柔性交流输电技术的发展及其应用

柔性交流输电技术的发展及其应用
柔性交流输电技术的发展及其应用

柔性交流输电技术的发展及其应用

摘要:根据世界上柔性交流输电技术的发展和应用现状,对其特点和功能进行了详细的论述和分类,从多方面叙述了它的先进性、可用性和重要意义,最后介绍了该项技术在世界上的应用情况。

关键词:柔性交流输电技术;有功潮流;无功潮流;潮流控制;稳定性

柔性交流输电技术(flexible alternative current transmission systems,FACTS)是将电力电子技术、微处理机技术和控制技术等高新技术集中应用于高压输变电系统,以提高输配电系统可靠性、可控性、运行性能和电能质量并获取大量节电效益的一种新型综合技术。早期受电力电子设备发展的限制,使FACTS技术在经济上和运行可靠性方面优势不明显。随着大功率高电压电力电子技术、微处理机技术和控制技术在近十几年的高速发展和日益成熟稳定,FACTS技术可靠性有了大大的提高,造价也不断降低,使直接对高电压大功率的输电系统进行可靠和快速控制已成为可能,而与电力电子元器件配套的驱动回路、保护和冷却等辅助技术也日趋完善,使FACTS技术逐步进入了实用阶段。

FACTS 技术的发展和现状

柔性交流输电系统的概念是由美国电力科学研究院N. G. Hingorani博士于1988年首先

提出的,在此以前出现的静止无功补偿设备(static var com pensator, SVC)也属于此范筹。

1997年IEEE PES冬季会议上正式对FACTS做了定义。从早期出现的SVC开始,FACTS技术的发展经历了20多年。按其性能和功能的不同可划分为以下三代,而是否含有常规电力器件(电容器和电抗器,抽头,抽头变压器等)可以说是FACTS技术发展的分界线。

a) 第一代FACTS技术

从20多年前就出现的SVC开始,主要由晶闸管开关快速控制的电容器和电抗器组成的装置,以提供动态电压支持,其技术基础是常规晶闸管整流器(semiconductor controlled

rectifier,SCR),后来出现的第一代FACTS装置是晶闸管控制的串联电容器(thyristor controlled

series compensator,TCSC),它利用SCR控制串接在输电线路中的电容器组来控制线路阻抗,从而提高输送能力。

b) 第二代FACTS 技术

这一代装置同样具有支持电压和控制功率等功能,但在外部回路中不需要加设大型的电力设备(指电容器和电抗器组或移相变压器等)。这些新装置如静止无功发生器(static

compensator,STATCOM)和串联补偿器(solid state series compensator, SSSC)设备采用了门极

可关断设备(gate turn off thristor, GTO;insulated gate bipolar transistor, IGBT)等一类全控型器件,起电子回路模拟出电容器和电抗器组的作用, 装置造价大大降低,性能却明显提高。c) 第三代FACTS 技术

将两台或多台控制器复合成一组FACTS装置,并使其具有一个共同的、统一的控制系统。如将一台STATCOM和一台SSSC复合而成的综合潮流控制器(unified power flowcontroller,UPFC),它可以控制线路阻抗,电压或功角的方法同时控制输电线路的有功和无功潮流。调

节双回路潮流的线间潮流控制器(inter phase power flow controller, IFPC)和可控移相器(thyristor controlled phase angle regulator, TCPR)都属于复合控制器。

FACTS技术用于配电领域也取得了显著进展,它主要用于改善配电网的电压和电流质

量,包括有功、无功电压、电流的控制、高次谐波的消除,蓄能等应用。目前已开发的装置

有SVC、配电静止补偿器(D STATCOM)、电池蓄能器(BESS)、超导蓄能(SMES)、有源电力滤

波器(APF)、动态电压限制器(DVL)及固态断路器(SSCB)等。在此,主要介绍输电用的FACTS 技术。

技术的分类及其技术原理

FACTS技术按其接入系统方式可分为并联型,串联型和综合型。并联型FACTS设备包括SVC和STATCOM(SVG),主要用于电压控制和无功潮流控制;串联型FACTS包括可控串补(TCSC)和基于GTO的串联补偿器(SSSC),主要用于输电线路的有功潮流控制、系统的暂态稳定和抑制系统功率振荡;综合型FACTS设备主要包括潮流控制器(UPFC)和可控移相器(TCPR),UPFC 适用于电压控制、有功和无功潮流控制、暂态稳定和抑制系统功率振荡,TCPR适用于系统的有功潮流控制和抑制系统功率振荡。各种类型设备的技术原理介绍如下:

