OCL功放电路的分析

OCL功放电路的分析
OCL功放电路的分析

§(OCL )功放电路的分析教案

授课人:周克建

学习目标:1、分析该电路的工作特点 2、分析该电路的工作原理

计划课时:2学时

教学重点:分析该电路的工作原理

教学难点:分析该电路的工作原理

教学方法:当堂练习、小组讨论、软件仿真 投影教学 〖本节课的学习目标〗

1、学生了解该电路的工作特点

2、学生能分析该电路的工作原理 教学过程

课前通过预习卡预习

一、 课堂引入(5分钟)

通过仿真了解OCL 功率放大器放大现象让同学知道本节课的主要内容。

Q1

2N2102Q2

2N2904

VDD 12V

VEE -12V V11 Vpk 500 Hz 0°

XSC1

Tektronix

1234

T

G

P 7VDD 2

VEE

了解其优点

二、课堂自学讨论并提问(15分钟)

利用以下的问题引出今天上课的重点内容

1、功放电路的主要要求是什么?

A、有足够的输出功率

B、功放管散热要好

C、非线性失真要小

D、效率要高

2、怎么设计才能满足第一要求?

A.功放管应该工作在极限状态

B.输入到功放电路的信号电压要足够的强3、怎么设计才能满足第二要求?

A .采用大功率三极管

B .给功放管装散热片

C .采用过载保护措施

4、怎么设计才能满足第三要求?

设计原理是什么?

设立静态工作点三极管工作于放大状态

回忆以前讲解的共射放大电路其实就是一种典型的功放

只有给放大电路设立合适的静态工作点就能避免三极管所带来的非线性失真 利用仿真来观察其波形了解其特点

5、怎么设计才能满足第四要求?

设计原理是什么?

不设立静态工作点,三极管工作于截止状态 根据效率公式:PO /PDC

可知只有减小静态工作点所带来的损耗才能提高效率

u – + u – +

+U

T R L -U

T

A u

i C

i C u

利用仿真来观察其波形了解其特点

6、综合以上所设计的电路都存在各自的什么优缺点?

A .虽然无失真当效率低只有50%(甲类)

B .虽然效率高达87.5%但出现了失真(交越失真)(乙类)

通过仿真来了解它们各自的特点

7、怎么设计才能设计完美的功放电路?

既要减小失真又要提高效率 设计原理是什么?

根据上面两种电路可知要满足以上的要求只有把静态工作点设计在放大状态与截止之间(微导通状态)(甲乙类)

三、老师与同学们一起在课堂讨论解决难点、重点 (OCL 功放电路的工作特点与原理)(重点)(15分钟) 利用仿真来观察其波形了解其特点

采用乙类状态效率最高, 但严重失真,如何解决?

结论

T 1

R

+U

T 2

-U C

R 1 R 2

D D

下面分析重要电路(OCL ) 1、电路特点:采用双电源供电

2、电路的组成:T1 T2 功放对管

D1 D2 由二极管提供正向偏压

3、效率的计算公式

η=78.5%

4、工作原理:

该问题老师与同学们一起在课堂讨论解决 (难点、重点)

四、课堂练习(5分钟)

思考:怎么设计可以采用单电源供电的功放电路?

提问解决

五、反馈(学生提问,老师作答)(5分钟)

1、小组共性问题反馈

2、个人知识盲点的反馈

静态时(输入端电位为零):输出端电位为零 信号正半周时:T 1导通 ,T 2截止,+U C C 供电 信号负半周时:T 1截止, T 2导通, -U C C 供电

信号变化一周时:i C 1、i C 2以相反方向流过负载,R L 上获得完整波形。

效率η

=

负载上交流输出功率P O

电源供给的功率P E

六、课后练习

练习书90第4题

用分立元件设计制作互补对称式功率放大器

用分立元件设计制作互补对称式功率放大器 2008-08-18 13:49:31 作者:未知来源:中国电子网 关键字:功率放大器运放达林顿管恒流源工作电流稳压管差动放大器电压放大集电极元件 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。其中:C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3C2>1/10、(R3+R4)Ic1=E/2-1.2,因R4 是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。 BG1起电压放大作用,在该电路中被称为激励级,要求Buceo>E、Iceo≤Ic1/400=5μA、β=100~200,所以应选用小功率低噪声三极管。BG2和BG3是互补电流放大极,分别与BG4、BG5构成复合管对输出电流进行放大,要求Buceo>E、Iceo≤Ic2/100=30μA、β=100~200。在BG4、BG5使用普通大功率三级管而不是内部已经做成复合式大功率三级管的情况下,BG2与BG3需要提供给后级大功率三级管超过100mA的峰值驱动电流,因此应使用中功率三级管。BG4和BG5是负责放大输出电流的大功率管,静态工作电流可取在10mA~30mA,要求Buceo>E、Iceo≤Ic4/100=0.1mA、β=50~100。BG4和BG5的最大极限电流Imax应该比输出电流最大幅值大1倍,方能保证输出电流最大幅值时β>10。 R6和R7分别是BG4和BG5静态工作点调整分流电阻,动态工作时的分流作用可以忽略不计。在Ube4和Ube5都等于0.6V标准参数时,由互补电流放大级的静态工作电流

分立元件OTL功放资料全

典型OTL音频功率放大器组装与维修 场景描述 OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。 本任务流程如图3-1-1所示。 图3-1-1任务流程图 一、实训工具及器材准备 完成本次实训任务所需工具及器材见表3-1-1。 表3-1-1拆装与检修动圈式扬声器实训工具及器材准备

