柔性交流输电技术

柔性交流输电技术
柔性交流输电技术

浅谈柔性交流

输电(FACTS)技术

衣斌黑龙江建三江农垦电业局

极限是一项有价值而且紧迫的工作。FACTS技术为增强输电系统提供了新的手段。安装在长距离输电线中间或受端的静止无功补偿装置(STATCOM)能够提供电压支撑从而能极大地提高长距离输电系统的稳定性。

三、FACTS技术的分类及其技术原

器(STATCON),晶闸管投切串联电容器(TCSC),统一潮流控制器(UPFC)就是基于FACTS技术的产品。

FACTS技术按其接入系统方式可分为并联型,串联型和综合型。并联型FACTS主要用于电压控制和无功潮流控制;串联型FACTS主要用于输电线路的有功潮流控制、系统的暂态稳定和抑制系统功率振荡;综合型FACTS设备主要包括潮流控制器(UPFC)和可控移相器(TCPR),UPFC适用于电压控制、有功和无功潮流控制、暂态稳定和抑制系统功率振荡,TCPR适用于系统的有功潮流控制和抑制系统功率振荡。各种类型设备的技术原理介绍如下:

1、并联型FACTS装置

典型的并联型FACTS装置是STATCOM。STATCOM主回路主要是由大功率电力电子器件组成的电压型逆变器和并联直流电容

器构成,是与传统SVC原理完全不同的无功补偿系统。这种装置脱离

了以往无功功率概念的约束,不采用常规电容器和电抗器来实现无功补偿,而是利用逆变器产生无功功率。因此,设备无功功率的大小都由它输出的电流来调整,而其输出的电流与系统电压基本无关,这些功能、原理上类似于同步调相机,但它是完全的静态装置,因此STATCOM又称为静止调相器,它的动态性能远优于同步调相机,启动无冲击,调节连续范围大,响应速度快,损耗小。

2、串联型FACTS装置

典型的串联型FACTS装置是可控串补(TCSC)。TCSC通常指采取晶闸管控制的分路电抗器与串联电容器组并联组成的串联无功

补偿系统,通过改变晶闸管的触发角来改变分路电抗器的电流,使

二、我国电力的发展需要柔性交流输电技术

上世纪八十年代中期,美国电力科学研究院N.G.Hingorani博士首次提出FACTS概念:应用大功率、高性能的电力电子元件制成可控的有功或无功电源以及电网的一次设备等,以实现对输电系统的电压、阻抗、相位角、功率、潮流等的灵活控制,将原基本不可控的电网变得可以全面控制。从而大大提高电力系统的高度灵活性和安全稳定性,使得现有输电线路的输送能力大大提高。

柔性交流输电系统能在较大范围有效地控制潮流;线路的输送能力可增大至接近导线的热极限;电网和设备故障的危害可得到限制,防止线路串级跳闸,以避免事故扩大;易阻尼消除电力系统振荡,提高系统的稳定性。

目前,在我国部分高等院校、电力生产和设计部门及一些电气设备制造厂家都已开始FACTSA技术方面有较深入的研究。

随着新建电厂的不断并网发电,中国电力系统总装机容量上了新的台阶,然而整个电力系统出现了输电网络建设滞后于电厂建设的问题。许多长距离输电线输送的功率受到稳定极限的限制,这些输电线线路中间和受端由于缺乏强有力的电压支撑,其稳定极限大大低于其热稳定极限。这导致送端的发电厂窝电现象突出,发电厂的容量不能得到充分应用。如何提高长距离输电线的稳定极限,使其接近甚至达到其热稳定

21世纪的输电系统运行将承担更大的来自环境保护和电力市场等方

面的压力和需求。柔性交流输电系统恰好可以满足增大输送能力、保持输电系统稳定和优化系统运行的几大需求。

一、柔性交流输电的概念

柔性交流输电系统是FlexibleACTransmissi

onSystems的中文翻译,英文简称FACTS,指应用于交流输电系统的电力电子装置,其中“柔性”是指对电压电流的可控性;如装置与系统并联可以对系统电压和无功功率进行控制,装置与系统串联可以对电流和潮流进行控制;FACTS通过增加输电网络的传输容量,从而提高输电网络的价值,FACTS控制装置动作速度快,因而能够扩大输电网络的安全运行区域;在电力电子装置最早用于直流输电系统中并实现了对输送功率的快速控制,由此人们想在交流系统中加装电力电子装置,寻求对潮流的可控,以获得最大的安全裕度和最小的输电成本,FACTS技术应运而生,静止无功补偿器(SVC),静止

同步补偿串联补偿器的等效阻抗大小能够连续平滑快速变化,因而TCSC可以等效成一个容量连续可变的电容器,其接入的输电线路的等效阻抗也可以连续变化,在给定的线路两端电压和相角情况下,线路的输送功率将可实现快速连续控制,以适应系统负载变化和动态干扰,达到控制线路潮流,提高系统暂态稳定极限的目的,也可以用于阻尼系统功率振荡和抑制次同步振荡。

3、综合型FACTS装置

典型的综合型FACTS设备是综合潮流控制器(UPFC)。

UPFC是将并联补偿的STATCOM和串联补偿的SSSC组合

成具有一个共同统一的控制系统的新型潮流控制器,它结合了多种FACTS技术的灵活控制手段,是FACTS技术中功能最强大的装置,它通过将换流器产生的交流电压串接入相应的输电线上,使其幅值和相角均可连续变化,从而控制线路等效阻抗,电压或功角,同时控制输电线路的有功和无功潮流,提高线路输送能力和阻尼系统振荡,它最基本的特点之一是注入系统的无功是其本身装置控制和产生的,但注入系统的有功必须通过直流回路由并联回路STATCOM传至串联回路S

