数字信号处理 数字信号处理是20世纪60年代,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。信号处理技术—直用于转换或产生模拟或数字信号,其中应用的最频繁的领域就是信号的滤波。此外,从数字通信、语音、音频和生物医学信号处理到检测仪器仪表和机器人技术等许多领域中,都广泛地应用了数字信号处理技术。在本文中,主要介绍数字信号处理中两个方面:傅立叶变换和数字滤波器。 首先,从信号处理的发展来看,傅立叶的思想及其分析方法毫无疑问具有极其重要的地位,因为它开创了对信号进行频谱分析的理论,从而解决了许多复杂的处理过程。 传统的信号分析方法分别在时域和频域使用傅立叶变换进行处理。傅立叶变换以及其数字实现方法——快速傅立叶变换允许把一个信号分解成多个独立的频率分量和幅度分量。这样很容易区分开有用信号和噪声。 但是经典傅立叶变换工具的主要缺陷是不能把时间和频率信息结合起来给出频率是怎样随时间变化的。对于非平稳信号,传统的傅立叶变换显然不行,因为它无法给出所需信号频率出现的时间区域,也就无法真正了解频率随时间的变化情况。 短时傅立叶变换是一种能对信号同时进行时间域和频率域分析的工具。它的基本思想是:通过对所感兴趣的时刻附近的一小部分信号进行傅立叶分析,以确定该时刻的信号频率。因为时间间隔与整个信号相比是很短的(如语音信号),因此把这个处理过程叫做短时傅立叶变换。 为实现STFT,研究人员一开始使用的是窗口。实际上,它只给了我们关于信号的部分信息,STFT分析的精度取决于窗的选取。这正难点所在,比如:时间间隔应取多大;我们要确定什么样的窗口形状才能给中心点一个较大的权值,而给边缘点一个较小的权值;不同的窗口会产生不同的短时分布。还应该注意到的是:信号的特性由于窗函数的特性有所扰乱,信号恢复原状需要适当的整理并对信号进行估计。因此,STFT并不总能给我们一个清晰的表述。这就需要更好的方法来表示事件和频率的关系。 因此,研究时间—频率分布的动机是为了改进STFT,其基本思想是获得一个时间和频率的联合函数,用于精确的描述时域和频域的信号能量。 经典傅立叶分析只能把信号分解成单个的频率分量,并且建立其每一个分量的相对强度,但能量频谱并没有告诉我们那些频率在什么时候出现。时—频分布

阵列信号处理知识点

信号子空间: 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑ 在无噪声条件下,()()()()()12,, ,P x t span a a a θθθ∈ 称()()()()12 ,, ,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为P N S 。P N S 的正交补空间称为噪声子空间,记为N P N N -。 正交投影 设子空间m S R ∈,如果线性变换P 满足, 则称线性变换 P 为正交投影。 导向矢量、阵列流形 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑,其中矢量()i i a θ称为 导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号 A 表示,即 (){|(0,2)}a A θθπ=∈ 波束形成 波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即 ()()()()H H y t W X t s t W a θ==,通过加权系数W 实现对θ的选择。 最大似然 已知一组服从某概率模型 ()f X θ的样本集12,, ,N X X X ,其中θ为参数集合,使条件概率 ()12,,,N f X X X θ最大的参数θ估计称为最大似然估计。 不同几何形态的阵列的阵列流形矢量计算问题 假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1 [1]i a θ= 然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差 n ?,则确定其导向矢量 ()2j n i a e πλ θ? =

阵列信号处理方面10个经典程序

1.均匀线阵方向图 %8阵元均匀线阵方向图,来波方向为0度 clc; clear all; close all; imag=sqrt(-1); element_num=8;%阵元数为8 d_lamda=1/2;%阵元间距d与波长lamda的关系 theta=linspace(-pi/2,pi/2,200); theta0=0;%来波方向 w=exp(imag*2*pi*d_lamda*sin(theta0)*[0:element_num-1]'); for j=1:length(theta) a=exp(imag*2*pi*d_lamda*sin(theta(j))*[0:element_num-1]'); p(j)=w'*a; end figure; plot(theta,abs(p)),grid on xlabel('theta/radian') ylabel('amplitude') title('8阵元均匀线阵方向图') 当来波方向为45度时,仿真图如下:

8阵元均匀线阵方向图如下,来波方向为0度,20log(dB)