二、简易OTL音频功率放大器组装 (一)电路原理的熟悉 1、电路特点 本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。电路包括: A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。 B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。图中以VT3、VT4为核心组成的电路完成功率放大功能。 C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。改变R8的阻值可以改变功放管的静态电流。 D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。 2、电路原理和各元件的作用 图3-1-2简易OTL功放电路原理图

音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。 第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。C3为输入隔直耦合电容。R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。直流耦合就等于直接耦合,所以,信号传输没有损耗,电路工作效率很高。 C4、R4、R5组成负反馈电路,对于直流而言,C4表现出无穷大的阻抗,这可以使直流工作点非常稳定。对交流来说,C4相当于短路,R4和R5的比值决定了放大倍数。R5为零欧姆时,增益最大,灵敏度极高。我们一般可以根据实际情况在10-100欧姆中取值。 第二级共射极放大:以VT2为核心构成的放大电路。VT2是推动级放大管。输入信号经过VT1、VT2两级放大后,具备了驱动VT3、VT4(输出级)的能力。本功放电路只有三级,主要由第一二级(VT1、VT2)决定最大放大倍数,第三级(VT3、VT4)决定最大电流的驱动能力,想要电路放大倍数大,VT1、VT2要选放大倍数大的三极管,想要带负载能力强,VT3、VT4应该用大功率大电流的三极管,当然,放大倍数也不能太小。 C6是中和电容,起高频负反馈作用,该电容主要是为了减小高频的增益,当高频过强时,听起来会感觉声音尖、剌耳,当高频增益太强时,甚至出现高频寄生振荡,严重影响功放电路效率和音质。该电容一般取值在47-4700PF之间,要求不严时也可以取消。 VT3、VT4这对末级互补输出对管在工作时会发出较大的热量。改变R8可以改变VT3、VT4的工作电流,随着温度的升高,VT3、VT4的电流还会自动变大,电流变大就会更加发热,更加发热就会电流更加变大,这是一个恶性循环,所以,要求严格时,R8应该使用负温度系数的热敏电阻,并且紧挨着VT3、VT4感受温度来补偿VT3、VT4的电流变化。 R8和VD5、R6和R7、VT3的CE极三部分共同组成VT3、VT4的偏置电路,保证VT3、VT4在无信号时输出中点电压。R8和VD5千万不能开路,否则VT3、VT4会有很大的基极电流,导致VT3、VT4的集电极电流剧增,立即发热烧坏。但是,R8和VD5的分压也不能太低,否则,在小信号时会听出明显的截止失真(和交越失真相同)。这种失真只在小信号时才有明显的反应。在高档功放电路中,VD5和R8会用其它元件代替,同时还会引入温度补偿。 R6、R7主要是给VT3、VT4提供基极偏置电流。当信号正半周时,VT3基极电压会上升,R6、R7两端的电压会变小,将不能给VT3提供足够大的基极电流。由于C5自举电容的出现,信号正半周时会将C5的正极电压也“举”高,这就可以通过R7

一个简单功放设计制作与电路图分析

一个简单功放设计制作与电路图分析|电路图 - dickmoore的日志 - 网易博客 默认分类 2009-11-09 19:01 阅读32 评论0 字号:大中小 一个简单功放设计制作与电路图分析|电路图 电子资料 2009-11-06 11:15 功放电路图 一个简单功放设计制作与电路图分析 我的电脑音响坏了快一年了,每次看电影都用耳机,每次用的耳朵都痛,很不爽.因此就想亲手做一个小功放用用,前几天又去了趟电子市场发现有LM386,很便宜,所以干脆用386做了一个单声道的功放先用着,有时间把另外一个声道也加上.在这里把功放设计到调试基本完成的过程写写,纪念这个过程. 1.设计 我们是听听就算的门外汉,对20~20K的音域也不是完全敏感.所以幅频特性不用考虑太多,但是自己要用得爽声音一定要大,因此LM386一般的输出功率肯定是不够拉(好像极限功率也就1W左右,具体还是看芯片资料吧),所以就浪费些多加个LM386做成BTL电路,提高一倍再说.设计出来的电路就是这个样子,原理很简单,就不说了 2.调试 a. 两个104的电容本来是用来隔直的,不过好像电脑主板和声卡上出来的音频都不带直流成份,而且用104时输入电平 比较高的时候声音有失真,(估计是低频过滤在输入电平高的时候人听起来比较明显).于是去掉两个104的电容. b. 在这个时候上电(我用的是12V),接上我的MP3一听,嗯!还不错,可是就是杂声比较厉害,调了调R1的大小,当R1被 调到最大的时候杂声没有了,最小的时候也没有了(这不是废话么,最小的时候输入都没有了 .把连接到功放的音频线拔了也没杂音了,原因可能有两个音频线上有电容在输入电阻R1比较小的时候,和LM386自激产生杂音,一放大就不得了了.于是决定R1就直接调到50K,音量就让MP3调去吧. c. 好像一切都没有问题了,拿到电脑上吧,刚接上去,嗯声音停大,不错!!刚以为要完事,电脑里一首歌就放完了,本来该是安静的却听见喇叭里噼噼啪啪,这个噪声奇了怪了,开始还是以为是R1的问题,索性就把R1去掉(反正LM386也不希罕从前级得到能量),噪音仍然存在,怀疑是主板上的高频噪声,于是在输入端并上一个102的电容---不起作用.这个电容也不敢并大了,大了要影响高频特性.又怀疑是功率大了C1吃不消,于是又在电源上并了一个100uF的电容,还是不行....... d. 就在这个时候用手一抓我的功放输入端的焊点,好了!没杂音了,仔细一想,原来是这样:我从电脑接出来的线是一个声