SSC,作为UPFC整体,并不大量消耗或提供有功功率。

四、FACTS技术的适用范围

FACTS技术由于采用具有单独或综合功能的电力电子控制装置,比常规的输电控制技术,如串并联电容电抗、PSS和同步调相机等具有优越的快速性能和灵活的控制能力,同时还具有良好的适应性。由于FACTS技术与现有的交流输电系统是并行发展的,并完全兼容,能

在现有设备不做重大改动的条件下,采用合适有效的FACTS技术,充分发挥现有电网的潜力。因此,在电力系统中具有广泛而良好的应用前景。应用FACTS技术的重要作用表现在:

首先,充分利用现有的输电线路的能力和资源。现行电力系统由稳定条件限定的输送功率的极限偏低,输电线路的能力远未被充分利用,而采用FACTS技术,理论上可使输电线路的输送功率极限大大提高,甚至接近导线的热稳极限,从而提高输电线路资源的利用率。

其次,能够提高电网和输电线路的安全稳定性、可靠性和运行经济性。

用。

2)安全防护用具的维护。安全防护用具的维护工作应尤其重视,应强调在作业前后仔细检查,及时发现问题,预防因绝缘防护损坏而引发事故发生。

2、绝缘遮蔽罩的选用。可以通过国内科研单位(中国电力科学研究院、国电武汉高压研究所)了解国内在配电网带电作业绝缘遮蔽制造处于领先厂商,对这些在国内制造水平处于领先的厂商生产的绝缘遮蔽工具的制造工艺、工艺质量等进行比较,货比三家中选出制造水平较高,价格便宜的厂家,根据生产现场所需求的工具型号、尺寸,对所需的绝缘遮蔽罩“量体裁衣”,长期与厂家合作,利用现有的国家标准及行业标准和企业标准,来制约生产厂家的选材、生产技术管理、工艺要求等,使生产出来的遮蔽罩在现场作业能更“顺手”,避免购买的器具因厂家设计不符合我局配电网实际安装工艺要求情况,而造成浪费。同时加强绝

缘防护工具在运输过程中存在的危险点防范,应配置经改造的专用的汽车进行运输工器具。

3、绝缘斗臂车的维护。绝缘斗臂车大多是国外进口或是引进国外技术进行生产组装,目前行业及国家标准未出台,我们只能根据IEC/TC78相关标准来制定企业标准来约束和规范使用。鉴于目前我们绝缘斗臂车在使用中日常试验检查做的机械试验是参照高空作业车标准进

行试验,试验方法及试验方式是否会对其造成损伤或是试验强度认识不够,这都使使用过程中存在着一定的安全隐患(绝缘斗臂车的斗及臂为玻璃纤维环氧树脂材料做成的,其材料延伸率小于5%是为脆性材料)。我们应当加强与带电标委会的联系及沟通,及时了解当今国内配电网带电作业发展动向及先进技术,同时与带电标会建立合作关系,这将对我局的带电作业发展和安全生产有很大的促进,也使我们开展配电网带电作业少走弯路。

-25

-24

柔性交流输电技术 - 简介

柔性交流输电技术(Flexible Alternating Current Transmission Systems,简称FACTS)又称为灵活交流输电技术,由美国电力专家N.G. Hingorani于1986年提出,并定义为“除了直流输电之外所有将电力电子技术用于输电的实际应用技术”。

背景

柔性交流输电系统的提出与发展,一方面与电力电子技术的飞跃发展有关,另一方面,也与当时美国的国情有关。在美国,由于电网转售电力的日益增加,使得输电系统中潮流分布十分不合理,加重了输变电设备与线路的负担,使输电容量的储备日益减少。

另外,由于环境保护等因素,建设新的高压输电线路的造价大大提高,并且十分困难。这样,就向电力工作者们提出了一个挑战性的课题:如何更有效地利用现有输电网络、在不降低电力系统运行可靠性的前提下,大大提高线路的输送能力。柔性交流输电系统也就应运而生了。

目前,柔性交流输电技术是美国电力科学研究院所倡导的研究方向。世界上许多国家的电力公司和电力设备制造厂家也不甘落后,正在投入巨资研究和开发柔性交流输电及其相应设备。

主要内容

其主要内容是在输电系统的主要部位,采用具有单独或综合功能的电力电子装置,对输电系统的主要参数(如电压、相位差、电抗等)进行灵活快速的适时控制,以期实现输送功率合理分配,降低功率损耗和发电成本,大幅度提高系统稳定和可靠性。

主要功能

可归纳为:①较大范围地控制潮流;②保证输电线输电容量接近热稳定极限;

③在控制区域内可以传输更多的功率,减少发电机的热备用;④依靠限制短路和设备故障的影响防止线路串级跳闸;⑤阻尼电力系统振荡。

设备分类

柔性交流输电系统的设备可分为串联补偿装置、并联补偿装置和综合控制装置。

串联补偿装置,如晶闸管控制串联电容器(TCSC)、晶闸管控制串联电抗器(TCSR),静止同步串联补偿器(SSSC)等,主要用于改变系统的有功潮流分

布,提高系统的输送容量和暂态稳定性等;

并联补偿装置,如静止无功补偿器(svC),晶闸管控制制动电阻器(TCBR)、静止同步补偿器(STATCOM)等,主要用于改善系统的无功分布,进行电压调整和提高系统电压稳定性等;

综合控制装置,如统一潮流控制器(UPFC)等,综合了串,并联补偿的功能和特点,是实现电力网络控制潮流,阻尼振荡,提高系统稳定性等多种功能的得力措施。

目前已成功应用或正在开发研究的FACTS装置有十几种,如静止无功补偿器、静止调相器、超导蓄能器、固态断路器、可控串联电容补偿等。国内自主成套设计和制造的静止无功补偿器、静止调相器和可控串联电容补偿已在电网中挂网运行。

