微积分B(2)第3次习题课参考答案(微分学几何应用、极值与条件极值)_34701046

微积分B(2)第3次习题课参考答案(微分学几何应用、极值与条件极值)_34701046
微积分B(2)第3次习题课参考答案(微分学几何应用、极值与条件极值)_34701046

微积分在生活中的应用

龙源期刊网 https://www.360docs.net/doc/cc7440673.html, 微积分在生活中的应用 作者:曹红亚 来源:《数学大世界·中旬刊》2020年第01期 【摘要】微积分产生于十七世纪后期,完善于十九世纪。在现代社会中,微积分是高等数学中至关重要的组成部分,在数学领域中扮演着不可替代的角色,与此同时,微积分在现实生活中的应用也越来越广泛。本文将就微积分在生活中的应用进行深入的分析与探究。 【关键词】微积分;现实生活;实际应用 众所周知,微积分建立的基础是实数、函数以及极限。关于微积分的定义,其指的是微分学和积分学二者的总称,其更代表着一种数学思想。微积分的发展与现实生活的发展是密切相关的,现在的微积分已经广泛存在于诸多自然科学当中,如天文学、生物学、工程学以及经济学等等,在现实生活着发挥着越来越重要的作用。以下笔者结合自己多年的相关实践经验,就此议题提出自己的几点看法和建议。 一、微积分在日常工作中的应用 微积分不仅仅应用在科研领域,其更实实在在地存在于我们的生活当中。例如日常生活中,我们需要装修或者从事装修工作,都需要进行工程预算,这时我们便会不自觉地应用微积分原理,首先将整个装修工程科学划分成为多个小单元,然后对应用到的材料和工时进行计算,最终得出总的造价。再比如,现在很多人特别是年轻人都希望创造一份属于自己的事业,那么其在创业时可能会应用到微积分。如对所选地址处的车流量以及人流量进行了解,在一天的几个时间段,做一分钟的调查,测出经过的人数或车数,再通过计算得出每天或每月的人流量或车流量,这将是我们创业的一个重要参考面。 二、微积分在曲线领域中的应用 在微积分的现实应用中,最具代表性的便是求曲线的长度、切线以及不规则图形的面积。 如在当前社会中,相关数字音像制品或者正流行的数字油画,其都需要将图像和声音分解成为一个个像素或者音频,利用数字的方式来进行记录、完成保存。在重放的时候,再由设备用数字方式来解读还原,使我们听到或看到几乎和原作一模一样的音像。再比如,中央电视台新闻频道的时事报道中常看到地球转向某一点,放大,现出地名,播送最新动态的新闻画面。它的整体概貌是拼装的,是由卫星将地球分成一个个小区域进行拍照,最后拼接成地球的形状,才让我们形象地、跨时空地欣赏新闻报道的同步魅力。 三、微积分在买卖中的应用

微积分在经济生活中的应用

微积分在经济生活中的应用 人们面对着规模越来越大的经济和商业活动,逐渐转向用数学方法来帮助自己进行分析和决策,而且正越来越广泛地应用数学理论进行经济理论研究.在经济生活中经常涉及成本、收入、利润等问题,解决这些问题与微积分有着紧密联系. 1 导数及微分的应用 导数及微分在经济生活中的应用主要有边际分析与弹性分析等. 1.1 边际问题[1](37)P - 1.1.1 边际成本 边际成本是指在一定产量水平下,增加或减少一个单位产量所引起成本总额的变动数. 设成本函数为()C C x =,产量从x 改变到x x +?时,成本相应改变 ()()C C x x C x ?=+?- 成本的平均变化率为 ()() C C x x C x x x ?+?-= ?? 若当0x ?→时,0lim x C x ?→??存在,则这个极限值就可反映出产量有微小变化时,成本的变化情 况.因此,产品在产量x 时的边际成本就是: 00()() ()lim lim x x dC C C x x C x C x dx x x ?→?→?+?-'= ==?? 如果生产某种产品100个单位时,总成本为5000元,单位产品成本为50元.若生产101个时,其总成本5040元,则所增加一个产品的成本为40元,即边际成本为40元. 在经营决策分析中,边际成本可以用来判断产量的增减在经济上是否合算.当企业的生产能力有剩余时,只要增加产量的销售单位高于单位边际成本,也会使得企业利润增加或亏损减少.或者说,只要边际成本低于平均成本,也可降低单位成本.由上面知当产量100x =时,这时候有 (100)40C '= (100) 50100 C = 即边际成本低于平均成本,此时提高产量,有利降低单位成本. 1.1.2 边际收入 边际收入是指在某一水平增加或减少销售一个单位商品的收入增加或减少的量.实际上就是收入函数的瞬时变化率.而从数学的角度来看,它是一个导数问题. 设收入函数为()R R x =,则边际收入函数就是