随着阵元数的增加,波束宽度变窄,分辨力提高:仿真图如下:

2.波束宽度与波达方向及阵元数的关系 clc clear all close all ima=sqrt(-1); element_num1=16; %阵元数 element_num2=128; element_num3=1024; lamda=0.03; %波长为0.03米 d=1/2*lamda; %阵元间距与波长的关系 theta=0:0.5:90; for j=1:length(theta); fai(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num1*d)); psi(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num2*d)); beta(j)=theta(j)*pi/180-asin(sin(theta(j)*pi/180)-lamda/(element_num3*d)); end figure; plot(theta,fai,'r',theta,psi,'b',theta,beta,'g'),grid on xlabel('theta'); ylabel('Width in radians') title('波束宽度与波达方向及阵元数的关系') 仿真图如下:

阵列信号处理

宽带信号中的三种二维平面阵DOA估计

宽带信号中的三种二维平面阵DOA 估计 一. 背景 目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。 由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。 ISM 方法把宽带信号在频域分解为J 个窄带分量,然后在每一个子带上直接进行窄带处理。因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。 二维DOA 估计是阵列信号处理中的重要内容,通过二维DOA 估计可以得到信号源在平面中的角度信息。一般采用L 型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA 估计算法是在一维DOA 估计的基础上,直接针对空间二维谱提出的,如二维MUSIC 算法以及二维CAPON 算法等。这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。 本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。 二. 算法介绍 1. 接收信号模型: 图 1 平面阵列示意图 如图1所示,设平面阵元数为M ×N ,信源数为K 。信源的波达方向为11(,),,(,)k k θφθφ , 第i 个阵元与参考阵元之间的波程差为: 2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++ 设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为

阵列信号处理对角加载算法matlab程序

%----------对角加载(LSMI 和SMI)方向图----------------------- %总结:这种算法主要给出了一种对角加载值的计算方法,对误差具有一定的稳健性,研究发现 %当数据协方差矩阵中含有信号分量会影响算法的性能。 clearall;clearall;clc; ratio_d_and_w=0.5; N_array=20;%阵列数 N_signal=60;% 样本数 ang1=0*pi/180;%所需信号的方向 SNR=5;%信噪比 ASd=sqrt(10.^(SNR/10)); ang2=40*pi/180;%干扰信号的方向 INR=45;%干噪比 ASi=sqrt(10.^(INR/10)); Sd=ASd*(randn(1,N_signal)+i*randn(1,N_signal));%Sd为所需信号 Si=ASi*(randn(1,N_signal)+i*randn(1,N_signal));%Si为干扰信号 Ni=randn(N_array,N_signal)+i*randn(N_array,N_signal);%Ni内噪声 Desired_Array=zeros(N_array,N_signal); Interferential_Array=zeros(N_array,N_signal); for LL=1:N_signal Interferential_Array(:,LL)=Si(LL)*test(ang2,N_array,ratio_d_and_w).'; Desired_Array(:,LL)=Sd(LL)*test(ang1,N_array,ratio_d_and_w).'; end X=zeros(N_array,N_signal); X= Interferential_Array +Ni; Rx=X*X'/N_signal; mm=std(diag(Rx));%对角加载值的确定下限 %mm=trace(Rx)/N_array;%对角加载值的确定上限 R1=Rx+mm*eye(size(Rx)); R=inv(R1); A_est=test(ang1,N_array,ratio_d_and_w); C= A_est; w_SMI=R*C/(C'*R*C);%对角加载 w_LSMI=inv(Rx)*C/(C'*inv(Rx)*C);%普通的Capon算法

阵列信号处理作业

阵列信号处理课程2011年作业 第1题 假定半波长间隔均匀分布线列阵的阵元数N =16,若入射平面波为62.5Hz 的正弦信号,信号持续时间为0.4s ,系统采样频率为1kHz ,阵列加权方式为均匀加权。分别给出 1. 当平面波信号分别从0,10, 20, 30, 40, 50, 60, 70, 80, 90, 100度方向入射时,指向90度的波束形成器的输出序列。 2. 当平面波信号分别从0:1:180度方向入射时,指向90度的波束形成器的输出序列经过平方求和后的分贝数输出。(把所有181个输出绘制在同一幅图中) 1)仿真图 图一:所求角度入射信号输出序列三维表示 注: 1. θ为信号入射角度,取值从0度到100度,每10°为一个间隔; 2. T 为整个阵元采样时间,对于不同的入射角度,t 的取值范围不同; 3. 输出信号幅度表示所有阵元的求和输出幅度,为有噪声情况。 结论: 0.8 t 输出信号幅度