扩音机电路的设计与实现报告

扩音机电路的设计与实现报告(电子信息工程小实习) 默认分类2009-10-17 20:11:17 阅读814评论27 字号:大中小订阅 一、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。 一、摘要 扩音机电路是把微弱的声音信号放大成能推动扬声器的大功率信号,主要由运算放大器和 集成音频功率放大器构成。电路结构分为前置放大,音调控制,功率放大三部分。 前置放大主要完成小信号的放大,一般要求输入阻抗高,输出阻抗低,频带宽,噪声要小,音调控制主要是实现对输入信号高、低音的提升和衰减;功率放大器决定了整机的输出功率,要求效率高,是真尽可能小,输出功率大。 三、设计任务要求 (1 )最大输出功率0.5w,放大倍数400倍以上 (2 )负载阻抗为8 (3 )具有音调控制功能,即用两个点位期分别调节高音和低音。当输入信号为1KHz时, 输出为0dB ;当输入信号为100Hz时,调节低音电位器可以是输出功率变化12dB ;当输入信号为10KHz时,调节高音电位器也可以是输出功率变化12Db (4 )输出功率的大小连续可调,即用电位器可调节音量的大小。‘ (5 )频率响应:当高、低音调电位器处于极不提升也不衰减的位置时,-3dB的频率范围是(6)输入断短路时,噪声输出电压的有效值不超过10mv,直流输出电压不超过50mv,

静态电源电流不超过100mA 所用原器件及测试仪表清单 A )所用原器件清单 序号名称数量 1 电解电容22肝 1 2 电解电容220 y2 F 3 电解电容10诉3 4 电解电容100 y1 F 5 电解电容1 yF 1 6 二极管1N4001 2 7 电容0.01 y F 2 8 电容330 pF 1 9 电容100 pF 1 10 电容0.1 y F 2 11 电容0.22 y F 1 12 电阻100K 4 13 电阻10K 2 14 电阻22K 2 15 电阻51K 3 名称数量 电阻680 Q 1 电阻18K 1 电阻1 Q 1 电阻3.3K 1 电阻3.9K 1 电阻8.21K 1 水泥电阻 1 LF353N 2 TDA2030A 1 散热片 1 螺钉 1 序 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

音响灯光汽车功放电源电路分析

音响灯光汽车功放电源电路分析 时间:2010-09-20 10:13来源:unknown 作者:admin 点击:5次 汽车功放电源电路分析2010-06-10 18:43一。电源电路采用开关电源方式,将蓄电池的+12V直流电变换成为±22V供功放电路使用。它由一片集成电路TL494CN和几只大功率场效应管以及一只开关变压器等组成了比较典型的并联型开关稳压电路。为了提高输出功率。两路开关管均采用双管并联的方式,即Q1和Q2并联,Q3和Q4并联。在电路中,B+端接蓄电池的正极,REMOTE为开机控制端。开机时,控制电压+12V通过D4加到TL494的电源脚12脚,其14脚输出基准电压5V,13脚为输出状态控制端,当13脚接地时,两路输出晶体管同时导通或截止,形成单端工作状态。在图中,13脚与14脚相连,形成双端工作状态,其内部两路输出晶体管交替导通。TL494的⑤脚和⑥脚上外接的电阻R9和电容c4及内部电路组成振荡电路,可输出约几十千赫的振荡信号。该信号经片内处理后,从⑨脚和⑩脚输出两路相位差180度、宽度可变的调制脉冲,加到Q1、Q2和Q3、Q4的基极,使两路开关管轮流处于饱和与截止状态。在变压器B1初级得到的交流脉冲电压感应到次级绕组,经高频整流滤波后获得末级功放所需的±22V直流电压;再经过7815、7915稳压后得到±15V的直流电压作为功放前级的电源。从次级输出电压反馈回来的电压分别经R15与R13和R14与R12分压送到TL494的误差放大器的同相输入端①脚和反相输入端②脚。当输出的±22V电压不稳时,反馈到①脚和②脚的电压经片内误差放大器放大后,调整振荡脉

!用分立元件设计放大器电路教程

用分立元件设计放大器教程 一、功率放大器基本电路特点 互补对称式OTL功率放大器基本电路如图①所示。 其中: C1为信号输入偶合元件,须注意极性应于实际电路中的电位状况保持一致。R1和R2组成BG1的偏置电路,给BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100、Ic1为2mA计算,R1应不大于6k,故给定为5.1k;C1因此也相应给定为22μ,它对20Hz信号的阻抗为362Ω;R2需根据电源采用的具体电压确定,约为R1(E/2-0.6)/0.6,按照32V电压值应取为约120K,确切值通过实际调试使BG1集电极电压为15.4V来得到。 C2与R3构成自举电路,要求R3×C2>1/10、(R3+R4)×Ic1=E/2-1.2,因R4是BG1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。按照32V电源电压值和Ic1为2mA 进行计算,R3与R4之和为7.2k,实际将R3给为820Ω、R4给为6.8k,Ic1则为1.94mA;C2因此可取给为220μ。 R5和D是BG2、BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取在3mA~4mA;改变R5阻值可使BG2与BG3的基极间电压降改变而实现对其静态工作的调整,与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管发射结门坎电压随温度发生的变化,使互补管静态工作点稳定。简化电路中省略使用一只二极管。并联在BG2、BG3基极间的C4,可使动态工作时的ΔUAB减小,一般取为47μ;C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P~200P。