微积分在现实中的应用

微积分的应用 微积分是研究函数的微分、积分以及有关概念和应用的数学分支。微积分是建立在实数、函数和极限的基础上的。微积分学是微分学和积分学的总称。它是一种数学思想,‘无限细分’就是微分,‘无限求和’就是积分。无限就是极限,极限的思想是微积分的基础,它是用一种运动的思想看待问题。微积分最重要的思想就是用"微元"与"无限逼近",好像一个事物始终在变化你不好研究,但通过微元分割成一小块一小块,那就可以认为是常量处理,最终加起来就行。微积分是与实际应用联系着发展起来的,它在天文学、力学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学等多个分支中,有越来越广泛的应用。特别是计算机的发明更有助于这些应用的不断发展。客观世界的一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。 微积分建立之初的应用:第一类是研究运动的时候直接出现的,也就是求即时速度的问题。第二类问题是求曲线的切线的问题。第三类问题是求函数的最大值和最小值问题。第四类问题是求曲线长、曲线围成的面积、曲面围成的体积、物体的重心、一个体积相当大的物体作用于另一物体上的引力。 微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛

的应用,特别是计算机的出现更有助于这些应用的不断发展。 微积分作为一种实用性很强的数学方法和根据,在数学发展中的地位是十分重要的。例如,微分可以解决近似计算问题。比如:求sin29°的近似值,求不规则图形面积或几何体体积的近似值等。通过微积分求极限、利用微分中值定理,能够及时的放缩多项式,有利于不等式的化简和证明。极限求和、导数求和、积分求和也都是解决求数列前n项和的好方法。其次,数理化不分家。而且微积分在不等式中也有很大的运用,我们可以运用微积分中值定理,泰勒公式,函数的单调性,极值,最值,凸函数法等来证明不等式。在物理问题上,通过解微分方程研究物体运动问题、气体问题、电路问题也是非常普遍的。已知位移——时间函数计算速度,已知速度——时间函数计算加速度(即生活中交通管理方面的应用);运动学中的曲线轨迹求解(即生活中在篮球投篮训练中的应用);求不规则物体的重心;力学工程中计算变力和非恒力做功等等。在化学领域,用气相色谱仪和液相色谱仪做样品化学成分分析时,我们得到的并不是直观的数字结果,而是一张色谱图。色谱图是由一个一个的峰组成的,而我们进行定量计算的根据,就是这些峰的面积。而求这些峰的面积,就需要用到积分。现在的仪器里都集成了自动积分仪,只要选定某一个峰,它就能把积分计算出来。最终得到的成分含量就是基于积分原理计算出来的 微积分的应用不仅仅遍及各个学科,也渗透到了社会的各个行业,甚至深入人们日常生活和工作。利用微积分进行边际分析(经济函数的