从图一可以看出:①从90°入射的信号输出序列没有得到衰减,而其它角度入射的都得到了衰减;②从100°入射的信号和从80°入射的信号输出序列关于90°方向是对称的;③整个阵列对噪声有很好的抑制作用。 图二:入射信号0°到50°的输出序列 图三:入射信号60°到100°的输出序列 结论: 从图二和图三可以看出:①图一的所有结论;②90°方向入射信号没 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 0。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 10。 0.10.20.30.40.5 -0.2 -0.100.1 0.2 t A m p l i t u d e 20。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 30。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 40。 0.10.20.30.40.5 -0.1 -0.0500.05 0.1 t A m p l i t u d e 50。 0.10.2 0.30.40.5 t A m p l i t u d e 60。 0.1 0.20.30.4 t A m p l i t u d e 70。 0.1 0.20.30.4 t A m p l i t u d e 80。 0.1 0.20.30.4 t A m p l i t u d e 90。 0.1 0.20.30.4 t A m p l i t u d e 100。

阵列信号处理—music、Capon

宽带信号中的三种二维平面阵DOA估计宽带信号中的三种二维平面阵DOA估计

一. 背景 目前关于阵列窄带信号的高分辨算法已比较成熟,但是随着信号处理技术的发展,信号环境日趋复杂,信号形式多样,信号密度日渐增大,窄带阵列探测系统的确定逐渐显示出来。 由于宽带信号具有目标回波携带的信息量大,有利于目标探测、参量估计和目标特征提取等特点,在有源探测系统中越来越多地得到应用。而在无源探测系统中,利用目标辐射的宽带连续谱进行目标检测是有效发现目标的一种重要手段。 ISM 方法把宽带信号在频域分解为J 个窄带分量,然后在每一个子带上直接进行窄带处理。因为信号为调频信号,所以信号在时域的分段实际上就是频域的分段。将信号分解为窄带信号后,我们就可以利用窄带算法进行处理,最后将各个结果进行加权综合,即可得到最终的结果。 二维DOA 估计是阵列信号处理中的重要内容,通过二维DOA 估计可以得到信号源在平面中的角度信息。一般采用L 型、面阵和平行阵或矢量传感器实现二维参数的估计,多数有效的二维DOA 估计算法是在一维DOA 估计的基础上,直接针对空间二维谱提出的,如二维MUSIC 算法以及二维CAPON 算法等。这两种算法可以产生渐进无偏估计,但要在二维参数空间搜索谱峰,计算量相当大。而采用二维ROOT MUSIC 算法可以减小计算量,但是需要付出精度下降的代价。 本次报告将结合宽带信号和二维DOA 估计算法,进行相关的算法介绍和仿真。 二. 算法介绍 1. 接收信号模型: 图 1 平面阵列示意图 如图1所示,设平面阵元数为M ×N ,信源数为K 。信源的波达方向为11(,),,(,)k k θφθφ , 第i 个阵元与参考阵元之间的波程差为: 2(cos sin sin sin cos )/i i i x y z βπφθφθθλ=++ 设子阵1沿x 轴的方向矩阵为x A ,而子阵2的每个阵元相对于参考阵元的波程差就等于子阵1的阵元的波程差加上2sin sin /d πφθλ,所以接收信号为

阵列信号处理仿真作业

阵列信号处理仿真作业 需要解决的问题: 使用优化算法(可以使用遗传算法)挑选旁瓣相消的阵元 要求:(只需要选择一个突破点即可) ①可以针对不同类型的干扰、连片杂波、地杂波或密集型干扰等进行优化 ②也可以考虑存在阵列误差 下面我们针对第一个突破点进行仿真: 一、基本原理 图1给出了一般阵元级部分自适应处理的框图,通常称为多旁瓣相消器。 1 N H x 图1. 多旁瓣相消器结构部分自适应处理框图 如图1所示,整个天线阵的阵元加导向矢量权及用于压低旁瓣的锥削,可得到主通道输出0()m t ,0()m t 的方向图就指向目标方向,而从天线阵中选出M 个阵元作自适应单元,自适应单元加权为H x W ,于是得到主通道输出 00()()H m t t =W X ,辅助通道输出为()H x t W Y 。所以整个自适应信号处理器的输出为 0()()()H x e t m t t =-W Y (1) 其中0()m t 表示为主通道的输出;12[,,,]T M y y y =Y L 为选取的辅助单元接收的信 号;12[,,,]H T x M w w w ***=W L 为自适应权值;()H x t W Y 为形成辅助通道的输出。 在最小均方误差的准则下,求出的自适应权值就演变成为一个优化问题 220min ()min ()()H x E e t E m t t ?????-?????? W Y (2) 得