柔性交流输电技术 - 特点

柔性交流输电技术能有效提高交流系统的安全稳定性。可以满足电力系统长距离、大功率、安全稳定输送电力的要求,柔性交流输电技术从根本上改变了交流电网过去基本上只依靠缓慢、间断以及不精确设备进行机械控制的局面,为交流输电网提供了控制快速、连续和精确的控制手段以及输送优化潮流功率的能力,保证了系统稳定性,有助于在事故发生时防止连续反应造成的大面积停电。

柔性交流输电技术的经济性很好。首先,它完全能与原输电方式协调,无机械磨损,控制信号功率小、控制灵活性高,能快速、平滑调节,可灵活、方便、迅速地改变系统潮流分布,提高系统的稳定性。其次,采用柔性交流输电技术的线路,输送能力可增大到接近导线的热极限,提高了送电线路的利用率。再次,柔性交流输电技术能够提高联络线的输电能力,减少发电机备用容量。最后,采用柔性交流输电技术,电网和设备故障的影响可以得到有效的控制,防止事故扩大,减轻系统事故的影响。

柔性交流输电技术 - 展望

运用柔性交流输电技术,通过控制设备,可以有效地控制和调节电网运行的柔性,且把风电等新能源引入系统的运行方式,从而更好地满足电网运行的需求。随着当前电网的不断发展,电网中的负荷和自由潮流也逐渐变大,这不利于电能的经济、高效传输。此外,电力系统的稳定性及导线发热对交流远距离的输电传输有着重要的影响。因此,柔性交流输电技术中的控制系统的运行方式是很有必要的。

美国专家认为,若实现电力半导体开关的全面控制,就可实现电力系统的控制,从而通过电力传输系统就能将更多的电力传输出去。柔性交流输电技术集中了电力电子技术和控制技术,为发展智能电网发展提供了保障,具有广阔的市场前景。

柔性交流输电技术 - 工程应用

2004年,我国首套国产化可控串补工程、世界第一个固定及可控混合型串补工程——甘肃碧成220千伏可控串补装置顺利投运,我国成为世界上第4个掌握此项技术的国家。

3年后,被中国电机工程学会称为当时“世界上可控串补度最高、串补容量最大、额定提升系数最大、阀额定电压最高、运行环境最复杂、设计难度最大”的国产化超高压可控串补工程——伊(敏电厂)冯(屯)500千伏可控串补装置成功投运。

这两项工程在建设之初,就为国家节省基建投资约4亿元,减少输电走廊面积约2100多公顷,后者少砍伐大兴安岭原始森林约750公顷,有效保护了宝贵的生态资源,其环保效益难以估量。

柔性交流输电技术 - 发展趋势

市场研究公司MarketsandMarkets发布的一项报告称,到2018年,中国将成为全球最具潜力的柔性交流输电系统市场之一。

报告中提到,截止2012年,美洲是全球最大的柔性交流输电系统市场。未来,全球柔性交流输电系统市场主要划分成四个区域,分别是美洲、欧洲、亚太地区和世界其他地区。

预计到2018年,全球柔性交流输电系统市场规模将达到13.8601亿美元(约合84.8亿元人民币)。

同时,亚太地区作为新兴市场正在迅速崛起。到2018年,亚太地区有望超越美洲成为最大的柔性交流输电系统市场。中国、印度和澳大利亚将成为全球最具潜力的柔性交流输电系统市场。

另外,由于欧洲地区政府积极发展风电,确保该地区可再生能源电力比例,欧洲同样会成为全球重要的柔性交流输电系统市场之一。[1]

柔性交流输电技术

2007-8-16 11:26:03 电源在线网

柔性交流输电技术(flexible alternative current transmission systems,FACTS)是将电力电子技术、微处理机技术和控制技术等高新技术集中应用于高压输变电系统,以提高输配电系统可靠性、可控性、运行性能和电能质量并获取大量节电效益的一种新型综合技术。

柔性交流输电系统的概念是由美国电力科学研究院N. G. Hingorani博士于1988年首先提出的,在此以前出现的静止无功补偿设备(也属于此范筹。1997年IEEE PES冬季会议上正式对FACTS做了定义。从早期出现的SVC开始,FACTS技术的发展经历了20多年。按其性能和功能的不同可划分为以下三代,而是否含有常规电力器件(电容器和电抗器,抽头,抽头变压器等)可以说是FACTS技术发展的分界线。

a) 第一代FACTS技术

从20多年前就出现的SVC开始,主要由晶闸管开关快速控制的电容器和电抗器组成的装置,以提供动态电压支持,其技术基础是常规晶闸管整流器(semiconductor controlled re ctifier,SCR),后来出现的第一代FACTS装置是晶闸管控制的串联电容器

led series compensator,TCSC),它利用SCR控制串接在输电线路中的电容器组来控制线路阻抗,从而提高输送能力。

b) 第二代FACTS 技术

这一代装置同样具有支持电压和控制功率等功能,但在外部回路中不需要加设大型的电力设备(指电容器和电抗器组或移相变压器等)。这些新装置如静止无功发生器(static compens ator,STATCOM)和串联补偿器设备采用了门极可关断设备(gate turn off thristor, GTO;insulated gate bipolar transistor, IGBT)等一类全控型器件,起电子回路模拟出电容器和电抗器组的作用, 装置造价大大降低,性能却明显提高。

c) 第三代FACTS 技术

将两台或多台控制器复合成一组FACTS装置,并使其具有一个共同的、统一的控制系统。如将一台STATCOM和一台SSSC复合而成的综合潮流控制器(unified power flowcontro ller,UPFC),它可以控制线路阻抗,电压或功角的方法同时控制输电线路的有功和无功潮流。调节双回路潮流的线间潮流控制器和可控移相器都属于复合控制器。