2.1并联型FACTS装置

典型的并联型FACTS装置是SVC和STATCOM,它们代表了FACTS技术发展的两个阶段:是指由固定电容器组、晶闸管控制的电容器组(TSC)和电抗器组(TCR)组合成的无功补偿系统。通过调节TCR和TSC,使整个装置无功输出呈连续变化,静态和动态地使电压保持在一定范围内,提高系统的稳定性,但由于这种设备在电网电压的波动超出一定范围时表现出恒阻抗特性,因而在电网电压波动大时不能充分发挥其作用。

主回路主要是由大功率电力电子器件(如门极可关断晶闸管GTO)组成的电压型逆变器和并联直流电容器构成,是与传统SVC原理完全不同的无功补偿系统。这种装置脱离了以往无功功率概念的约束,不采用常规电容器和电抗器来实现无功补偿,而是利用逆变器产生无功功率。它所输出的三相交流电压V0通过变压器与系统电压Vs同步,并通过控制V0来调节无功功率的输出,当V0>Vs时,输出容性无功功率;当V0<Vs时,输出感性无功功率,因此,设备无功功率的大小都由它输出的电流来调整,而其输出的电流与系统电压基本无关,这些功能、原理上类似于同步调相机,但它是完全的静态装置,因此STATCOM又称为静止调相器,它的动态性能远优于同步调相机,启动无冲击,调节连续范围大,响应速度快,损耗小。由于采用了GTO,可以避免换相失败,直流侧的电容器只是用来维持直流电压,不需要很大容量,而且可以用直流电容器构成,因而装置体积小且经济。

2.2串联型FACTS装置

典型的串联型FACTS装置是可控串补(TCSC)和基于GTO的串联补偿器(SSSC)。

TCSC通常指采取晶闸管控制的分路电抗器与串联电容器组并联组成的串联无功补偿系统,通过改变晶闸管的触发角来改变分路电抗器的电流,使串联补偿器的等效阻抗大小能够连续平滑快速变化,因而TCSC可以等效成一个容量连续可变的电容器,其接入的输电线路的等效阻抗也可以连续变化,在给定的线路两端电压和相角情况下,线路的输送功率将可实现快速连续控制,以适应系统负载变化和动态干扰,达到控制线路潮流,提高系统暂态稳定极限的目的,也可以用于阻尼系统功率振荡和抑制次同步振荡。

SSSC是指采用大功率电力电子器件(如GTO)组成的电压型逆变器和并联直流电容器构成的串联补偿器,其基本结构和STATCOM类似,不同的是装置通过变压器串接入高压线路中,但原理与TCSC不同,TCSC在串入线路中可以等效成可变容抗,而串入的SSSC可以等效成电压源,其输出的是与串入线路的电流幅值基本无关的电压量,通过控制换流器,连续改变其输出电压的幅值和相位,从而改变线路两端的电压(幅值和相位),实现对线路有功、无功潮流的控制和阻尼系统的功率振荡,提高系统暂态稳定极限的目的。

2.3综合型FACTS装置

典型的综合型FACTS设备是综合潮流控制器(UPFC)。

UPFC是将并联补偿的STATCOM和串联补偿的SSSC组合成具有一个共同统一的控制系统的新型潮流控制器,它结合了多种FACTS技术的灵活控制手段, 是FACTS技术中功能最强大的装置,它通过将换流器产生的交流电压串接入相应的输电线上,使其幅值和相角均可连续变化,从而控制线路等效阻抗,电压或功角,同时控制输电线路的有功和无功潮流,提高线路输送能力和阻尼系统振荡,它最基本的特点之一是注入系统的无功是其本身装置控制和产生的,但注入系统的有功必须通过直流回路由并联回路STATCOM传至串联回路SSSC,作为UPFC 整体, 并不大量消耗或提供有功功率。

FACTS技术的作用及适用范围

FACTS技术由于采用具有单独或综合功能的电力电子控制装置,比常规的输电控制技术,如串并联电容电抗、PSS和同步调相机等具有优越的快速性能和灵活的控制能力,同时还具有良好的适应性。由于FACTS技术与现有的交流输电系统是并行发展的,并完全兼容,能在现有设备不做重大改动的条件下,采用合适有效的FACTS技术,充分发挥现有电网的潜力。因此,在电力系统中具有广泛而良好的应用前景。综合而言,应用FACTS技术的重要作用和意义体现在:

a) 为充分利用现有的输电线路的能力和资源。现行电力系统由稳定条件限定的输送功率的极限偏低,输电线路的能力远未被充分利用,而采用FACTS技术,理论上可使输电线路的输送功率极限大大提高,甚至接近导线的热稳极限,从而提高输电线路资源的利用率。
b) 提高电网和输电线路的安全稳定性、可靠性和运行经济性。FACTS技术的应用将有助于抑制功率振荡,提高系统的安全稳定水平;有助于控制电网中的潮流大小和方向,实现潮流的合理流动和电网的经济运行;有助于限制电网和设备故障的影响范围,减小事故恢复时间及停电损失。

c) 优化整个电网的运行状况。在电网中采用FACTS有助于建立全网统一的实时控制中心,实现全系统的优化控制。以提高全系统运行的安全性和经济性。

d) 将改变交流输电的传统应用范围。整套应用并协调控制的FACTS控制器将使常规交流输电柔性化,改变交流输电的功能范围,使其在更多方面发挥作用。由于应用FACTS控制器的方案常常比新建一条线路或换流站的方案更便宜,它甚至可以扩大到原属于直流输电专有的应用范围,如定向传输电力,功率调制,延长水下或地下交流输电距离等。