1 0()()()()H H x E t t E t m t -* ????=????W Y Y Y (3) 为了保证目标信号不损失,应对自适应权作约束,约束条件是在目标信号的 方向上,阵列自适应处理的增益为一常数。即在权值调整过程中,无论权x W 怎 样变化,对有用信号的增益不变。这样在使自适应阵输出()e t 的均方值2 ()E e t ?? ?? 最小时,能最大限度地抑制干扰且不损失有用信号能量。图1中应用式( 2) 的无 约束优化方程显然不合理,它不能保证有用信号增益不变。即由于辅助通道中包含有用信号的能量,就会导致辅助阵元中目标信号分量与主通道中目标信号相减,引起目标信号对消,导致目标增益下降。对此,应设法阻塞目标信号进入辅助支路,避免信号对消现象。一种方法是在优化方程中加入单位增益约束,强制目标方向增益不变,这样的优化方程求解比较麻烦,而且不适合自适应单元自动选取的算法。 这里,采用信号阻塞矩阵来抑制目标信号,使目标信号能量不能进入辅助通道。 0=X JX (4) 其中12[,,,]T N x x x =X L 为阵列信号;01020(1)0[,,,]T N x x x -=X L ;J 为信号阻塞矩阵(N -1)×N 。 在一般情况下,信号到达角为0θ,则信号阻塞矩阵J 可表示为 00001exp(())001exp(())01exp(())0 001exp(())j j j j ?θ?θ?θ?θ??--??--=??--??--??J L L L L 其中002()sin()d π?θθλ =,当00θ=?时,阻塞矩阵变为 11000110 0000 11-??-????=? ?????-?? J L L L L L L L L 这样就得到整个自适应系统框图(图2)。 图2中上支路为主通道, 保证信号完全通过,其加权为导向矢量权和压低旁瓣的锥削。下支路为辅助支路,信号阻塞矩阵阻止信号能量通过,将N 个阵元信号变成N -1个信号(降维),然后由辅助单元选择通路并选择参与自适应的单元,加自适应权后与上支路信号相减,得到自适应输出。