早期受电力电子设备发展的限制,使FACTS技术在经济上和运行可靠性方面优势不明显。随着大功率高电压电力电子技术、微处理机技术和控制技术在近十几年的高速发展和日益成熟稳定,FACTS技术可靠性有了大大的提高,造价也不断降低,使直接对高电压大

功率的输电系统进行可靠和快速控制已成为可能,而与电力电子元器件配套的驱动回路、保护和冷却等辅助技术也日趋完善,使FACTS技术逐步进入了实用阶段。

柔性直流输电

柔性直流输电 一、概述 (一)柔性直流输电的定义 高压直流(HVDC)输电技术始于1920年代,到目前为止,经历了3次技术上的革新,其主要推动力是组成换流器的基本元件发生了革命性的重大突破。 第一代直流输电技术采用的换流元件是汞弧阀,所用的换流 第二代直流输电技术采用的换流元件是晶闸管,所用的换流器拓扑仍然是6脉动Graetz桥,因而其换流理论与第一代直流输电技术相同,其应用年代是1970年代初直到今后一段时间。

通常我们将基于Graetz桥式换流器的第一代和第二代直流输电技术称为传统直流输电技术,其运行原理是电网换相换流理论。因此我们也将传统直流输电所采用的Graetz桥式换流器称为“电网换相换流器”,英文是“Line Commutated Converter”,缩写是“LCC”。这里必须明确一个概念,有人将电流源换流器(CSC)与电网换相换流器(LCC)混淆起来,这是不对的。LCC属于CSC,但CSC的范围要比LCC宽广得多,基于IGBT 构成的CSC目前也是业界研究的一个热点。 1990年,基于电压源换流器的直流输电概念首先由加拿大McGill大学的Boon-Teck Ooi等提出。在此基础上,ABB公司于1997年3月在瑞典中部的Hellsjon和Grangesberg之间进行了首次工业性试验(3 MW,±10kV),标志着第三代直流输电技术的诞生。这种以可关断器件和脉冲宽度调制(PWM)技术为基础的第三代直流输电技术,国际权威学术组织国际大电网会议(CIGRE)和美国电气和电子工程师协会(IEEE),将其正式命名为“VSC-HVDC”,即“电压源换流器型直流输电”。2006年5月,由中国电力科学研究院组织国内权威专家在北京召开

柔性直流输电技术

柔性直流输电 一、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大),不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 二、常规直流输电技术和柔性直流输电技术的对比 1. 换流器阀所用器件的对比。 1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,

柔性直流输电技术概述

柔性直流输电技术概述 1柔性直流输电技术简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。详细地说,就是要通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,通过对两端换流站的控制,就可以实现两个交流网络之间有功功率的相互传送,同时两端换流站还可以独立调节各自所吸收或发出的无功功率,从而对所联的交流系统给予无功支撑。 2. 技术特点 柔性直流输电技术是采用可关断电压源型换流器和PWM技术进行直流输电,相当于在电网接入了一个阀门和电源,可以有效控制其通过的电能,隔离电网故障的扩散,还能根据电网需求,快速、灵活、可调地发出或者吸收一部分能量,从而优化电网潮流分布、增强电网稳定性、提升电网的智能化和可控性。它很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。柔性直流输电除具有传统直流输电的技术优点外,还具备有功无功单独控制、可以黑启动对系统强度要求低、响应速度快、可控性好、运行方式灵活等特点,目前,大容量高电压柔性直流输电技术已具备工程应用条件,并且具有以下优点: (1)系统具有2个控制自由度,可同时调节有功功率和无功功率,当交流系统故障时,可提供有功功率的紧急支援,又可提供无功功率紧急支援,既能提高系统功角稳定性,还能提高系统电压稳定性; (2)系统在潮流反转时,直流电流方向反转而直流电压极性不变,这个特点有利于构

多端柔性直流输电(VSC—HVD)系统直流电压下垂控制

多端柔性直流输电(VSC—HVD)系统直流 电压下垂控制 学院: 姓名: 学号: 组员: 指导老师: 日期:

摘要: 多端柔性直流输电系统(voltage sourcedconverter based multi-terminal high voltage direct current transmission,VSC-MTDC)与传统的电网换相换流器构成的多端直流输电系统相比,具有控制灵活、能够与短路容量较小的弱交流系统甚至无源交流系统相连、扩建容易等诸多优点直流电压的稳定直接影响到直流潮流的稳定,因此直流电压控制是多端柔性直流输电系统稳定运行的重要因素之一。下垂控制策略具有无需通讯、可靠性较高等优点,但存在直流电压质量较差、功率分配不独立、参数设计困难等问题。本文首先介绍了多端柔性直流输电系统控制方法的分类比较,然后重点介绍了下垂控制数学模型,分析MTDC 系统中下垂控制参数对直流电压与电流(功率)的影响机理,研究满足MTDC 系统功率平衡和直流电压稳定的V-I(V-P)下垂特性曲线。 关键词:VSC-MTDC 下垂控制模块化多电平换流器