微积分在生活中的应用Word版

微积分在生活中的应用 (何杰东陈新亮连冠才施楠信工一班北二830) 一.摘要 牛顿、莱布尼兹发明微积分以后,人们才有能力把握运动和过程。有了微积分,就有了工业革命,就有了大工业生产,也就有了现代化的社会。航天飞机、宇宙飞船等现代化交通工具都是在微积分的帮助下制造出来的。微积分在人类社会从农业文明跨入工业文明的过程中起到了决定性的作用。 微积分是为了解决变量的瞬时变化率而存在的。从数学的角度讲,是研究变量在函数中的作用。从物理的角度讲,是为了解决长期困扰人们的关于速度与加速度的定义的问题。“变”这个字是微积分最大的奥义。因此,了解微积分在生活中的应用对于我们解决实际问题有很大的帮助。 二.关键词:物理,经济,应用。 三.引言:通过研究微积分在物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。获取资料的途径主要是互联网。 四(一)在物理中的应用 例1,研究物体做匀变速直线运动位移问题时; 对于匀速直线运动,位移和速度之间的关系我们都清楚,x=vt,但如果物体的速度大小时刻发生变化,那么物体的位移如何求解呢?此时,微积分就成了我们有利工具。我们可以把物体运动的时间无限细分。在每一份时间内,速度的变化量非常小,可以忽略这种微小变化,认为物体在做匀速直线运动,因此根据已有知识位移可求;接下来把所有时间内的位移相加,即“无限求和”,则总的位移可以知道。现在我们明白,物体在变速直线运动时候的位移等于速度时间图像与时间轴所围图形的面积; 例2,研究匀速圆周向心加速度的方向问题时; 根据牛顿第二定律,我们可以知道匀速圆周运动加速度的方向指向圆心;同时利用极限思想,也可以加速度的方向。当圆周上的两个点无限靠近时,速度变化量也无限的小,因此由VAVB△V围成的等腰三角形的底角接近90,因此速度变化量和速度垂直,而速度又和半径垂直,因此,匀变速圆周运动中,加速度的方向始终指向圆心。 例3.研究变力做功问题时; 对于恒力做功,我们可以利用公式直接求出;但对于变力,我们不能利用公式;这种情况下,我们要借助于微积分,我们可以把位移无限细分,在每一个小位移上,力的变化很小,可以看作是恒力,根据公式算出力所作的功;然后把每一个小位移上的功无限求和,那么就可以求出变力做的总功是多少。 (二)在经济上的应用 1.1 边际分析在经济分析中的的应用 1.1.1 边际需求与边际供给 设需求函数Q=f(p)在点p处可导(其中Q为需求量,P为商品价格),

微积分在生活中的应用论文

课程论文专业酒店管理

微积分在生活中的应用 摘要:我们学习了微积分,然而只学习不行的,学了的目的是为了应用,本篇论文主要讲微积分在生活中的应用,有哪些应用,怎么应用的。主要集中几何,经济以及我们在生活中的应用 关键词:微积分,几何,经济学,物理学,极限,求导

绪论 作为一个刚刚上大学的新生,高等数学是大学学习中十分重要的一部分,但在学习的过程中,我不禁慢慢产生了一个问题,老师都说微积分就是高等数学的精髓,那么微积分的意义又是什么呢?它对人类的生活造成的影响又是什么呢?存在必合理,微积分的应用一定很广,带着这个思想,我查找了一点资料,我想从几何,经济,物理三个角度来阐述关于微积分在我们生活中的应用,下面可能有些我在网上查找的题目,基本上都是直接摘录的,在此特向老师说明。 我了解到微积分是从生产技术和理论科学的需要中产生,又反过来广泛影响着生产技术和科学的发展。如今,微积分已是广大科学工作者以及技术人员不可缺少的工具。如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。通过研究微积分能够在几何,物理,经济等方面的具体应用,得到微积分在现实生活中的重要意义,从而能够利用微积分这一数学工具科学地解决问题。 希望通过本文的介绍能使人们意识到微积分与其他各学科的密切关系,让大家能意识到理论与实际结合的重要性。 一、微积分在几何中的应用 微积分在我看来在几何中主要是为了研究函数的图像,面积,体积,近似值等问题,对工程制图以及设计有不可替代的作用。很高兴我在网上找到了一些内容与现在我们学的定积分恰巧联系上了。顿觉微积分应用真的很广! 1.1求平面图形的面积 (1)求平面图形的面积 由定积分的定义和几何意义可知,函数y=f(x)在区间[a,b]上的定积分等于由函数y=f(x),x=a ,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线2f x 和直线x=l ,x=2及x 轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

微积分在实际中的应用

微积分在实际中的应用 一、微积分的发明历程 如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。微积分堪称是人类智慧最伟大的成就之一。微积分是微分学和积分学的总称。它是一种数学思想,“无限细分”就是微分,“无限求合”就是积分。微分学包括求导的运算,是一套关于变化的理论。它使得函数、速度、加速度和曲线的斜率等均可以用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。微积分的产生一般分为三个阶段:极限概念、求面积的无限小方法、积分与微分的互逆关系。前两阶段的工作,欧洲及中国的大批数学家都做出了各自的贡献。 从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。 二、微积分的思想 从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述, 与此同时,战国时期庄子在《庄子·天下篇》中说“一尺之棰,日取其半,万世不竭”,体现了无限可分性及极限思想。公元3世纪,刘徽在《九章算术》中