奇声AV-757DB功放电路原理与分析

奇声AV-757DB功放电路原理与分析 奇声A V-757DB功放电路原理与分析整机电路由系统控制、信号源选择、杜比定向逻辑解码、卡拉OK、前置、功放与保护等电路组成,如图2-63所示。 (1).系统控制电路 系统控制电路由IC501(767DB)和有关外围元件组成,如图2-64所示。 767DB是微处理器集成电路,内部结构及引脚功能(见表2-6)均与89C55基本相同。 767DB根据键矩阵电路送入的键控指令脉冲,去控制杜比环绕声解码等电路的工作,同时驱动LED显示电路显示整机的工作状态。 767DB⑦脚为复位端,外接复位电容C501。在每次开机时,+5V电压均会经C501在⑨脚产生一个高电平脉冲电压,使微处理器内部电路清零复位,进入初始化状态。 767DB⑦脚为工作模式控制端,外接控制开关K702-2,可分别选择DSP声场处理、PRO杜比定向逻辑解码、3CH三声道和2CH二声道共四种工作模式。 IC502(4094)在微处理器767DB的作用下,通过C1~C3、D1和D2的输出信号去控制杜比定向逻辑解码电路。

(2).信号源选择电路 信号源选择电路由电子开关集成电路IC001(4052)、转换开关K001和有关外围元件组成,如图2-65所示。 K001为四挡转换开关,可控制IC001⑨脚和⑩脚的电平,从而控制其内部的电子开关,分别选择ID,VCD、TAPE和TUNER四路音频信号。

(3).杜比定向逻辑解码电路 杜比定向逻辑电路由IC704(M69032P)和IC2701(YSS228)、IC702(4053)等组成,见图2-66和图2-67。 信号源选择电路选出的左、右声道音频信号分别从IC2704的(15)脚和(22)脚输人,经环绕声解码处理后的左、右声道信号分别从(32)脚和(33)脚输出,经信号直通/解码处理转换继电器J801送往前置放大电路的E端和F端。中置声道信号从(38)脚输出,经C761送往前置放大电路的C端。 解码后的环绕声道信号从IC704(39)脚输出,经IC702转换后送入IC701进行延时处理。延时处理后的环绕声信号经IC704(47)脚内部的7kHz低通滤波器滤波后从其(42)脚馈入,再经杜比B降噪电路降噪后,从(29)脚输出,经C762送往前置放大电路的D端。 IC704的(36)脚外接中置声道模式控制电路,(23)脚~(25)脚接受来自微处理器IC501的测试控制信号和IC502的调配组合转换控制信号。IC501还通过DA TA、CLK和REQ信号对IC701进行控制。 IC704(34)脚输出L+R信号,经C765、11743加至前置放大器的B端。

扩音机电路的综合测试 实验报告

第二节 预应力锚索施工 实验报告 课程名称:电路与电子技术实验Ⅱ 指导老师:张德华 成绩:__________________ 实验名称:扩音机电路的综合测试 实验类型:模拟电路实验 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一、实验目的和要求 1.熟悉集成功放的基本特点; 2.了解放大电路的频率特性及音调控制原理; 3.学习扩音机电路的测试方法,测试各项指标及电路的音调控制特性; 4.学习手工焊接和电路布局、布线、组装方法; 5.提高电子电路的综合调试能力。 二、实验内容和原理 实验内容: 1.测量各级电路的静态工作点; 2.测试前置级、音调控制级、功率放大级的电压增益和整机增益; 3.测量各项指标: ⑴最大不失真输出电压V omax ; ⑵输入灵敏度V imax ; ⑶最大输出功率P o ; 4.整机电路的频率响应; 5.整机高低音控制特性; 6.噪声电压V N ; 7.听音实验。 实验原理: 1.整机电路原理图: 专业:自动化(电气) 姓名:冷嘉昱 学号:3140100926 日期:2016.5.11&5.18 地点:东三211桌号F-2 装 订 线

2.前置级电路: 由A 1组成的前置放大电路是一个同相输入比例放大器,电路的闭环特性如下: 理想闭环电压增益: 输入电阻R if = R 1,输出电阻R of = 0 扩音机电路的增益是很高的,而扩音机的噪声主要取决于前置放大器的性能。为了减小前置级放大器的噪声,第一级要选用低噪声的运放。另外,如输入线的屏蔽情况,地线的安装等等都对噪声有很大影响。 3.音调控制级电路: 常用的音调控制电路有三种形式,一是衰减式RC 音调控制电路,其调节范围宽,但容易产生失真;另一种是反馈型音调控制电路,其调节范围小一些,但失真小;第三种是混合式音调控制电路,其电路复杂,多用于高级收录机。为使电路简单而失真又小,本音调控制电路中采用了由阻容网络组成的RC 型负反馈音调控制电路。它是通过不同的负反馈网络和输入网络造成放大器闭环放大倍数随信号频率不同而改变,从而达到音调控制的目的。 装 订 线

扩音机电路的设计

课程设计报告 课程名称:模拟电子技术基础 设计名称:扩音机电路设计 姓名: 学号: 班级: 成绩: 指导教师: 起止日期:2009年12月28日至2010年1月1日

课程设计任务书

扩音机电路的设计 一、 设计的目的和意义 (一)、实验目的 1,了解扩音机电路的形成和用途。 2,掌握音频放大电路的一种实现方法。 3,提高独立设计电路和验证试验的能力。。 (二)、意义:对以后的毕业设计打下基础,锻炼个人的学习和查阅资料的能力以及对课外相关本专业知识的了解。 二、 设计原理 扩音机电路的工作原理与音频功率放大器的工作原理相似,具有放大音频先好并将其还原纯真声音信号的电子装置。扩音机电路时一个典型的多级放大器,其原理如下图所示。 前置级主要完成对小信号的放大。一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。音调控制级主要实现对输入信号高、低音的提升和衰减。功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大。首先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。 因为P0max=8W 。所以此时的输出电压:V0=RL P m ax *0 =8V 。要使输入为5mv 的信号放大到8v 的输出,所需要的总放大倍数为1600倍,扩音机中各级增益的分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1;功率放大级电压放大倍数为20。 三、 详细设计及实验步骤 1、 前置放大级 由于信号源提供的信号非常微弱,因此在音调控制器前面要加一级前置放大级。该前置放大级的下限频率要小于音调控制器的低音转折频率,前置放大器的