一、引言 基于电压源换流器(Voltage Source Converter,VSC)的高压直流输电(High Voltage Direct Current,HVDC)技术(HVDC based on VSC,VSC-HVDC,也称柔性直流输电技术)系统以其灵活性、经济性和可靠性,在新能源并网、城市直流配电网、孤岛供电等领域有着广泛的应用前景。MTDC 系统接线方式分为串联、并联和混联等,目前主要采用并联式[1]。并联接线的MTDC 系统中所有VSC 工作于相同直流母线电压下,因此直流电压控制是系统稳定运行的关键,类似于交流系统中的频率控制。 多端柔性直流输电系统级直流电压控制策略可以分为三大类,分别是单点直流电压控制策略、多点直流电压控制策略以及直流电压斜率控制策略。单点直流电压控制策略将一个换流站作为直流电压控制站,其余换流站负责控制其他的变量,例如交流功率、交流频率、交流电压等,系统中仅有一个换流站对直流电压进行控制,如果这个换流站失去了直流电压的控制能力,整个柔性直流输电系统的潮流将失稳,因此单点直流电压控制策略的适用性较差。多点直流电压控制策略是使直流输电系统中的多个换流站具备直流电压控制能力。按照是否需要换流站间通信设备进行分类,多点直流电压控制策略又可分为主从控制策略和直流电压偏差控制策略。主从控制策略是一种需要换流站间通信的控制策略,这种控制方式利用换流站间的通信系统实现了直流电压的稳定,具有控制特性好、直流电压质量高等优点,但系统可靠性依赖于换流器控制器与系统控制器之间的高速通讯,这严重制约了多端直流输电尤其是长距离输电系统可靠性的提高。直流电压偏差控制策略是一种无需站问通信的控制策略,这种控制策略的实质是在定直流电压站故障退出运行后,后备定直流电压站能够检测到直流电压的较大偏移并转入定直流电压运行模式,保证了直流电压的稳定性;同时其设计简单、可靠性强。 下垂控制策略为多点控制,控制器通过测量本地直流母线电压对功率分配进行调节,因而不依赖于换流站间的高速通讯,系统可靠性较高。 二、多端柔性直流输电系统的直流电压控制策略 2.1柔性直流输电系统概述 总体上来看,目前的多端直流输电系统接线方式主要有串联型、并联型和混联型 3 种类型。由于并联型多端系统具有调节范围宽、扩建灵活、易于控制和可靠性高等突出优点,成为研究的热点和应用的重点。本文设计的直流电压混合控制策略主要是针对并联型多端系统。多端柔性直流输电系统控制是一个庞大复杂且相互耦合的多输入、多输出系统,为满足系统控制的快速性和高可靠性,一

基于VSC的柔性直流输电技术研究

基于VSC的柔性直流输电技术研究 本文介绍了基于VSC的柔性直流型输出电力系统的基本结构、基本工作原理和技术特点,并使用ATP-EMTP软件仿真建立其模型,得出其正常工作时的谐波及其不同故障情况下的运行特点。最后总结了柔性直流型输电系统需重点研究的几个基础理论问题及其发展前景。 1 引言 随着能源日益紧张和环境污染日益严重,目前中国在极力开发和利用可再生的清洁型能源。由于风能、太阳能等可再生能源利用规模的日益增大,其分散性、小规模性、离供电中心较远等问题,使得采用传统的交流输送电力系统或传统的直流输电系统显得不是很经济。 相关电子技术的迅猛发展以及控制技术的突飞猛进使得采用直流型输电力系统即可解决上述问题。采用基于可关断型电压源换流装置和PWM技术进行直流电输送,适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市区域电网供电等诸多领域。 根据实际情况,特别是西电东送、全国电网联网迫在眉睫的情况下,研发直流型输电系统,建设新一代直流型输电联网系统,将会促进大规模电网合并,并逐步完善城市供电和孤岛供电等技术。 2 柔性直流输电的系统结构和基本原理 与传统自然换相技术的直流型输电系统不同,VSC-HVDC(Voltage Source Converter-High Voltage Direct Current)是一种以电压源换流器、可控关断装置和脉宽调制(PWM)技术为基础的新型的直流型输电技术。该技术能在短时间内实现有功率和无功率的独立解耦控制,能够自主地向无源电网供电,极易于构成多端直流型电力系统,能极大的增加供电系统的稳定性,提高电力系统的输电能力。下面将介绍VSC-HVDC 的系统基本结构和基本的工作原理。 2.1 系统结构 图1为柔性直流型输出电力系统的基本原理框图,两端的换流站全部采用VSC基本结构,由换流站、换流变压设备、换流电抗设备、直流电容和交流滤波电路等部分组成。

直流输电技术

直流输电技术

直流输电技术课程报告柔性直流输电在城市配电网中的应用 院系:电气工程及自动化学院姓名: 学号: 导师: 时间:

1.城市配电网交流供电存在问题 城市电网是城市现代化建设的重要基础设施之一,是电力系统的主要负荷中心,具有用电量大、负荷密度高、安全可靠和供电质量要求高等特点。随着城市化进程的不断推进和社会经济的高速发展,城市负荷不仅持续快速增长,并且对供电可靠性以及电能质量的要求越来越高,因此,向城市负荷中心供给大量优质可靠的电能将面临越来越大的困难和挑战。一,随着城市发展建设的日趋成熟,从环境保护以及土地资源的限制考虑,不仅制约了大容量电源的建设,而且造成向城市供电的线路走廊越来越拥挤,甚至出现缺少必要线路走廊的供电瓶颈;二,由于增加城市供电能力的投资成本越来越高,人们对于健康和居住环境的要求增高,因此需要采取合适的供电方式以节约资金、减少电网建设运行对城市居住环境的影响;三,随着城市供电容量的增加,系统的短路电流增大,这对于开关设备以及其他网络元件的安全运行造成极大的威胁;还有,城市负荷对于供电可靠性以及电能质量的要求越来越高,这就需要向城市负荷中心供电应该满足运行灵活、可控性高的要求,以满足各种运行情况的需求。 目前城市电网的供电方式依然采用高压交流供电,特别是大城市或者中小城市中心区域采用地下电缆供电,高压交流电缆供电在一定程度上解决了城市供电中架空线走廊缺乏、电力设施与城市景观不和谐等问题,但依然受到供电距离、无功消耗较大等问题的限制。 2.城市配电网采用柔性直流输电的优点 柔性直流输电能瞬时实现有功和无功的独立解耦控制,结构紧凑、占地面积小、易于构成多端直流系统;能向系统提供有功和无功的紧急支援,在提高系统的稳定性和输电能力等方面具有优势。利用这些特点不仅可以解决目前城市电网存在的问题,而且可以满足未来城市电网的发展要求,改善系统的安全稳定运行。主要表现在以下几个方面: (1)增强城市电网的供电能力,满足城市日益增长的负荷需求VSC-HVDC 采用新型的直流电缆,不仅占用空间小、输电能力强,而且可以安装在现有的交流电缆管内或线路走廊内,这样可以充分利用输电走廊,增强城市电网的供电能力,满足城市负荷需求。 (2)为城市负荷中心提供必要的无功支撑,克服电压稳定性所构成的限制VSC-HVDC 不仅能实现有功和无功的独立快速控制,还能动态补偿交流母线的无功,稳定母线的电压。这不仅可以有效缓解城市中心区大量的地下交流电缆以及空调负荷比例的日益增大造成的无功缺乏问题,还可以为城市负荷中心提供必要的无功支撑,维持城市电网的安全稳定运行。 (3)提高城市电网可控性和安全可靠性VSC-HVDC 具有快速多目标控制能力,可实现正常运行时潮流的优化调节故障时交流系统之间的快速紧急支援和故障隔离。此外,还可增强系统的可控性和抗扰动能力,从而达到提高稳定性、运行可靠性和不增加短路容量、改善电能质量的目的。 (4)增强城市电网建设的可实施性,节省电力建设成本VSC-HVDC 结构紧凑、占用空间小,模块化的设计使得设计、生产、安装和调试周期大为缩短。采用新型的直流电缆不仅安装容易、快速,而且机械强度和柔韧性好、重量轻,更重要的是无油、电磁辐射和无线电干扰小,利于实现与市政设施和环境的协调。不仅增强城市电网建设的可实施性,而且可节省征地、赔偿等建设成本。

柔性直流输电对比

1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 (1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 (2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 (3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于扩展和实现多端直流输电等优点。 (4)采用双极运行,不需要接地极,没有注入地下的电流。 3. 柔性直流输电技术的缺点。系统损耗大(开关损耗较大), 不能控制直流侧故障时的故障电流。在直流侧发生故障的情况下,由于柔性直流输电系统中的换流器中存在不可控的二极管通路,因此柔性直流输电系统不能闭锁直流侧短路故障时的故障电流,在故障发生后只能通过断开交流侧断路器来切除故障。可以使用的最佳解决方式是通过使用直流电缆来提高系统的可靠性和可用率。 三、常规直流输电技术和柔性直流输电技术的对比

1. 换流器阀所用器件的对比。 (1)常规直流输电采用大功率晶闸管,由于晶闸管是非可控关断器件,这使得在常规直流输电系统中只能控制晶闸管换流阀的开通而不能控制其关断,其关断必须借助于交流母线电压的过零,使阀电流减小至阀的维持电流以下才行。 (2)柔性直流输电一般采用IGBT阀,由于IGBT是一种可自关断的全控器件,即可以根据门极的控制脉冲将器件开通或关断,不需要换相电流的参与。 2. 换流阀的对比。 (1)常规直流输电系统中换流阀所用的器件是大功率晶闸管和饱和电抗器,可以输送大功率。 (2)柔性直流输电系统中的换流阀采用了IGBT器件,可实现很高的开关速度,在触发控制上采用PWM技术,开关频率相对较高,换流站的输出电压谐波量较小,主要包含高次谐波。故相对于常规直流输电,柔性直流输电换流站安装的滤波装置的容量大大减小。(3)常规直流输电通过换流变压器连接交流电网,而柔性直流输电是串联电抗器加变压器,常规直流输电以平波电抗器和直流滤波器来平稳电流,而柔性直流输电则采用直流电容器。 3. 换流站控制方式的对比。 (1)常规直流输电系统的换流站之间必须进行通信,以传递系统参数并进行适当的控制,而柔性直流输电系统中各换流站之间的通信不是必需的。

柔性交流输电技术

浅谈柔性交流 输电(FACTS)技术 衣斌黑龙江建三江农垦电业局 极限是一项有价值而且紧迫的工作。FACTS技术为增强输电系统提供了新的手段。安装在长距离输电线中间或受端的静止无功补偿装置(STATCOM)能够提供电压支撑从而能极大地提高长距离输电系统的稳定性。 三、FACTS技术的分类及其技术原 器(STATCON),晶闸管投切串联电容器(TCSC),统一潮流控制器(UPFC)就是基于FACTS技术的产品。 理 FACTS技术按其接入系统方式可分为并联型,串联型和综合型。并联型FACTS主要用于电压控制和无功潮流控制;串联型FACTS主要用于输电线路的有功潮流控制、系统的暂态稳定和抑制系统功率振荡;综合型FACTS设备主要包括潮流控制器(UPFC)和可控移相器(TCPR),UPFC适用于电压控制、有功和无功潮流控制、暂态稳定和抑制系统功率振荡,TCPR适用于系统的有功潮流控制和抑制系统功率振荡。各种类型设备的技术原理介绍如下: 1、并联型FACTS装置 典型的并联型FACTS装置是STATCOM。STATCOM主回路主要是由大功率电力电子器件组成的电压型逆变器和并联直流电容 器构成,是与传统SVC原理完全不同的无功补偿系统。这种装置脱离