FACTS技术的应用情况

世界上第一台SVC设备由GE公司制造,于1977年在Tri-State GT系统投入运行,到目前为止,世界上已投运的SVC已超过180台,我国广东江门、郑州小刘、东北沙窝、湖南云田和武汉凤凰山等500 kV变电站也有6台投运。

世界上第一台SVG设备 (20 Mvar) 于1980年在日本投入运行,该装置采用了晶闸管强制

换流的电压型逆变器;世界上首台采用大功率GTO作为逆变器元件的STATCOM(±1 Mvar)于1986年10月在美国投入运行;1996年容量为±100 Mvar STATCOM在美国500 kV Sullivan变电站投入运行;清华大学与河南电力局联合研制的20 Mvar STATCOM也于1999年投入现场运行。日本最近也在联合研制用于275 kV系统的容量为300 Mvar STATCOM 装置,这是目前容量最大的STATCOM设备。

1991年12月,世界上第一台容量为131 Mvar的晶闸管投切部分串联电容补偿装置在AEP公司的345 kV线路上投入运行,将该线路的输送能力从950 MW提高到1 450MW。世界上第一个可控串补工程项目则是1992年在美国西部的一条230 kV线路上安装的165 Mvar TCSC装置,其后,1994年美国西北部的Slatt变电站500 kV线路上安装了208 Mvar的TCSC 装置投入工业运行。世界上第一台GTO-CSC设备也已在美国的161 kV的电网中运行。

我国东北电力系统将首次在伊敏—冯屯输电线路冯屯侧安装TCSC,以解决伊敏电

厂两台500 MW和两台600 MW发电机经双回500 kV线路向东北电网主网送电时存在严重暂态稳定问题。目前西电东送的主交流通道——天生桥—平果双回线装设了40%固定串补和10%可控串补TCSC设备,以充分利用已有的交流线路,尽可能输送更多功率到广东。

在综合型设备方面,1998年世界上首台大容量的UPFC装置(±320 MVA,由160 MVA的SSSC和160 MVA的STATCOM组成)在美国500 kV Inez变电站运行;可控移相器TCPR 首次应用在美国中西部的230 kV联络线上,提高了线路的动态稳定性和暂态稳定性,使中西部联络线交换功率增加200 MVA。

和常规的补偿电容器电抗器比较,目前FACTS设备的设计制造较复杂,成本也高。即使相对采用常规电容器和电抗器的SVC和TCSC来说,制造成本也略高。但随着电力电子技术的飞速发展,其设计制造将越来越模块化,成本也将迅速降低。可以预料到FACTS设备的成本将迅速降到和同容量的SVC成本相当或更低的水平。

根据加拿大Manitoba高压直流研究中心提供的信息看,以常规并联电容器造价为基准单位,常规串联电容器是它的2.5倍,SVC,TCSC是它的5倍, STATCOM 是它的6.25倍,包括了所有相关的无功功率可控设备部分,如晶闸管阀体,控制和保护,交流断路器和变压器等,可见各种设备的单位容量造价差距明显,这些数据只是与设备有关的投资,实际上FACTS 技术的选择与确定要根据应用系统的实际情况,根据系统的重要性、供电的可靠性灵活性和稳定性要求、环境条件等进行综合全面的考虑。

FACTS技术是目前电力系统输配电技术的最新发展方向,对电网规划建设和运行将带来重要的影响。国内部分高校和科研单位已经做了大量的研究工作,部分地区的电力部门已经在FACTS新技术应用方面走在前面,但广东电网在FACTS新技术的研究和应用方面仍然是空白。目前广东电网在规划建设和运行中碰到的众多问题,实际上都可以采用FACTS技术来解决,因此,在广东电网开展对FACTS技术的应用研究是极其迫切的。

柔性直流输电

柔性直流输电 一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流 第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT 构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开