阵列信号处理中基于MUSIC算法的空间谱估计

万方数据

软件时空量,各阵元噪声满足空时白噪声的假设条件,即: E[n(t)nH(f—f)】_盯28(r)x E[n(t)n7(卜f)】-0(6) 阵列输出向量的二阶统计量用其外积的统计平 均表示,称之为阵列相关矩阵(将观测向量零均值化 则得到协方差矩阵)。定义为: R=E[x(t)xH(f)】-ARsAH+仃2,(7) 式中R=E[s(t)s爿(f)】为信号的相关矩阵。 相关矩阵是阵列处理的基础,对R进行特征分图2单目标MUSIC法的空间谱 解,根据信号子空间和噪声子空间的正交性可以实现仿真参数:(1)单目标情况:目标为200H:的单频高分辨的目标方位估计。易证,R=RH,这说明阵列协方正弦信号,目标方位角为60。,噪声为零均值的高斯白差矩阵属于Hermitian矩阵,其特征值为正值。令特征噪声,仿真分析的快拍数为128。 值为hi(i=l…2一M),对应的特征向量为斗i(i=1…2一M),协(2)两目标情况:目标1和目标2均为200H:的方差矩阵的特征分解可写成:单频正弦信号,目标方位角分别为30。和45。,噪声为R=UAUH=y.缸∥,(8)零均值的高斯白噪声,仿真分析的快拍数为128。 式中u:【u。,ui=:1,--.,HM]为由特征向量组成的酉矩。。仿妻竺果:单目标情况如图2所示,两目标情况阵;A=diag[&,五,...,知]为特征值构成的对角矩阵。如图啬霎磊染说明:空间谱中的峰值的高度并不表明将R的特征值按降序排列,根据特征值的大小可相应方位上的信号强度。增加阵元个数可以提高目标以将特征向量分成两部分,Us=[U。,u:,...,ud为前P个最分辨力。 大特征值对应的特征向量构成的酉矩阵,其张成的空 间称为信号子空间,U。=[u吣u嵋…,u嗣为后M—P个最小 特征值对应的特征向量构成的酉矩阵,其张成的空间 称为噪声子空间。假设信号相关矩阵R。=E【S(t)SH(t)】 非奇异,即各信号非相干,可以证明阵列方向矩阵A 和信号子空间张成的子空间相同。又因为u=[u。,Ud为 酉矩阵,所以有usHU#O。 由此可以定义MUSIC算法的空间谱为: 删2蔬丽1(9)对以上空间谱进行峰值搜索可以得到波达方向的估计6;,i=l…2..,P。 实际中,R是未知的,可以由观测的数据向量估计,估计式为 食=专善z(力xH(力‘1。’对食进行特征分解得到噪声子空间的估计,进而得到MUSIC空间谱和波达方向的估计。 2Matlab计算机仿真 下面对上面讨论的MUSIC算法用Matlab做计算机仿真。假设阵列为9阵元的等距均匀线列阵,阵元间距为信号中心频率对应的半波长,用该线阵来分别处理单个目标和两个目标信号源同时出现的情况。 图3两目标MUSIC法的空间谱 3结论 通过对MUSIC算法的分析,从理论和系统仿真两方面证明将此法用于确定目标方位角的实用价值。是一种有效的测量目标方位角的方法。MUSIC法对所有的特征向量重新加了权.噪声特征向量的权值为1.而信号特征向量的权值为0。对到达阵列的当前中的许多重要参数,如入射信号的个数,信号的入射方位、强度、入射波前的相关性以及噪声或干扰的强度等等,MUSIC法都可以给出渐近无偏的估计。对于本文所讨论的空间谱估计的问题。MUSIC法给出的谱要平滑得多,而且在信号方向上峰值又非常尖锐。除去不能分辨强相关或相干信号以外,MUSIC法的主要缺点在于在搜索过程中使用了所有的噪声特征向量.从而导致较大的计算量。 参考文献: [1】R.0.Schmidt:Multipleemitterlocationandsignalparameter(转292页1 @㈨同邮局订阮82?946 360,,L/_303—    万方数据

阵列信号处理课件西电

如对您有帮助,请购买打赏,谢谢您! 信号子空间: 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ==+∑ 在无噪声条件下,()()()()()12,,,P x t span a a a θθθ∈ 称()()()()12,, ,P span a a a θθθ为信号子空间,是N 维线性空间中的P 维子空间,记为 P N S 。 P N S 的正交补空间称为噪声子空间,记为N P N N -。 正交投影 设子空间m S R ∈,如果线性变换P 满足, 则称线性变换P 为正交投影。 导向矢量、阵列流形 设N 元阵接收p 个信源,则其信号模型为:()()()()1 p i i i i x t s t a N t θ== +∑, 其中矢量()i i a θ称为导向矢量,当改变空间角θ,使其在空间扫描,所形成的矩阵称为阵列流形,用符号A 表示,即(){|(0,2)}a A θθπ=∈ 波束形成 波束形成(空域滤波)技术与时间滤波相类似,是对采样数据作加权求和,以增强特定方向信号的功率,即()()()()H H y t W X t s t W a θ==,通过加权系数W 实现对θ的 选择。 最大似然 已知一组服从某概率模型() f X θ的样本集12,,,N X X X ,其中θ为参数集合,使条件概 率()12,, ,N f X X X θ最大的参数θ估计称为最大似然估计。 不同几何形态的阵列的阵列流形矢量计算问题 假设有P 个信源,N 元阵列,则先建立阵列的几何模型求第i 个信源的导向矢量()i i a θ 选择阵元中的一个作为第一阵元,其导向矢量()1[1]i a θ= 然后根据阵列的几何模型求得其他各阵元与第一阵元之间的波程差n ?,则确定其导向矢量

阵列信号处理中DOA算法分类总结(大全)