高等数学在生活中的应用

高等数学在生活中的应 用 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

对高等数学的认识及它在生活中的应用当今世界,国际竞争日趋激烈,而竞争的焦点又是人才的。竞争21世纪哪个国家具有人才优势,哪个国家将占据竞争的制高点。而现在的社会需要的人才已经不是从前那种简单的一个文凭就可以了,而是需要全面的人才,全方位的人才,一种高素质高能力的人才! 与此同时,高等数学恰恰在这方面发挥着巨大的作用!数学培养的就是你的思维能力,是分析问题、解决问题的思维方式。许多实际问题都需要建立数学模型来解决,而你建立模型地基础就是你怎样把实际问题转化为数学问题。再把复杂的问题简单化!这样就更容易的去解决问题、处理问题! 在现代大学课程设置中,大部分学生要学习高等数学这门课程,只是很多学生不知道学这门课程有什么用途,缺乏学习的动力和兴趣,最后逐渐认为数学是一门非常枯燥的学科。这样不能够激发学生学习数学的兴趣。使学生们慢慢的不重视数学的重要性! 高等数学在当今社会有着广泛的应用。如:计算机方面、电子应用方面、航天技术方面、医学方面等等众多领域都起着巨大的作用! 在计算机领域,计算机中许多地方要用到数学模型,特别是算法复杂度,人工智能、业务领域的数学建模等等,都需要有一定的数学功底。 随着现代科学技术的发展和电子计算机的应用与普及,数学方法在医药学中的应用日益广泛和深入。医药学科逐步由传统的定性描述阶段向定

性、定量分析相结合的新阶段发展。数学方法为医药科学研究的深入发展提供了强有力的工具。高等数学是医学院校开设的重要基础课程,用高等数学基础知识解决医学中的一些实际问题的例子,旨在启发学生怎样正确理解和巩固加深所学的知识,并且强化应用数学解决实际问题的意识。使我国的医术在前有的基础上再创辉煌! “神舟”六号载人飞船成功升空,是我国航天事业科学求实精神的结晶,是坚定不移走自主创新之路的结果。载人航天是当今世界最复杂、最庞大、最具风险的工程,是技术密集度高、尖端科技聚集的高科技系统工程。而这些庞大的工程都离不开数学,复杂的数字计算、精确的时间等等这些都在数学范围内! 其次,数学建模是一种培养学生综合素质的有效手段,在教学实践中给学生树立建模的思想对学生的综合素质发展有很大的帮助,也有助于提高我们的学习积极性。把数学建模的思想方法融入数学分析课程教学是培养学生创新能力和实践能力的一条有效途径,是当前大学数学课程改革的一个重要方向. 我们大学生的思维处于由形式逻辑思维向辨证逻辑思维过渡的阶段,数学建模不仅要求学生在实验、观察和分析的基础上,对实际问题的主要方面做出合理的简化与假设,并且要求他们应用数学的语言和方法将实际问题形成一个明确的数学问题。因此,在高等数学中渗透建模思想,运用运动的、变化的、全面的、发展的观点去观察、分析和解决问题,不仅发展了我们大学生的一般思维能力,还发展了我们的辨证逻辑思维能

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

高等数学的矩阵在实际生活中的应用

矩阵在实际生活中的应用 一.【摘要】 随着科学技术的发展,数学的应用越来越广泛,可以说和我们的生活息息相关。而高等数学中的线性代数,也同样有着广泛的应用。本篇论文中,我们就对线性代数中的矩阵在生产成本、人口流动、加密解密、计算机图形变换等方面的应用进行研究。 【关键词】 高等数学矩阵实际应用 二.应用举例 1.生产成本计算:在社会生产管理中经常要对生产过程中产生的很多数据进行统计、处理、分析,以此来对生产过程进行了解和监控,进而对生产进行管理和调控,保证正常平稳的生产以达到最好的经济收益。但是得到的原始数据往往纷繁复杂,这就需要用一些方法对数据进行处理,生成直接明了的结果。在计算中引入矩阵可以对数据进行大量的处理,这种方法比较简单快捷。 例1.某工厂生产三种产品A、B、C。每种产品的原料费、支付员工工资、管理费和其他费用等见表1,每季度生产每种产品的数量见表2。财务人员需要用表格形势直观地向部门经理展示以下数据:每一季度中每一类成本的数量、每一季度三类成本的总数量、四个季度每类成本的总数量。 表1.生产单位产品的成本(元)表2.每种产品各季度产量(件)