BTL功放电路

BTL功放电路的原理与应用实例 2012年11月3日星期六 集成功率放大器由于不仅具有体积小、重量轻、成本低、外围元件少、安装调试简单、使用方便的优点;而且在性能上也优于分立元件,例如温度稳定性好,功耗小、失真小,特别是集成功率放大器内部还设置有过热、过电流、过电压等自动保护功能的电路对电路自行进行保护。由于集成功率放大器具有分立元件不具有的很多优点,近年来集成功率放大器件发展很快,使用相当广泛。产品有单通道和双通道、单功放、双功放及多功放等器件。集成功放在实际应用中通常接成OCL电路,或OTL电路,接成BTL(Balanced Transformer Less,一说是Bridge Transformerless)电路却很少,而BTL电路的优点是电源利用率比前面两种电路高4倍。本文从BTL电路的结构、原理出发,分析BTL电路输入、输出信号特点,最后介绍如何用集成功率放大器件构成BTL电路。 1.1BTL电路的组成及工作原理 大家知道OCL和OTL两种功放电路的效率很高,但是他们的缺点就是电源的利用率都不高,其主要原因是在输入正弦信号时,在每半个信号周期中,电路只有一个晶体管和一个电源在工作。为了提高电源的利用率,也就是在较低电源电压的作用下,使负载获得较大的输出功率,一般采用平衡式无输出变压器电路,又称为BTL电路。电路如图1所示。 在输入信号 U i正半周时,V1,V4导通,V2,V3截止,负载电流由V CC经V1,R L,V4流到虚地端。如图1中的实线所示。 在输入信号Ui负半周时,V1,V4载止,V2,V3导通,负载电流由V CC经V2,R L,V3流到虚地端。如图1中虚线所示。可见: (1)该电路仍然为乙类推挽放大电路,利用对称互补的2个电路完成对输入信号的放大;其输出电压的幅值为:U OM≈V CC 最大输出功率为: (2)同OTL电路相比,同样是单电源供电,在V CC,R L相同条件下,BTL电路输出功率为OTL电路输出功率的4倍,即BTL电路电源利用率高;

功率放大电路分析

B类OTL功率放大电路原理 发布: | 作者:--| 来源: --| 查看:351次| 用户关注: 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上, 三极管Hi-Fi放大器的功率级大部分使用B类SEPP.OTL功率放大电路。因为B类放大电路功率较高,最高达78.5%,除非是发烧级的音响,为求完美的不失真才会用A类。就三极管的散热以及电源电路的容量,B类都比A类好很多。PP电路中虽然有输出电路产生的偶次高谐波可互相抵销的优点,但实际上,主放大器推动PP电路中的A类驱动级就会产生二次高谐波,因此高谐波还是很多。不过,B类PP电路为减少交叉失真,须特别注意偏压的稳定。以下介绍几个代表性的B类SEPP.OTL电路 图a 半对称互补OTL放大电路 图b 全对称互补OTL放大电路

图一输入变压器式功放电路输入变压器式SEPP电路如图一,利用输入变压器进行相位反转作用。线路简单而中心电压又稳定,如果使用两电源方式,可简单剪掉输出电容器。又,输出短路时,不容易流出大电流,对过载引起的破坏,有很大的防止作用。不过因为输入变压器的影响,不能有较深的负反馈,所以不能获得较低的失真,在高频特性及失真会显著恶化是主要缺点。 CE分割方式

图二CE分割方式 如图二所示,利用三极管Q1 集电极与发射极之相位相反进行反向的方式,与真空管的PK分割相同。因为可以由NPN型三极管构成,所以很容易找到特性整齐的三极管。但是,因为有电路比较复杂,需用的交连电容多,低频特性不好,所以一直不能成为主流的电路。 互补方式

扩音机电路的设计毕业设计

齐鲁理工学院 课程设计说明书 题目扩音器的设计 课程名称模拟电子啊技术 二级学院机电工程学院 专业电气工程及其自动化 班级2015级 学生姓名沈坤 学号9 指导教师 设计起止时间:2016年12月12日至2016年12月16日

目录 第1章方案设计 (2) 第2章单元电路设计 (2) 2.1前置放大器的设计 (2) 2.2音调控制器的设计 (3) 2.2.1 低频工作时元器件参数的计算 (5) 2.2.2 高频工作时元器件参数的计算 (7) 2.3功率输出级的设计 (10) 2.3.1 确定电源电压 (10) 2.3.2 功率输出级设计 (11) 2.3.3 电阻R17~R12的估算 (11) 2.3.4 确定静态偏置电路 (11) 2.3.5 反馈电阻R13与R14的确定 (12) 参考文献 (13) 附录1 总电路原理图 (14)

扩音器的设计 摘要:很多场合(如商场、学校、车站、体育场等)都安装有广播系统,它的主要功能是播放音乐、广播通知和要闻。这些广播系统都含有扩音设备,用以把从话筒、录放卡座、CD机送出的微弱信号放大成能推动扬声器发声的大功率信号。根据实际需要和放大器件的不同,扩声电路的设计也有很多种类。作为电子线路的课题设计,本课题提出的扩声电路性能指标比较低,主要采用理论课题里介绍的运算放大集成电路和音频功率放大集成电路来构成扩声电路。这种性能指标低的扩音器主要在于价格便宜,制作简单,不需要太多昂贵的集成块。 关键词扩声;音频功放;放大电路