了以往无功功率概念的约束,不采用常规电容器和电抗器来实现无功补偿,而是利用逆变器产生无功功率。因此,设备无功功率的大小都由它输出的电流来调整,而其输出的电流与系统电压基本无关,这些功能、原理上类似于同步调相机,但它是完全的静态装置,因此STATCOM又称为静止调相器,它的动态性能远优于同步调相机,启动无冲击,调节连续范围大,响应速度快,损耗小。 2、串联型FACTS装置 典型的串联型FACTS装置是可控串补(TCSC)。TCSC通常指采取晶闸管控制的分路电抗器与串联电容器组并联组成的串联无功 补偿系统,通过改变晶闸管的触发角来改变分路电抗器的电流,使 二、我国电力的发展需要柔性交流输电技术 上世纪八十年代中期,美国电力科学研究院N.G.Hingorani博士首次提出FACTS概念:应用大功率、高性能的电力电子元件制成可控的有功或无功电源以及电网的一次设备等,以实现对输电系统的电压、阻抗、相位角、功率、潮流等的灵活控制,将原基本不可控的电网变得可以全面控制。从而大大提高电力系统的高度灵活性和安全稳定性,使得现有输电线路的输送能力大大提高。 柔性交流输电系统能在较大范围有效地控制潮流;线路的输送能力可增大至接近导线的热极限;电网和设备故障的危害可得到限制,防止线路串级跳闸,以避免事故扩大;易阻尼消除电力系统振荡,提高系统的稳定性。

柔性直流输电技术概述

电力电子技术专题大作业 ——柔性直流输电技术概述0.前言 学习电力电子技术专题一学期以来,我感觉受益良多,我收获的不仅仅是各位老师讲座上所教授的内容,更有他们对于电网行业的深入分析以及未来发展方向的预测。在诸多讲座中,我对宋强老师所讲的柔性直流输电技术最感兴趣,下面我就以此为主题,对柔输技术进行一些简要的概括与探究。 1.背景介绍 我们都知道历史上交直流输电之争由来已久,电机系的许多老师都经常提到这个话题,而目前普遍的输电方式仍是交流输电。交流输电线路中,除了有导线的电阻损耗外还有交流感抗的损耗,为了解决交流输电电阻的损耗,还可以采用高压和超高压输电来减小电流来减小损耗,但是交流电感损耗不能减小,因此交流输电不能做太远距离输电。如果线路过长输送的电能就会全部消耗在输电线路上。交流输电并网还要考虑相位的一致。如果相位不一致两组发电机并网会互相抵消。这时人们又想起了直流输电的方式。 一直以来,直流输电的发展与换流技术(特别是高电压、大功率换流设备)的发展有密切的关系。但是近年来,除了有电力电子技术的进步推动外,由于大量直流工程的投入运行,直流输电的控制、保护、故障、可靠性等多种问题也越发显得重要。因此多种新技术的综合应用使得直流输电技术有了新进展。 输电技术的发展经历了从直流到交流,再到交直流共存的技术演变。随着电力电子技术的进步,柔性直流作为新一代直流输电技术,可使当前交直流输电技术面临的诸多问题迎刃而解,为输电方式变革和构建未来电网提供了崭新的解决方案。 基于电压源型换流器的高压直流输电概念最早是由加拿大McGill大学Boon-Teck等学者于1990年提出的。通过控制电压源换流器中全控型电力电子器件的开通和关断,改变输出电压的相角和幅值,可实现对交流侧有功功率和无功功率的控制,达到功率输送和稳定电网等目的,从而有效地克服了此前输电技术

柔性直流输电

柔性直流输电技术 目录 简介 (1) 原理 (2) 战略意义 (3) 应用前景展望 (4) 常规直流输电与柔性直流输电的对比 (5) 一、常规直流输电技术 (5) 二、柔性直流输电技术 (6) 三、常规直流输电技术和柔性直流输电技术的对比 (7) 四.运行方式 (8)

简介 柔性直流输电作为新一代直流输电技术,其在结构上与高压直流输电类似,仍是由换流站和直流输电线路(通常为直流电缆)构成。基于电压源换流器的高压直流输电(VSC-HVDC)技术由加拿大McGill大学的Boon-Teck Ooi 等人于1990年提出,是一种以电压源换流器、自关断器件和脉宽调制(PWM)技术为基础的新型输电技术,该输电技术具有可向无源网络供电、不会出现换相失败、换流站间无需通信以及易于构成多端直流系统等优点。 李岩,罗雨,许树楷,周月宾等.柔性直流输电技术:应用、进步与期望.《南方电网技术》,2015讲述了柔性直流输电技术是构建灵活、坚强、高效电网和充分利用可再生能源的有效途径,代表着直流输电的未来发展方向,已成为新一代智能电网的关键技术之一。概述了国内外柔性直流输电工程的现状以及柔性直流输电技术在交流电网的异步互联、风电场并网、海上平台供电和城市负荷中心供电等领域的应用情况;重点介绍了世界第一个多端柔性直流输电工程——南澳多端柔性直流输电示范工程的研发情况,尤其是其技术难点;指出了直流输电混合化,高电压大容量化,直流输电网络化和直流配电网等未来柔性直流输电技术发展