柔性直流输电系统的改进型相对控制策略

柔性直流输电系统的改进型相对控制策略 摘要:电压源换流器(VSC)中交流滤波器可滤除交流网络侧谐波,交流侧换流电 抗器或换流变压器有助于交流网络和VSC的能量交换,直流侧电容器可减小换流 桥切换时的冲击电流,同时也可滤除直流网络侧谐波。 关键词:柔性直流输电;控制策略;应用 前言 在柔性直流输电系统(VSC-HVDC)中电压源换流器采用全控型可关断器件,可实现对交流无源网络供电,同时对有功功率、无功功率进行控制。笔者采用外环 电压控制和内环电流控制,外环电压控制中送端VSC系统采用相对控制策略,通 过分别控制输出电压相对发电机端电压的相位角和幅值,进而控制其与送端系统 交换的有功功率和无功功率。受端VSC系统采用定交流电压和定直流电压控制方法,通过调制比和移相角信号产生器件的驱动脉冲,内环控制采用空间矢量控制 策略,PI控制器实现对d、q轴电流的解耦控制,运用PSCAD/EMTDC暂态仿真软 件建立相应的内外环控制模型,验证所设计控制方案的有效性和可靠性。 1柔性直流输电技术的概述 1.1柔性直流输电技术概念 柔性直流输电技术是由加拿大的科学家开发出来的。这是一种由电压源换流器、自关断器和脉宽调制器所共同构成的直流输电技术。作为一种新型的输电技术,该技术不仅可以向无源网络进行供电,还不会在供电的过程中出现换相失败 的现象。在实际使用的过程中,换相站之间不会直接依赖于多端直流系统进行运作。柔性直流输电技术属于一类新型的直流输电技术。虽然在结构上和高压输电 技术相类似。但是整体结构仍然是由换流站和直流输电线路构成的。 1.2柔性直流输电的特点 柔性直流输电是由高压直流输电改造而来的。应该说在技术性和经济性方面 都有很大的改善。具体来说,柔性直流输电技术内部的特点可以表现为如下几个 方面: (1)在运用柔性直流输电技术的过程中,如果能够有效地采用模块化设计的技术,其生产和安装调试的周期都会最大限度地缩短。与换流站有关的设备都能 够在安装和使用的过程中完成各项试验。 (2)柔性直流输电技术内部的VSC换流器是以无源逆变的方式存在的。在使用的过程中可以向容量较小的系统或者不含旋转机电的系统内部进行供电。 (3)柔性直流输电技术在使用的过程中都伴随有有功潮流和无功潮流 (4)整个柔性直流输电系统可以有效地实现自动调节。换流器不需要经常实现通信联络。这也就在很大程度上减少了投资、运行和维护的费用。 (5)整个柔性直流输电技术内部的VSC换流器可以有效地减弱产生的谐波,并减少大家对功率的要求。一般情况下,只需要在交流母线上先安装一组高质量 的滤波器,就可以有效地满足谐波的要求。目前,多数无功补偿装置内部的容量 也不断地减少。即便不装换流变压器,内部的开关也可以更好地被简化。 2柔性直流输电技术的战略意义 目前,柔性直流输电技术在智能电网中一直都发挥着重要的作用。一般来说,柔性直流输电技术可以有效地助力于城市电网的增容改造和交流系统内的互联措施。目前,多数柔性直流输电技术也在大规模风电场建设的过程中发挥出了较好 的技术优势。如果大面积地选择柔性直流输电技术,将会在很大程度上改变电网

柔性直流输电系统换流器技术规范()

ICS 中国南方电网有限责任公司企业标准 Q/CSG XXXXX—2015 柔性直流输电换流器技术规范 Technical specification of converters for high-voltage direct current (HVDC) transmission using voltage sourced converters (VSC) (征求意见稿) XXXX-XX-XX发布XXXX-XX-XX实施 中国南方电网有限责任公司发布

目次 前言............................................................................... III 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 额定直流电流 rated direct current (1) 3.2最大直流电流maximum direct current (2) 3.3 短时过载(过负荷)直流电流short time overload direct current (2) 3.4 额定直流电压rated direct voltage (2) 3.5 额定直流功率rated direct power (2) 4 文字符号和缩略语 (2) 4.1 文字符号 (2) 4.2 缩略语 (2) 5 使用条件 (2) 5.1 一般使用条件的规定 (3) 5.2 特殊使用条件的规定 (3) 6 技术参数和性能要求 (3) 6.1 总则 (3) 6.2 换流器电气结构 (4) 6.3 阀设计 (5) 6.4 机械性能 (6) 6.5 电气性能 (7) 6.6 冗余度 (7) 6.7 阀损耗的确定 (8) 6.8 阀冷却系统 (8) 6.9 防火防爆设计 (8) 6.10 阀控制保护设计 (8) 7 试验 (9) 7.1 试验总则 (9) 7.2 型式试验 (9) 7.3 例行试验 (11) 7.4 长期老化试验 (11) 7.5 现场试验 (12) 8 其它要求 (12) 8.1 质量及使用寿命 (12) 8.2 尺寸和重量 (12) 8.3 铭牌 (12) 8.4 包装和运输 (12)