阵列信号处理中的DOA(窄带) 空域滤波 波束形成:主要研究信号发射/接收过程中的信号增强。 空间谱估计 空域参数估计:从而对目标进行定位/给空域滤波提供空域参数。 测向波达方向估计(DOA) 空间谱:输出功率P关于波达角θ的函数,P(θ). 延迟——相加法/经典波束形成器注,延迟相加法和CBF法本质相同,仅仅是CBF法的最优权向量是归一化了的。

1、传统法常规波束形成CBF/Bartlett波束形成器 常规波束形成(CBF:Conventional Beam Former) Capon最小方差法/Capon 波束形成器/MVDR波束形成器 最小方差无畸变响应(MVDR:minimum variance distortionless response)Root-MUSIC算法

多重信号分类法解相干的MUSIC算法(MUSIC) 基于波束空间的MUSIC算法 2、[object Object]

TAM 旋转不变子空间法 LS-ESPRIT (ESPRIT) TLS-ESPRIT 确定性最大似然法(DML:deterministic ML) 3、最大似然法 随机性最大似然法(SML:stochastic ML)

4、综合法:特性恢复与子空间法相结合的综合法,首先利用特征恢复方案区分多个信号,估计空间特征,进而采用子空间法确定波达方向 最大似然估计法是最优的方法,即便是在信噪比很低的环境下仍然具有良好的性能,但是通常计算量很大。同子空间方法不同的是,最大似然法在原信号为相关信号的情况下也能保持良好的性能。 阵列流形矩阵(导向矢量矩阵)只要确定了阵列各阵元之间的延迟τ,就可以很容易地得出一个特定阵列天线的阵列流形矩阵A。 传统的波达方向估计方法是基于波束形成和零波导引概念的,并没有利用接收信号向量的模型(或信号和噪声的统计特性)。知道阵列流形 A 以后,可以对阵列进行电子导引,利用电子导引可以把波束调整到任意方向上,从而寻找输出功率的峰值。 ①常规波束形成(CBF)法 CBF法,也称延迟—相加法/经典波束形成器法/傅里叶法/Bartlett波束形成法,是最简单的DOA 估计方法之一。这种算法是使波束形成器的输出功率相对于某个信号为最大。 (参考自:阵列信号处理中DOA估计及DBF技术研究_赵娜)注意:理解信号模型

阵列信号处理答案

1.(1)关于接收天线阵列的假设。接收阵列由位于空间已知坐标处的无源阵元按一定的形式排列而成。假设阵元的接收特性仅与其位置有关而与其尺寸无关(认为其是一个点),并且阵元都是全向阵元,增益均相等,相互之间的互耦忽略不计。阵元接收信号时将产生噪声,假设其为加性高斯白噪声,各阵元上的噪声相互统计独立,且噪声与信号是统计独立的。 (2)关于空间源信号的假设。假设空间信号的传播介质是均匀且各向同性的,这时空间信号在介质中按直线传播,同时又假设阵列处在空间信号辐射的远场中,所以空间源信号到达阵列时可以看做是一束平行的平面波,空间源信号到达阵列各阵元在时间上的不同延时,可由阵列的几何结构和空间波的来向所决定。空间波的来向在三维空间中常用仰角和方位角来表征。其次,在建立阵列信号模型时,还常常要区分空间源信号是窄带信号还是宽带信号。所谓窄带信号是指相对于信号(复信号)的载频而言,信号包络的带宽很窄(包络是慢变的),因此在同一时刻,该类信号对阵列各阵元的不同影响仅在于因其到达各阵元的波程不同而导致的相位差异。 2.自适应波束形成亦称空域滤波,是阵列处理的一个主要方面,逐步成为阵列信号处理的标志之一,其实质是通过对各阵元加权进行空域滤波,来达到增强期望信号、抑制干扰的目的;而且可以根据信号环境的变化自适应嘚改变各阵元的加权因子。虽然阵列天线的方向图是全方向的,但阵列的输出经过加权求和后,可以被调整到阵列接收的方向增益聚集在一个方向,相当于形成了一个波束,这就是波束形成的物理意义所在。波束形成技术的基本思想是:通过将各阵元输出进行加权求和,将天线阵列波束导向到一个方向上,对期望信号得到最大输出功率的导向位置即给出波达方向估计。 3. ULA :()1exp(2sin ) exp(2(1)sin )T k k k d d j j M θπθπθλλ?? =---???? α L 阵:(,)[(,),(,)]T x y a a a θφθφθφ=,其中 2sin cos 2(1)sin cos (,)[1,...],,T j d j M x a e e πθφπθφθφ---= 2s i n s i n 22s i n s i n 2(1 ...(,)[,,,] j d j d j M T y a e e e πθφπθφπθφθφ----= 面阵: 12()()()M D D D ?? ?? ??=??????? ?x y x y x y A A A A A A A ,其中1 1 2 2 1 1 2 2 2cos sin /2cos sin /2cos sin /2(1)cos sin /2(1)cos sin /2(1)cos sin /111 K K K K j d j d j d x j d M j d M j d M e e e e e e πθφλπθφλπθφλ πθφλ πθφλπθφλ---------?? ????=? ? ???? A