第1章方案设计 采用运算集成电路和音频功率放大集成电路设计一个对话筒输出信号具有放大能力的扩声电路。 其电路方框图如图1-1所示: 图1-1扩声电路原理框图 前置放大主要完成对小信号的放大,一般要求输入阻抗高,输出阻抗低,频带要宽,噪声要小;音量控制主要实现对输入信号高、低音的提升和衰减。 第2章单元电路设计 2.1 前置放大器的设计 由于话筒提供发信号非常弱,故一般在音调控制器前面要加一个前置放大器。 该前置放大器的下限频率要小于音频控制器的低音转折频率,上限频率要大于音频控制器的高音转折频率。考虑到所设计电路对频率响应及零输入(及输入短路)时的噪声、电流、电压的要求,前置放大器选用集成运算放大器LF353。它是一种双路运算放大器,属于高输入阻抗低噪声集成器件。其输入阻抗高为104MΩ,输入偏置电流仅有50х10-12A,单位增益频率为4MHZ,转换速率为13V/us,用做音频

分立元件功放电路OTL

OTL功放电路,耦合元件 一、功率放大器电路基本特点: 互补对称式OTL功率放大器基β本电路如图所示: C1为信号输入耦合元件,需注意极性应和实际电路中的电位状态保持一致。 R1和R2组成BG1的偏置电路,为BG1提供静态工作点,同时也在整个电路中起到直流负反馈作用。要求通过R1的电流大于BG1的基极电流至少5倍,按照β为100,Ic1为2mA计算,R1就不大于6k,故给定为5.1k,C1也相应给定为22uf,它对20Hz信号的阻抗为362Ω;R2根据电源采用的具体电压确定,约为R1(E/1-0.6)/0.6,按照32V电压值,即5.1×(32÷0.6-0.6) ÷0.6≈130,就取120K,确切的值通过实际调试使BG1集电结电压为15.4V来得到。 C2与R3构成自举电路,要: R3×C2>1/10,(R3+R4)×IC1=E/2-1.2 因R4是B G1的交流负载电阻,应尽可能取大一点,R3一般取在1k之内。 按照32V的电压值和IC1为2mA计算,R3和R4之和为7.2k,实际将R3给为820Ω,R4给为6.8k,IC1则为1.94mA;C2因此可取为220u。 R5和D是BG2和BG3互补管的偏置电路元件,给BG2、BG3共同提供一个适当静态工作点,在能够消除交越失真情况下尽量取小值,根据实验结果一般取3mA-4mA;改变R5的阻值可使BG2、BG3的基极间的电压降改变,而实现其对静态工作的调整。与R5串联的D是为了补偿BG2、BG3发射结门坎电压随温度发生的变化,最好采用两只二极管串联起来补偿互补管门坎电压随温度发生的变化,使互补管静态工作点稳定。 并联在BG2和BG3基极间的C4,可使动态工作时的△UAB减小,一般取47u。 C3是防止BG1产生高频自激的交流负反馈电容,一般取为47P —200P。 BG1起放大作用,在该电路中被称为激励级,要求:Buceo>E, Iceo≤IC1/400=5uA、β=100~200,所以应选用小功率低噪声管。

OCL功放电路详解与维修

OCL功放电路调试与维修总结 本功放采用最简洁的单差分OCL功放电路。 输入级Q1、Q2按惯例采用差分放大级,但与一般常见电路稍不同的是采用PNP管,这与采用NPN管相比,两管配对容易且一致性好,噪声较低。 第二级Q3为主电压放大级,它提供大部分电压增益。但未采用常见的“自举”电路,大功率放大器采用“自举”电路,对增大输出功率意义不大,且能省去一个对音质有影响的电解电容,并有利于减少元件简化电路,C12为相位补偿电容。 IC1、R12、D4、C14、R13、Q8、K1等组成功放过载保护电路,当负载发生短路时,继电器动作切断功放电源,保护功放电路避免故障扩大化。当负载短路 故障排除自动恢复工作。 因 电路板上搭锡,线路明显损坏 引起的故障可以直接排查解 决。 1、现象:无电; 解决方案:查找变压器有无电 压输出;无,查看保险丝是否 损坏;未损坏,则查找变压器 有无市电输入;无,察看保险 丝管是否接触不良或未接触, 查电源线是否损坏。 2、现象:输出小 解决方案:查看电阻是否装 错,分别查2.7K(常见错装为 4.7K,100K,10K等),100K (常见错装为10K,4.7K);电 阻阻值正确的情况下,检查差 动放大电路后的C2383是否 良好。 3、现象:输出大 解决方案:察看电阻是否装 错,如100K装为150K等。 4、现象:波形失真 解决方案:察看电阻是否装 错,如4.7K电阻装错,10K 电阻装错。电位器阻值无限大(半波)等。 5、现象:无声音输出 解决方案:检查有无管子损坏,输入短路、断路,0欧姆电阻缺失、损坏等。 6、现象:开码后不断自保护

解决方案:查有无2N4007虚焊,装反,检测电路板铜线有无断开,5W水泥电阻有无损坏等。 7、现象:开码后,功率瞬时达到最大,又逐渐减小 解决方案:查缺0.1uF电容。 8、现象:交付使用后,出现半夜机鸣,不定时开机 解决方案:查功放板缺0.1uF电容两个。 9、现象:输出声音有电流声 解决方案:查7805输出电压波动,将其供电端的1000uF电容更换为2200uF电容(较少出现)。 10、现象:在元器件都正确无损的情况下,输出略微大或小 解决方案:可以对100K电阻进行其它阻值代替。 11、现象:波峰略有失真 解决方案:查2N5408有一脚虚焊。