柔性直流输电

一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流器拓扑是6脉动Graetz桥,其主要应用年代是1970年代以前。 器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开“轻型直流输电系统关键技术研究框架研讨会”,会上,与会专家一致建议国内将基于电压源换流器技术的直流输电(第三代直流输电技术)统一命名为“柔性直流输电”。 (二)柔性直流与传统直流的优缺点对比 不管是两电平、三电平或MMC换流器,由于都属于电压源换流器,其基波频率下的外特性是完全一致的。

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (3) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性直流输电技术在输电领域的应用分析

柔性直流输电技术在输电领域的应用分析 华北电力大学,李欣蔚 摘要:柔性直流输电作为新一代直流输电技术,在世界范围内已经得到广泛发展和应用,并逐渐走向成熟。为了更进一步了解柔性直流输电技术,并且为其发展做出突破性的贡献,本文对柔性直流输电技术在输电领域的应用进行了概括性分析。通过对目前柔性直流输电技术在输电领域的应用状况,进行较为详细的分析,找到该技术存在的可能的突破点,使其更有利于电力系统的发展。本文首先简要介绍了柔性直流输电的基本原理及其特点,具体说明了对于柔性直流输电技术可独立控制有功无功功率、谐波含量少等不同优点,在输电领域的各种应用情况,分别为连接小规模发电厂到电网、替代传统直流的大规模送电和交直流联网、异步联网、优化电能质量和向远方孤立负荷供电。介绍了国内外柔性直流输电工程在输电领域的成功案例,如丹麦Tjaereborg发电工程和上海南汇柔性直流输电示范工程,分析这些工程在输电领域做出的突破性贡献。最后总结概括分析了我国的柔性直流输电技术在输电领域可能的发展方面,说明了以柔性直流输电为主的智能输电网络的可能性。所以,目前柔性直流输电工程在中国的发展方向可以包括,建立广域的智能输电网络和长距离架空线输电两大方面。 关键词:柔性直流输电可再生能源异步联网优化电能质量智能输电网络

1引言 当前,新型的、清洁的、可再生的能源发电已成为电力系统未来的发展方向,国家将大力推进利用风能、太阳能等方式进行发电,但由于其主要特点之一是分散化与小型化,地理条件与发电规模的制约使得传统的交流输电技术不能很好地解决与电网连接经济性的问题。同时,对于采用柴油发电机供电的钻探平台、岛屿、矿区等远距离负荷,应用交流输电技术供电也同样存在经济性差、环保压力大的问题。随着用电负荷的不断增加要求电网规模与传输容量保持持续发展,然而增加输电走廊面临经济与环保的限制,这种问题在城市的负荷中心更加突出[1]。为此,柔性直流输电技术可以说是一种较为经济、灵活、高质量的输电方式用以解决以上问题。另外,因为电压源换流器产生的谐波含量小,不必专门配置滤波器,可以大大节省占地面积,相比于高压直流输电技术,柔性直流输电在城市、海岛、海上平台中的使用具有很大优势。 柔性直流输电是构建智能电网的重要装备,与传统方式相比,柔性直流输电在孤岛供电、大规模风电场并网、城市配电网的增容改造、交流系统互联等方面具有较强的技术优势,是改变大电网发展格局的战略选择。随着电力电子技术的进步,柔性直流作为新一代直流输电技术,为输电方式变革和构建未来电网提供了崭新的解决方案[2]。 近几十年来国外大力发展了柔性直流输电技术,并应用于实际工程。我国关于柔性直流输电技术的研究也迎头赶上,并成功建设了几大柔性直流输电工程。 本文简要介绍柔性直流输电技术的现状,具体分析其在输电领域应用的情况,最后总结分析了未来国内外柔性直流输电工程在输电应用领域可能的发展趋势和前景。 2柔性直流输电技术概述 (1)柔性直流输电原理 典型的基于绝缘栅双极半导体管(IGBT)2电平VSC的柔性直流单相示意图见图1。柔性直流输电与传统直流输电的基本不同点是:它采用具有关断能力的可关断器件(如IGBT)组成的电压源换流器(VSC)进行换流,而传统直流输电则是采用无关断能力的低频晶闸管所组成的电网换相换流器(PCC)来进行换流[3]。 图1柔性直流输电基本原理图 早期的柔性直流输电都是采用两电平或三电平换流器技术,一般采用在直流侧中性点接地的方式,但是一直存在谐波含量高、开关损耗大等缺陷[4]。近年来,对于模块化多电平柔性直流输电技术的研究与发展越来越多,应用该技术的系统一般采用交流侧接地的方式;该技术提升了柔性直流输电工程的运行效益,极大地促进了柔性直流输电技术的发展及其工程推广应用。目前,已投运的柔性直流输电的VSC基本采用脉宽调制(PWM)技术,可以几乎独立瞬时地改变交流输出电压的相位与幅值,从而实现有功与无功的独立瞬时调节。