解 我们用矩阵的方法考虑这个问题。两张表格的数据都可以表示成一个矩阵。如下所示: 通过矩阵的乘法运算得到 MN 的第一行元素表示了四个季 度中每个季度的原料总成本; MN 的第二行元素表示了四个季度中每个季度的支付工资总成本; MN 的第三行元素表示了四个季度中每个季度的管理及其他总成本。 MN 的第一列表示了春季生产三种产品的总成本; MN 的第二列表示了夏季生产三种产品的总成本; MN 的第三列表示了秋季生产三种产品的总成本; MN 的第四列表示了冬季生产三种产品的总成本。 对总成本进行汇总,每一类成本的年度总成本由矩阵的每一行元素相加得到,每一季度的总成本可由每一列相加得到。如下表: 表3. 总成本汇总表 ????? ??=200040003500250030003700480028002000250030002000N

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

高等数学在实际生活中的应用72690

高等数学知识在实际生活中的应用 (4)对模型进行分析、检验和修改。建立模型后,要对模型进行分析,即用解方程、推理、图解、计算机模拟、定理证明、稳定性讨论等数学的运算和证明得到数量结果,将此结果与实际问题进行比较,以验证模型的合理性。一般地,一个模型要经过反复地修改才能成功。 (5)模型的应用。用已建立的模型分析、解释已有的现象,并预测未来的发展趋势,以便给人们的决策提供参考。 归纳起来,数学建模的主要步骤可以用下面的框图来说明: 图1 (二)数学建模的范例 例教室的墙壁上挂着一块黑板,学生距离墙壁多远,能够看得最清楚? 这个问题学生在实际中经常遇到,凭我们的实际经验,看黑板上、下边缘的视角越大,看得就会越清楚,当我们坐得离黑板越远,看黑板上、下边缘的视角就会越小,自然就看不清楚了,那么是不是坐得 越近越好呢? 先建立一个非常简单的模型: 模型1: A 黑 板 a B b D C 图2.3-1

先对问题进行如下假设: 1.假设这是一个普通的教室(不是阶梯教室),黑板的上、下边缘在学生水平视线的上方a 米和b 处。 2.看黑板的清楚程度只与视角的大小有关。 设学生D 距黑板x 米,视黑板上、下边缘的的仰角分别为βα,。 由假设知: ab b a x a b x b a ab x x b a tna x b x a 2)(tan 1tan tan )tan(,tan ,tan 2-≤ + -=+-=+-=-∴= βαβαβαβα 所以,当且仅当ab x = 时,)tan(βα-最大,从而视角βα-最大。 从结果我们可以看出,最佳的座位既不在最前面,也不在最后面。坐得太远或太近,都会影响我们的视觉,这符合我们的实际情况。 下面我们在原有模型的基础上,将问题复杂一些。 模型2:设教室是一间阶梯教室,如图2.3-2所示。为了简化计算我们将阶梯面看成一个斜面,与水平面成γ角,以黑板所在直线为y 轴,以水平线为x 轴,建立坐标系(见图2.3-2)。则直线O E 的方程(除原点)为: γtan x y = )0(>x 若学生D 距黑板的水平距离为x ,则D 在坐标系中的坐标为 )tan ,(γx x , 图2.3-2

导数与函数的极值、最值

导数与函数的极值、最值 最新考纲了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次). 知识梳理 1.函数的极值与导数 (1)判断f(x0)是极值的方法 一般地,当函数f(x)在点x0处连续且f′(x0)=0, ①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值; ②如果在x0附近的左侧f′(x)≤0,右侧f′(x)≥0,那么f(x0)是极小值. (2)求可导函数极值的步骤: ①求f′(x); ②求方程f′(x)=0的根; ③检查f′(x)在方程f′(x)=0的根的左右两侧的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值. 2.函数的最值与导数 (1)函数f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数y=f(x)的图象是连续不断的曲线,那么它必有最大值和最小值.