扩音机电路设计模电课程设计

《模拟电子技术基础》 课程设计 ——扩音机电路设计 院系:物理与电气工程学院 班级:11级电信一班 姓名: 学号: 指导老师: 成绩: 日期:2011年12月20日

目录 一、扩音机的方案设计 二、单元电路的设计 三、扩音机设计电路的总电路图 四、设计结论

一、扩音机的设计 扩音机实际是一个典型的多级放大电路。其原理框图如图1示。前置级主要完成对小信号的放大。一般要求输入阻抗要高,输出阻抗低,频带宽度要宽,噪声要小。音调控制级主要实现对输入信号高、低音的提升和衰减。功率放大器决定了整机的输出功率、非线性失真系数等指标,要求效率高、失真尽可能小、输出功率大,先根据技术指标要求,对整机电路作适当安排,确定各级的增益分配,然后对各级电路进行具体的设计计算。 ??→ ??→ ??→ ??→前置音调功率扩音器 放大 控制 放大 图1 语音放大器方框图 因为P 0max =8W 。所以此时的输出电压:V 0 。要使输入为5mV 的信号放大到 8V 的输出,所需要的总放大倍数为: 081600(5V i V V A V mV ===倍) 扩音机中各级增益分配为:前置级电压放大倍数为80;音调控制级中频电压放大倍数为1; 功率放大级电压放大倍数为20. 二、单元电路设计 1、前置放大级 由于信号源提供的信号非常微弱,故一般在音调控制器前面要加一级前置放大器。该前置放大器的下限频率要小于音调控制器的低音转折频率,前置放大器的上线频率要大于音调控制器的高音转折频率。前置放大器采用集成运算放大器电路,具体电路机构如图2所示。 考虑到对噪声、频率响应的要求,运算放大器选用LF353双运放,该运放是场效应管输入型高速低噪声集成器件。其输入阻抗高,输入偏置电路仅有50×12 10-A ,噪声电压为 16μ4MHz ,转换速率为13s V μ, 用作音频前置放大器十分 理想。 前置级由LF353组成两级放大器完成。第一级放大器的110V A =,即1+ 3 2 R R =10,取2R =10 K Ω, 3R = 100K Ω.取2V A =10,同样5R =10 K Ω,6R =100 K Ω。电阻1R 、4R 为放大电路的偏置电阻,取1R =4R =100 K Ω。耦合电容1C 、 2C 取10 F μ,4C 5C 取100 F μ,以证 保证扩声电路的低频响应。

模电实验报告3 扩音机整机电路

实验报告 课程名称:电路与电子技术实验指导老师:樊伟敏成绩: 实验名称:扩音机整机电路实验类型:同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得 一,实验目的、实验器材、实验电路、实验内容 实验目的 了解复杂电子电路的设计方法; 了解集成功率放大器的基本特点; 了解放大电路的频率特性及音调控制原理; 学习复杂电子电路的分模块调试方法; 学习扩音机电路的特性参数的测试方法 实验器材 1. 扩音机电路实验板;扩音机电路实验所需的电子元器件; 2. MS8200G 型数字多用表; 3. XJ4318型双踪示波器; 4. XJ1631数字函数信号发生器; 5. DF2172B 型交流电压表; 6.HY3003D-3型可调式直流稳压稳流电源。 实验准备 设计扩音机电路的前置,音调和功率放大级电路; 仿真分析扩音机电路的各级与整机指标; 按模块划分完成相关电路的焊接; 估算前置级(A1)的电压增益、音调控制级(A2)的电压增益、音调控制范围;功率放大级(A3)的电压增益; 了解扩音机电路的各项指标,拟订各项指标的测试方法。 实验电路 扩音机的整机电路如下图所示,按其构成,可分为前置放大级,音调控制级和功率放大级三部分。 实验电路原理图

实验名称:扩音机整机电路姓名:hd学号: 装订线 扩音机整机电路参考设计原理图 实验内容 组装焊接由三级运放组成的扩音机电路(电路原理图见上页)。并仔细复查整机电路的接线是否正确无误; 分别测量各级电路的静态工作点; 测量前置级的增益; 测量音调级低音和高音增益调节范围; 测量功率放大级的增益; 测量功率放大级最大不失真输出和最大功率(带载); 测试整机增益; 测量频率特性; 测量其它各项指标; 听音试验 调试实验

各类功放原理图及原理介绍

D类功放的原理 在音响领域里人们一直坚守着A类功放的阵地。认为A类功放声音最为清新透明,具有很高的保真度。但是,A类功放的低效率和高损耗却是它无法克服的先天顽疾。B类功放虽然效率提高很多,但实际效率仅为50%左右,在小型便携式音响设备如汽车功放、笔记本电脑音频系统和专业超大功率功放场合,仍感效率偏低不能令人满意。所以,效率极高的D类功放,因其符合绿色革命 的潮流正受着各方面的重视。 由于集成电路技术的发展,原来用分立元件制作的很复杂的调制电路,现在无论在技术上还是在价格上均已不成问题。而且近年来数字音响技术的发展,人们发现D类功放与数字音响有很多相 通之处,进一步显示出D类功放的发展优势。 D类功放是放大元件处于开关工作状态的一种放大模式。无信号输入时放大器处于截止状态,不耗电。工作时,靠输入信号让晶体管进入饱和状态,晶体管相当于一个接通的开关,把电源与负载直接接通。理想晶体管因为没有饱和压降而不耗电,实际上晶体管总会有很小的饱和压降而消耗部分电能。这种耗电只与管子的特性有关,而与信号输出的大小无关,所以特别有利于超大功率的场合。在理想情况下,D类功放的效率为100% ,B类功放的效率为78.5% ,A类功放的效率才50%或25% (按负载方式而定)。 D类功放实际上只具有开关功能,早期仅用于继电器和电机等执行元件的开关控制电路中。然而,开关功能(也就是产生数字信号的功能)随着数字音频技术研究的不断深入,用与Hi-Fi音频放大的道路却日益畅通。20世纪60年代,设计人员开始研究D类功放用于音频的放大技术,70年代Bose公司就开始生产D类汽车功放。一方面汽车用蓄电池供电需要更高的效率,另一方面空间小无法放入有大散热板结构的功放,两者都希望有D类这样高效的放大器来放大音频信号。其中关 键的一步就是对音频信号的调制。 图1是D类功放的基本结构,可分为三个部分: 图1 D类功放基本结构