阵列信号处理中的DOA估计算法

阵列信号处理中的DOA估计算法 摘要:本文简要介绍了阵列信号处理的基本知识和其数学模型,并且对阵列信号处理中很重要的来波方向(DOA)估计方法进行了比较,主要包括古典谱估计方法、Capon最小方差法、多重信号分类(MUSIC)算法以及旋转不变因子空间(ESPRIT)算法。通过这些算法的介绍和比较,我们可以很方便地在不同的情况下选择不同的算法去对信号的来波方向进行估计。 关键词:阵列信号处理;来波方向(DOA);MUSIC;自相关矩阵;特征分解;ESPRIT DOA Estimation Algorithms in Array Signal Processing Abstract:In this paper, we have introduced the basic knowledge and data model of array signal processing and have compared many DOA estimation methods in array signal processing,which included classical spectrum estimation method、Capon minimum variance method、MUSIC method and ESPRIT method。Through the introduction and comparison of these algorithms,we can choose different algorithm to estimate the DOA of signal in different situation,conveniently。Key word s:array signal processing;DOA;MUSIC;self-correction matrix;eigendecomposition; ESPRIT 1.引言 近几十年来,阵列信号处理作为信号处理的一个重要分支,在声纳、雷达、通信以及医学诊断等领域得到了相当广泛的应用和发展。阵列信号处理是指在一定大小空间的不同位置去设置传感器,组成传感器阵列,利用传感器阵列去接收空间中的信号并且通过一定的方法对接收的信号进行处理。阵列信号处理的目的是为了增强有用的信号,抑制无用的干扰和噪声,并且从接收的信号中提取出有用信号的特征以及信号所包含的信息。与传统的单个定向传感相比,传感器阵列具有比较高的信号增益、灵活的波束控制、很高的空间分辨率以及极强的干扰抑制能力。阵列信号处理研究的主要问题包括[5]:空间谱估计——对空间信号波达方向进行超分辨估计;零点形成技术——使天线的零点对准干扰方向;波束形成技术——使阵列方向图的主瓣指向所需的方向。其研究的三个主要方向分别在不同的时期进行了不同的主要研究,这三个阶段分别是: 1、20世纪60年代主要集中在波束形成技术方面[1],如自适应相控天线、自适应波束操控天线和自适应聚束天线等,主要目的是使阵列方向图的主瓣指向所需要的方向。 2、20世纪70年代主要集中在零点形成技术方面[2],如自适应置零技术、自适应调零技术、自适应杂波抑制和自适应旁瓣相消等,可以提高信号输出的信噪比(SNR)。 3、20世纪80年代主要集中在空间谱估计方面[3],如最大似然谱估计、最大熵谱估计、子空间谱估计等,它是现代谱估计理论与自适应阵列技术结合的产物,主要是研究在阵列处理带宽内空间信号的波达方向的估计问题,这标志着阵列信号处理研究的重大变化。 信号的波达方向(DOA)估计是阵列信号处理领域的一个非常重要的研究内容。信号的DOA估计算法大多是一种极值搜索法,即首先形成一个包含待估计参数的函数(一般是一个伪谱函数),然后通过对该函数进行峰值搜索,得到的极值就是信号的波达方向。这些算法主要包括:1965年Bartlett基于波束形成的思想提出的DOA估计算法,但是该算法不能分辨出两个空间距离小于波束宽度的信号源。1968年Schweppe首先研究了虽大似然估计算法(ML),但是比较重要的还是后来Capon提出的高进度的ML,该算法对于服从高斯分布的信源估计可以达到克劳—拉美界,但是需要对接收阵列数据的自相关矩阵进行求了逆运算,运算量相当大。1979年Schmidt提出了多重信号分类法[4](Multiple Signal Classification,MUSIC)以及各种改进的MUSIC算法等,它们都需要进行特征值分解运算,可以得到比较高精度的参数估计,但是计算量太大。1985年Roy和Kailath提出了一种借助旋转不变技术的参数估计算法[6](Estimating Signal Via Rotational Invariance Techniques,ESPRIT),它是利用阵列流行的某些特性形成一个可以直接求解的函数,能够比较方便的得到所需要的估计参数。在此之后,人们以MUSIC和ESPRIT为基础,提出了各种各样的算法,例如最小范数法[7]、ROOT-MUSIC[8]、TLS-ESPRIT[9]等。这些不同的算法是基于不同的理论提出的,并且建立在不同的约束条件之下,所以其特性和适用对象也会不同。 2.数据模型 2.1平面波与阵列