(2)设函数f(x)在[a,b]上连续且在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下: ①求f(x)在(a,b)内的极值; ②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值. 诊断自测 1.判断正误(在括号内打“√”或“×”) 精彩PPT展示 (1)函数在某区间上或定义域内极大值是唯一的.(×) (2)函数的极大值不一定比极小值大.(√) (3)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.(×) (4)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(√) 2.函数f(x)=-x3+3x+1有() A.极小值-1,极大值1 B.极小值-2,极大值3 C.极小值-2,极大值2 D.极小值-1,极大值3 解析因为f(x)=-x3+3x+1,故有y′=-3x2+3,令y′=-3x2+3=0,解得x =±1,于是,当x变化时,f′(x),f(x)的变化情况如下表:

定积分在生活中的应用

PINGDINGSHAN UNIVERSITY 院系 : 经济与管理学院 题目 : 定积分在生活中的应用 年级专业: 11级市场营销班 学生姓名 : 天鹏

定积分在生活中的应用 定积分作为大学里很重要的一部分,在生活有广泛的应用。微积分是与应用联系发展起来的,最初牛顿应用微积分是为了从万有引力导出行星三定律,此后,微积分极大的推动了数学的发展,同时也极大的推动了天文学、物理学、化学、工程学、经济学等自然科学的发展,而且随着人类知识的不断发展,微积分正指引着人类走向认知的殿堂。 一、定积分的概述 1、定积分的定义: 设函数()f x 在区间[],a b 上有界. ①在[],a b 中任意插入若干个分点011n n a x x x x b -=<< <<=,把区间[],a b 分成 n 个小区间[][][]01121,,,, ,,,n n x x x x x x -且各个小区间的长度依次为110x x x ?=-, 221x x x ?=-,…,1n n n x x x -?=-。 ②在每个小区间[]1,i i x x -上任取一点i ξ,作函数()i f ξ与小区间长度i x ?的乘积 ()i i f x ξ?(1,2, ,i n =) , ③作出和 ()1 n i i i S f x ξ==?∑。记{}12max ,,,n P x x x =???作极限()0 1 lim n i i P i f x ξ→=?∑ 如果不论对[],a b 怎样分法,也不论在小区间[]1,i i x x -上点i ξ怎样取法,只要当 0P →时,和S 总趋于确定的极限I ,这时我们称这个极限I 为函数()f x 在 区间[],a b 上的定积分(简称积分),记作()b a f x dx ?,即 ()b a f x dx ?=I =()0 1 lim n i i P i f x ξ→=?∑, 其中()f x 叫做被积函数,()f x dx 叫做被积表达式,x 叫做积分变量,a 叫做积分下限,b 叫做积分上限,],a b ??叫做积分区间。

论文----浅谈微积分思想在几何中的应用

毕业论文 题目:浅谈微积分思想在几何 问题中的应用 学院:数学与统计学院 专业:数学与应用数学 毕业年限:2013年 学生姓名:*** 学号:************ 指导教师:**

说 明:1. 成绩评定均采用五级分制,即优、良、中、及格、不及格。 2. 评语内容包括:学术价值、实际意义、达到水平、学术观点及论证有无错误等。 指导教师预评评语 指导教师 职称 预评成绩 年 月 日 答 辩小 组 评 审 意见 答辩小组评定成绩 答辩 委员 会终 评 意 见 答辩委员会终评成绩 答辩小组组长(签字): 年 月 日 答辩委员会主任(签章): 年 月 日

目录 摘要 (2) 关键字 (2) Abstract (2) Keywords (2) 1微积分介绍 (3) 1.1微积分的基本内容 (3) 2微分在几何问题中的应用 (5) 2.1一元微分的几何应用 (5) 2.2多元微分的几何应用 (7) 3积分在几何问题中的应用 (9) 3.1定积分的几何应用 (9) 3.2二重积分的几何应用 (16) 3.3三重积分的几何应用 (17) 结束语 (20) 参考文献 (21)

浅谈微积分思想在几何问题中的应用 *** (西北师范大学数学与统计学院甘肃兰州 730070) 摘要:微积分思想在几何问题中的应用主要分为一元微分、多元微分、定积分、二重积分、 三重积分分别在几何问题中的应用。一元微分可以求曲线的长;多元微分可以求曲线的切线、 切平面、法线、法平面;定积分可以求曲线的长、图形的面积、立体的体积;二重积分可以 求图形的面积、立体的体积;三重积分可以求立体的体积。 关键词:一元微分多元微分定积分二重积分三重积分曲线的长面积体积 Application of differential calculus thought in geometric problems. Lv Danqin (College of mathematics and statistics, Northwest Normal University, Gansu Lanzhou 730070) Abstract:Application of differential calculus thought in geometric problems consists of a differential, multiple differential, integral, double integral, integral respectively three applications in geometric problems. A differential can find the length of the curve; tangent, multivariate differential can find the curve tangent plane, normal, normal plane; definite integral can be the length of the curve, the graph area, volume of solid; double integral can be graphics area, three-dimensional volume; three points can be obtained three-dimensional volume. Keywords: A differential multiple differential ntegral double integral three integral curve length area volume