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

多端柔性直流输电(VSC—HVD)系统直流电压下垂控制

多端柔性直流输电(VSC—HVD)系统直流 电压下垂控制 学院: 姓名: 学号: 组员: 指导老师: 日期:

摘要: 多端柔性直流输电系统(voltage sourcedconverter based multi-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。 关键词:VSC-MTDC 下垂控制模块化多电平换流器

一、引言 基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。 多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。多点直流电压控制策略是使直流输电系统中的多个换流站具备直流电压控制能力。按照是否需要换流站间通信设备进行分类,多点直流电压控制策略又可分为主从控制策略和直流电压偏差控制策略。主从控制策略是一种需要换流站间通信的控制策略,这种控制方式利用换流站间的通信系统实现了直流电压的稳定,具有控制特性好、直流电压质量高等优点,但系统可靠性依赖于换流器控制器与系统控制器之间的高速通讯,这严重制约了多端直流输电尤其是长距离输电系统可靠性的提高。直流电压偏差控制策略是一种无需站问通信的控制策略,这种控制策略的实质是在定直流电压站故障退出运行后,后备定直流电压站能够检测到直流电压的较大偏移并转入定直流电压运行模式,保证了直流电压的稳定性;同时其设计简单、可靠性强。 下垂控制策略为多点控制,控制器通过测量本地直流母线电压对功率分配进行调节,因而不依赖于换流站间的高速通讯,系统可靠性较高。 二、多端柔性直流输电系统的直流电压控制策略 2.1柔性直流输电系统概述 总体上来看,目前的多端直流输电系统接线方式主要有串联型、并联型和混联型 3 种类型。由于并联型多端系统具有调节范围宽、扩建灵活、易于控制和可靠性高等突出优点,成为研究的热点和应用的重点。本文设计的直流电压混合控制策略主要是针对并联型多端系统。多端柔性直流输电系统控制是一个庞大复杂且相互耦合的多输入、多输出系统,为满足系统控制的快速性和高可靠性,一

柔性直流输电在配电网中的应用

2016 Year Spring Term Course examination (Reading Report、Research Report) : 直流输电技术 考核科目 Examination Subjects 学生所在院(系) :电气工程及其自动化学院 School/Department :电力系统及其自动化 学生所在学科 Discipline : 金昱 学生姓名 Student’s Name :15S006048 学生学号 Student No. : 考核结果 Examination Result 阅卷人Examiner

直流输电技术课程报告—— 柔性直流输电在城市配电网中的应用 (哈尔滨工业大学金昱 15S006048) 1 城市配电网输电技术研究现状 随着我国电力系统整体配置的不断发展,国家对城乡配电网建设日益重视,如何科学地设置城市配电网的规划显得尤为重要。在传统的电力建设中,我国总是将发电摆在第一位,输送配电摆在第二位,认为只要有充足的电能资源就可以做好电力系统的建设。但是,输送配电也在无形中影响着城市供电的能力和供电的可靠性。因此,合理适当的城市配电网规划在逐渐彰显着自己独特的优势,为电网建设的改造提供了合理性、科学性的指导经验。 1.1 我国配电网技术背景及现状 如今,我国有意识地改变原先的“重发电、轻输送配电”的现状,并取得了一定的成果,使得整体上配电网的设置都趋向了正规、合理。但是由于我国在配电网规划上发展较晚,依旧存在一些不合理的因素: (1)基础差、底子薄。基础差、底子薄是我国配电网建设的真实写照。在过去的电网建设中,由于缺乏早期的勘测、考察和规划,导致我国配电网的设置分布不合理,供电线路较长,损坏较严重。一些城市出现了市中心电源丰富,周边村落电源稀少的现状,这种情况致使一些周边农村长期处于没有电用的状态。 (2)电路结构不合理,转换复杂、不灵活。我国在电网建设中呈现出电路复杂、互相交错、难以移动等现象。近电远送、电网接线复杂、迂回供电、专用线路占有主线路过多等不合理的安排也为之后重新建设新电路结构带来了极大的不便,也增大了电路维修的困难。 1.1 直流输电供电与交流输电的优劣势 交流电的优点主要表现在发电和配电方面:利用建立在电磁感应原理基础上的交流发电机可以很经济方便地把机械能(水流能、风能……)、化学能(石油、天然气……)等其他形式的能转化为电能;交流电源和交流变电站与同功率的直流电源和直流换流站相比,造价大为低廉;交流电可以方便地通过变压器升压和降压,这给配送电能带来极大的方便.这是交流电与直流电相比所具有的独特优势。