OCL功放电路的分析

§(OCL)功放电路的分析教案 授课人:周克建学习目标:1、分析该电路的工作特点 2、分析该电路的工作原理 计划课时:2学时 教学重点:分析该电路的工作原理 教学难点:分析该电路的工作原理 教学方法:当堂练习、小组讨论、软件仿真投影教学 〖本节课的学习目标〗 1、学生了解该电路的工作特点 2、学生能分析该电路的工作原理 教学过程 课前通过预习卡预习 一、课堂引入(5分钟) 通过仿真了解OCL功率放大器放大现象让同学知道本节课的主要容。

Q1 2N2102Q2 2N2904 VDD 12V VEE -12V V11 Vpk 500 Hz 0° XSC1 Tektronix 1234 T G P 7VDD 2 VEE 了解其优点 二、课堂自学讨论并提问(15分钟) 利用以下的问题引出今天上课的重点容 1、功放电路的主要要什么? A 、有足够的输出功率 B 、功放管散热要好

C、非线性失真要小 D、效率要高 2、怎么设计才能满足第一要求? A.功放管应该工作在极限状态 B.输入到功放电路的信号电压要足够的强 3、怎么设计才能满足第二要求? A.采用大功率三极管 B.给功放管装散热片 C.采用过载保护措施 4、怎么设计才能满足第三要求? 设计原理是什么? 设立静态工作点三极管工作于放大状态 回忆以前讲解的共射放大电路其实就是一种典型的功放 只有给放大电路设立合适的静态工作点就能避免三极管所带来的非线性失真

5、怎么设计才能满足第四要求? 设计原理是什么? 不设立静态工作点,三极管工作于截止状态 根据效率公式:PO /PDC 可知只有减小静态工作点所带来的损耗才能提高效率 利用仿真来观察其波形了解其特点 6、综合以上所设计的电路都存在各自的什么优缺点? A .虽然无失真当效率低只有50%(甲类) B .虽然效率高达87.5%但出现了失真(交越失真)(乙类) 通过仿真来了解它们各自的特点 7、怎么设计才能设计完美的功放电路? 既要减小失真又要提高效率 设计原理是什么? 根据上面两种电路可知要满足以上的要求只有把静态工作点设计在放大状态与截止之间(微导通状态)(甲乙类) 三、老师与同学们一起在课堂讨论解决难点、重点 (OCL 功放电路的工作特点与原理)(重点)(15分钟) 采用乙类状态效率最高, 但严重失真,如何解决? CC

分立元件数字功放设计

UM10155 Discrete Class D High Power Audio Amplifier UM10155:分立元件D类大功率音频功放 Keywords :Class D Audio Amplifier, Universal Class D, UcD, PWM Audio Amplifier, High Power Audio. 关键词:D类音频放大器,全D类(UcD), PWM功放,大功率功放 Abstract :This user manual describes the operating instructions and the most important background information of the Philips Semiconductor Discrete Class D High Power Audio Amplifier Demonstrator Board. With proper heatsinking of the Power MOSFETs and a well dimensioned power supply, the PWM amplifier is capable of supplying 200 W of high quality audio power into a 4 ? loudspeaker. 内容摘要:本用户手册描述了飞利浦半导体分立D类高功率音频放大器演示板的操作方法和最 重要的背景资料。在适当的功率管散热器的和很好的供电情况下,这台PWM放大器能提供200 W 高质量音频输出给一个4 ?的扬声器。 1. Introduction简介 The Universal Class D (UcD) version 1.00 demonstrator board implements a 200 W true RMS (into a 4 ? load) high quality audio power amplifier on a very compact printed-circuit board. The amplifier is built-up of discrete components only, and makes use of Philips patent WO 03/090343. 这个1.0版本的全D类功放(UcD)示范板是一个在非常紧凑的PCB板上输出200 W真有效功率(4 ?负载)的高质量音频功放。 Fig 1. General view001aaf148 2. Circuit diagram电路原理图The demonstrator board is intended to illustrate the capability of Philips Power MOSFETs in discrete high-end PWM audio amplifier applications. The board is self-contained and only requires a simple (non-stabilized) dual power supply, an audio source (e.g. function generator, CD player) and a loudspeaker to demonstrate its capabilities. For evaluation at high output power a provision is made to attach an appropriate heatsink to the MOSFETs on the board. 本演示板意欲图解说明飞利浦功率MOSFET在分立高档PWM音频放大器上的应用能力。 本板自我包含了齐全的功能,只需要简单的正负电源(非稳压),加上音源和扬声器即可示范其性能。为评价在大功率下的性能,需要附上一个适当的散热片到MOSFET上。

相关文档
最新文档