阵列信号处理中几种关键技术的研究

第25卷第4期 杭州电子科技大学学报V ol.25,N o.4 2005年8月Journal of Hangzh ou Dianzi University Aug.2005  阵列信号处理中几种关键技术的研究 王文勇1,陆安南2 (1.杭州电子科技大学通信工程学院,浙江杭州310018; 2.中国电子科技集团第36研究所,浙江嘉兴314001) 收稿日期:2004-09-17 作者简介:王文勇(1976-),男,安徽凤阳人,在读研究生,信号处理. 摘要:阵列信号处理技术的工程化研究日益成为其走向实际应用的重要步骤。该文首先介绍了阵 列信号处理实验系统的硬件组成,并在此基础上,分析了两种阵列信号处理的关键技术———谱估 计法中M USIC 算法和空间零点预处理波束形成技术,最后文章通过该实验系统对此两种处理技术 的有效性进行了验证。实验结果表明:M USIC 算法具有良好的测向精度,而空间零点预处理波束 形成技术具有较强信号分离能力。 关键词:阵列信号处理;空间谱估计;数字波束形成 中图分类号:T N914.53 文献标识码:A 文章编号:1001-9146(2005)04-0016-03 0 引 言 阵列信号处理是现代信号处理的一个重要分支,其本质是利用空间分散排列的传感器阵列和多通道接收机来获取信号的时域和空域等多维信息,以达到检测信号和提取其参数的目的。迄今为止,阵列信号处理的应用范围已经涉及诸如雷达、声纳、导航等领域。阵列信号处理的主要内容可分为波束形成技术、零点技术及空间谱估计技术等方面,它们都是基于对信号进行空间采样的数据进行处理,因此这些技术是相互渗透和相互关联的。波束形成技术的主要目的是要使阵列天线方向图的主瓣指向所需的方向,零点技术的主要目的是使天线的零点对准干扰方方向,前者是提高阵列输出所需要信号的强度,后者是减小干扰信号的强度,实质上都是提高阵列输出的信噪比的问题。而空间谱估计则主要研究信号到达方向(DOA )的问题。若将这几种技术结合,就会对空域信号处理的性能有很大的提高。 1 系统组成 一般阵列信号处理实验系统主要由3个部分组成:阵列天线、多通道接收机、以及阵列信号处理器。如图1所示 。 图1 阵列信号处理实验系统硬件基本结构 该文采用的阵列天线为9单元均匀圆阵,阵列半径为0.56m 。多通道数字接收机完成下变频、D/A 以及数字信号的Hilbert 变换。阵列信号处理器是实验系统的核心部分,进行的计算包括空间谱估计、波束形成及信号分离。由于考虑阵列信号处理的计算量巨大,其中包括有复矩阵的计算,为了满足对计算速度和实时性的要求,在本系统中阵列信号处理器采用两片高速数字信号处理专用芯片(DSP ),一片用来实现空间谱估计,另一片用来实现波束形成和信号分离。处理器的结构原理如图2所示。 由图2可见,信号既可以通过PCI 接口进入处理器,也可以通过DSP 的链路口进入处理器。利用一片接口芯片PCI9054实现和PCI 总线的通信。数字信号处理专用芯片通过两片FIFO 挂到本地总线的数据线上,这样就把双向接口设计为两个单项接口,即在当DSP 需要传输数据时,先把数据放入FIFO 中,然后通知主机已有数据输出,主机在任意时刻读出数据,完成DSP 到主机的数据传输;反之亦然。这样

相关文档
最新文档