基于VSC的柔性直流输电技术研究

基于VSC的柔性直流输电技术研究 本文介绍了基于VSC的柔性直流型输出电力系统的基本结构、基本工作原理和技术特点,并使用ATP-EMTP软件仿真建立其模型,得出其正常工作时的谐波及其不同故障情况下的运行特点。最后总结了柔性直流型输电系统需重点研究的几个基础理论问题及其发展前景。 1 引言 随着能源日益紧张和环境污染日益严重,目前中国在极力开发和利用可再生的清洁型能源。由于风能、太阳能等可再生能源利用规模的日益增大,其分散性、小规模性、离供电中心较远等问题,使得采用传统的交流输送电力系统或传统的直流输电系统显得不是很经济。 相关电子技术的迅猛发展以及控制技术的突飞猛进使得采用直流型输电力系统即可解决上述问题。采用基于可关断型电压源换流装置和PWM技术进行直流电输送,适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市区域电网供电等诸多领域。 根据实际情况,特别是西电东送、全国电网联网迫在眉睫的情况下,研发直流型输电系统,建设新一代直流型输电联网系统,将会促进大规模电网合并,并逐步完善城市供电和孤岛供电等技术。 2 柔性直流输电的系统结构和基本原理 与传统自然换相技术的直流型输电系统不同,VSC-HVDC(Voltage Source Converter-High Voltage Direct Current)是一种以电压源换流器、可控关断装置和脉宽调制(PWM)技术为基础的新型的直流型输电技术。该技术能在短时间内实现有功率和无功率的独立解耦控制,能够自主地向无源电网供电,极易于构成多端直流型电力系统,能极大的增加供电系统的稳定性,提高电力系统的输电能力。下面将介绍VSC-HVDC 的系统基本结构和基本的工作原理。 2.1 系统结构 图1为柔性直流型输出电力系统的基本原理框图,两端的换流站全部采用VSC基本结构,由换流站、换流变压设备、换流电抗设备、直流电容和交流滤波电路等部分组成。

柔性直流输电系统拓扑结构

·12· NO.14 2019 ( Cumulativety NO.50 ) 中国高新科技 China High-tech 2019年第14期(总第50期) 0 引言 随着电子技术的发展和绝缘栅双极性晶体管(Insulated Gate Bipolar Transistor,IGBT)的出现,电压源型换流站(Voltage Source Converter,VSC)技术应运而生,为柔性直流输电奠定了技术基础。柔性直流输电不需要传统交流输电系统的换相容量,并且对无源载荷提供电力,并广泛适用于城市供电、偏远地区供电、新能源发电并网等供电新领域。此外,柔性直流输电系统还具有较高的可控性,较低的成本,较小的电力损耗,可实现动态无功补偿等,因此成为当前输电领域研究的热点之一。 柔性直流输电技术中,输电系统的拓扑结构是关键环节之一。合理的拓扑结构能够有效提高直流输电系统的输电效率和可靠性,因此是目前柔性直流输电系统研究的重点。本文将分析柔性直流输电系统的技术原理,并对柔性直流输电系统的拓扑结构进行研究,从而为我国柔性直流输电系统的设计与建设提供理论参考。 1 柔性直流输电系统的技术原理 目前工程领域常用的柔性直流输电系统主要采用3种方式:两电平电压源换流器、多电平电压源换流器和模块化多电平电压源换流器(MMC)。1.1 两电平电压源换流器的技术原理 两电平电压源换流器的每一相都有2个桥臂,因此共有6个桥臂构成,每个桥臂都是由二极管和 IGBT通过并联方式组成,如图1所示。在工程应用中,为了提高柔性直流输电系统的供电电压和供电容量,一般可将多个二极管和IGBT并联再串联。并联的二极管与IGBT所串联的个数直接决定VSC的额定功率和耐压强度。在两电平电压源换流器的设计中,每一相的2个桥臂上的IGBT均可以单独导通,并单独输出2个电平,最后通过PWM对输出电平进 行调制,最终得到柔性直流输电波形。 图1 两电平电压源换流器示意图 两电平电压源换流器通过增加串联的二极管和GBIT提高供电电压和电流,因此在大容量直流输电方面存在较大技术缺陷。随着串联的二极管和GBIT 个数的增加,将增加动态电压的不稳定性,而且串联的二极管和GBIT也会增加输电系统输电波形的谐波含量,进而降低柔性直流输电系统的功率和效率。1.2 多电平电压源换流器的技术原理 多电平电压源换流器技术在两电平电压源换流 柔性直流输电系统拓扑结构 叶 林 (中国南方电网有限责任公司超高压输电公司广州局,广东 广州 510000) 摘要:柔性直流输电系统具有线路损耗低、可控性强等优势,成为当前电力网大力发展的输电方案。柔性直流输电系统的拓扑结构则是输电工程中的关键技术之一,决定输电网络的性能。文章分析了柔性直流输电系统的技术原理,重点对柔性直流输电系统的拓扑结构进行了研究,为柔性直流输电系统的拓扑结构方案设计与应用提供理论参考。 关键词:柔性直流;输电系统;拓扑结构;输电方案 文献标识码:A 中图分类号:TM131文章编号:2096-4137(2019)14-012-03 DOI:10.13535/https://www.360docs.net/doc/cc8632775.html,ki.10-1507/n.2019.14.04 收稿日期:2019-04-30 作者简介:叶林(1987-),男,河南信阳人,供职于中国南方电网有限责任公司超高压输电公司广州局,研究方向:超(特)高压输电运维柔性直流输电系统拓扑结构。