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

微积分在经济中的应用分析

一、经济分析中常用的函数 (一)需求函数和供给函数】【2 1.需求函数。需求函数是描述商品的需求量与影响因素,其影响因素很多,例如收入、价格、消费者的喜好等。我们这里先不考虑其他因素,假设商品的需求量只受市场价格的影响,记Q=Q (p )(Q 表示某种商品的需求量,P 表示此种商品的价格)一般来说,需求函数为价格p 的单调减少函数.例如,某鸡蛋的价格从10元/千克降到8元/千克时,相应的需求量就从1500千克增到2000千克,显然需求是和价格相关的一个变量。一般来说,需求函数为价格p 的单调减少函数(如图一)。 需求曲线特征:横轴Q 为需求量,纵轴P 为自变量价格;需求曲线是从左上方向右下方倾斜的具有负斜率的曲线;曲线表明了需求量与价格之间呈反方向变动的关系。当价格下降时,需求量上升;当价格上升时,需求量下降。 2.供给函数。一种商品的市场供给量与商品的价格存在一一对应的关系,记S=S (p ),例如,当鸡蛋收购价为4.5元/千克时,某收购站每月能收购5 000 kg .若收购价每4.6元/千克时,收购量为5400kg 。一般来说,供给函数为价格的单调增加函数。(如图二)

供给函数特征:横轴S为供给量,纵轴P为自变量价格;供给曲线是从左下方向右上方倾斜的具有正斜率的曲线。当价格上升时,供给增加;当价格下降时,供给减少。 (二)、市场均衡 在市场中,当一种商品满足Q=S即需求量等于供给量时,这种商品就达到了市场均衡,当Q=S 时的价格称为均衡价格,当市场价格高于均衡价格时,供给量就会增加而需求量就会减少,这是出现“供过于求”的现象;当市场价格低于均衡价格时,需求量就会增加而供给量减少,这是出现“供不应求”的现象。 (三)、价格函数、收入函数、利润函数 1.价格函数。一般来说,价格是销售量的函数。在我们的生活中是随处可见的,就像我们去买东西,买的越多就可以把价格讲得越低。例如,平和一家茶叶批发公司,批发50千克茶叶给零售商,批发价是50元每千克,若每次多批发20千克茶叶,那么相应的批发价格就可以降低4元,很明显价格和销售量是相关的一个变量。在厂商理论中,强调的是既定需求下的价格。在这种情况下,价格是需求量的函数,表示为P=P(Q)。要注意的是需求函数 Q=f(P)与价格函数 P=P(Q)是互为反函数的关系。 2.收入函数。在商业活动中,一定时期内的收益,就是指商品售出后的收入,记为R。销售某商品的总收入取决于该商品的销售量和价格。因此,收入函数为R=R(Q)=PQ。其中 Q 表示销售量,P 表示价格。 3.利润函数。利润是指收入扣除成本后的剩余部分,记为L。则L=L(Q)=R(Q)-C(Q)。其中Q 表示产品的的数量,R(Q)表示收入,C(Q)表示成本。总收入减去变动成本称为毛利,再减去固定成本称为纯利润。 三、导数的经济学意义及其在经济分析中的应用 (一)、边际分析 经济学中的“边际”这一术语是指“新增”的或“额外”的意思。例如,当消费者多吃一单位的 【3。 冰淇淋时,会获得“新增”的效用或满足,即边际效用】 【4:设函数y=f(x)可导,则导函数f'(x)在经济学中称为边际函数。在经济学中,我们经定义】 常用到边际函数,例如边际成本函数、边际收益函数、边际利润函数,它们都是表示一种经济变量相对于另一种经济变量的变化率问题,都反映了导数在经济学中的应用。成本函数C(P)表示生产P个单位某种产品时的总成本。平均成本函数c(P)表示生产P个单位某种产品时平均每个单位的成本,即c(P)=c(P)/P。边际成本函数是成本函数C(P)相对于P的变化率,即C(x)的导函数) C 。 (p 边际成本的变动规律:最初在产量开始增加时由于各种生产要素的效率为得到充分发挥,所以, 页脚内容2

相关文档
最新文档