直流输电技术

直流输电技术

直流输电技术课程报告柔性直流输电在城市配电网中的应用 院系:电气工程及自动化学院姓名: 学号: 导师: 时间:

1.城市配电网交流供电存在问题 城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。 目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。 2.城市配电网采用柔性直流输电的优点 柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。主要表现在以下几个方面: (1)增强城市电网的供电能力,满足城市日益增长的负荷需求VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管内或线路走廊内,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。 (2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。 (3)提高城市电网可控性和安全可靠性VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。 (4)增强城市电网建设的可实施性,节省电力建设成本VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。采用新型的直流电缆不仅安装容易、快速,而且机械强度和柔韧性好、重量轻,更重要的是无油、电磁辐射和无线电干扰小,利于实现与市政设施和环境的协调。不仅增强城市电网建设的可实施性,而且可节省征地、赔偿等建设成本。

简要分析柔性直流输电技术的发展和应用

简要分析柔性直流输电技术的发展和应用 摘要:本文首先就柔性直流输电技术特点与发展情况进行了分析,而后探讨了 该技术在国内外应用的现状,进而就其未来应用前景进行了展望。 关键词:柔性直流输电技术;发展;应用 1 LCC-HVDC直流输电技术的特点 从高压直流输电的发展来看,1954年世界上第一个直流输电工程投入商业运行,标志着第一代直流输电技术的产生,其采用的是汞弧阀换流技术。20世纪 70年代,基于晶闸管的换流阀在直流输电领域得到应用,标志着第二代直流输电 技术产生。传统电网换相高压直流输电(Line Commutated Converterbased High Voltage Direct Current,LCC-HVDC)技术自问世以来已经过了60多年的发展,与 传统的交流输电网络相比,LCC-HVDC具有下列优势: (1)不存在稳定性问题,可在大功率系统中应用; (2)电力电子器件响应快速,可以对有功功率实现灵活控制; (3)输电线路损耗小,在远距离、大容量功率传输应用中有很高的经济性; (4)可实现不同频率或非同步的区域性特大电网互联。尽管LCC-HVDC技术 在高电压、大容量、远距离直流输电领域正发挥着巨大作用,但其自身也存在着 诸如无功功率控制能力较弱并且自身需要大量无功补偿、不便于构造多端直流电 网以及换流器依靠交流电网换相易发生换相失败等本质缺陷,这也使得LCC-HVDC 逐渐无法满足当今复杂的输配电网络对直流输电系统坚强、灵活、完全可控的需求。 2 VSC-HVDC直流输电技术的特点 电力电子技术的不断发展和进步,新型全控性开关器件的相继问世,为新型 输电方式的创建和电网结构的优化与提升开辟了崭新的途径。加拿大学者Boon-Teck等人于1990年首次提出了基于电压源型换流器(Voltage Source Converter,VSC)的高压直流输电技术,使得LCC-HVDC输电技术存在的固有缺陷迎刃而解。 几年后在ABB公司主导的Hallsjon项目中被顺利运用,促进了该项技术在理论研 究和工程领域的全面发展。与传统的电流源换流器型直流输电相比,VSC-HVDC 直流输电技术存在诸多优势: (1)PWM调制技术使得其输出电压谐波含量低、滤波器容量小。 (2)由于采用了全控器件,相比于常规直流输电技术,不需要联结电网提供换相电压,不会出现换相失败,可联结弱、无源电网。 (3)传统的HVDC潮流翻转时直流电流不变,需改变直流电压极性;VSC-HVDC潮流翻转时,只需改变直流电流的方向,直流电压极性不变。因而VSC-HVDC在潮流翻转时,不需改变其控制系统的配置和主电路的结构,不需改变控 制方式,也不需要闭锁换流器,整个翻转过程可在很短的时间内完成。 (4)易于四象限运行,在电网中的作用等同于一个无转动惯量的发电机,在对输送的有功功率进行快速、灵活控制的同时还能够实现动态无功功率补偿,提 高系统母线电压稳定性,起到静止同步补偿器(STATCOM)的作用,从而增加系 统动态无功储备,提高系统稳定性。 3 MMC-HVDC直流输电技术的特点 3.1 可扩展性强,应用范围广 严格的模块化结构可缩短开发周期和延长使用周期。通过子模块级联的方式,能够提高换流器的功率与电压等级,不仅有利于容量升级,而且解决了电平数增

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

相关文档
最新文档