的主要方向;提出了柔性直流输电系统亟待解决的关键问题,诸如具有直流短路故障电流清除能力的电压源换流器拓扑结构,高压直流断路器技术和直流电网运行的基础理论及控制保护技术。 柔性直流输电系统中两端的换流站都是利用柔性直流输电,由换流器和换流变压设备,换流电抗设备等进行组成。其中最为关键的核心部位是 VSC ,而它则是由流桥和直流电容器共同组成的。系统中,综合考虑它的主电路的拓扑结构及开关器件的类型,能够采用正弦脉宽调制技术,将此类技术在调制参考波与三角载波进行数据的对比,在后者数据相对较小的情况下,就会发生触发下桥臂开关导通并关断下桥臂。这主要是由于浮动数值和相位都可以利用脉宽调制技术来进行智能化调解。因此,VSC 的交流输出电压基频分量的幅值及相位也可通过脉宽进行调节 原理 与基于相控换相技术的电流源换流器型高压直流输电不同,柔性直流输电中的换流器为电压源换流器(VSC),其最大的特点在于采用了可关断器件(通常为IGBT)和高频调制技术。 通过调节换流器出口电压的幅值和与系统电压之间的功角差,可以独立地控制输出的有功功率和无功功率。这样,

柔性直流输电与高压直流输电的优缺点

柔性直流输电 一、常规直流输电技术 1. 常规直流输电系统换流站的主要设备。常规直流输电系统换流站的主要设备一般包括:三相桥式电路、整流变压器、交流滤波器、直流平波电抗器和控制保护以及辅助系统(水冷系统、站用电系统)等。 2. 常规直流输电技术的优点。 1)直流输送容量大,输送的电压高,最高已达到800kV,输送的电流大,最大电流已达到4 500A;所用单个晶闸管的耐受电压高,电流大。 2)光触发晶闸管直流输电,抗干扰性好。大电网之间通过直流输电互联(背靠背方式),换流阀损耗较小,输电运行的稳定性和可靠性高。 3)常规直流输电技术可将环流器进行闭锁,以消除直流侧电流故障。 3. 常规直流电路技术的缺点。常规直流输电由于采用大功率晶闸管,主要有如下缺点。 1)只能工作在有源逆变状态,不能接入无源系统。 2)对交流系统的强度较为敏感,一旦交流系统发生干扰,容易换相失败。 3)无功消耗大。输出电压、输出电流谐波含量高,需要安装滤波装置来消除谐波。 二、柔性直流输电技术 1. 柔性直流输电系统换流站的主要设备。柔性直流输电系统换流站的主要设备一般包括:电压源换流器、相电抗器、联结变压器、交流滤波器和控制保护以及辅助系统(水冷系统、站用系统)等。 2. 柔性直流输电技术的优点。柔性直流输电是在常规直流输电的基础上发展起来的,因此传统的直流输电技术具有的优点,柔性输电大都具有。此外,柔性输电还具有一些自身的优点。 1)潮流反转方便快捷,现有交流系统的输电能力强,交流电网的功角稳定性高。保持电压恒定,可调节有功潮流;保持有功不变,可调节无功功率。 2)事故后可快速恢复供电和黑启动,可以向无源电网供电,受端系统可以是无源网络,不需要滤波器开关。功率变化时,滤波器不需要提供无功功率。 3)设计具有紧凑化、模块化的特点,易于移动、安装、调试和维护,易于

柔性输电与直流输电技术..

柔性输电与直流输电技术 1引言 自从1882年法国人德普勒首次实现第一条直流输电线把电力送到57 km远的慕尼黑国际博览会驱动水泵电动机,1891年第一条三相交流高压输电线在德国劳奋至法兰克福竣工以来,开始了电力系统交直流输电一个多世纪的应用和发展。输电技术发展的特点是努力减少线路损失,提高输送距离和输送容量。目前,单纯提高输电电压的发展已出现明显的饱和趋势,传统的输电方法已不能适应现代电力输送的要求。未来输电发展的重点将是采用新的技术,充分利用线路走廊输送更多的电力,提高单位线路走廊的输电能力是许多国家共同面临的问题,于是多种新型输电方式的概念和技术被提出并得到积极地研究。 1970年后发展起来的电力电子技术,可以通过电力半导体开关电路实现快速、有效、经济、方便的电力变换、电力补偿和电能控制,可以为传统电力系统中发电、输电、配电、用电各领域提供先进的技术手段:快速、经济、有效、便捷地实现电力系统中电压、电流、阻抗、功率的实时调控,将各种电力电子补偿控制器引入交流输电系统,可以实现交流输电系统的灵活、方便、经济有效的实时控制,提高交流输电功率极限值,而又确保其运行稳定性储备,优化输电电网潮流,减少功耗,节省能源,提供输电线路变压器等电力设备的利用率。引入了各种电力电子变换器、补偿控制器可实现灵活快速有效控制的交流输电系统被称为柔性交流输电系统FACTS(Flexible A.C Transmission System)。FACTS技术从根本上改变了交流输电系统中,对于电网的控制只能采用传统的缓慢、间断以及不精确设备进行机械控制的局面,为交流输电网提供了快速、连续和精确的控制手段以及优化潮流的能力,同时能够保证系统稳定性,且有助于在事故发生时防止连续造成的大面积停电。随着电力电子器件和控制技术的发展,换流站采用IGBT、IGCT等元件构成电压源型换流站(Voltage Source Converter,VSC)来进行直流输电成为可能。自上世纪九十年代后期,以ABB公司为代表的国外公司发展了轻型直流输电(HVDC Light)技术,并成功应用于多个领域。这种直流输电技术是采用基于可关断型器件的电压源型换流器和PWM技术进行直流输电。从其技术特点和实际工程的运行来看,很适合应用于可再生能源并网、分布式发电并网、孤岛供电、城市电网供电、异步交流电网互联等领域。 因此,根据国家中长期科技发展规划和“十一五”发展规划纲要,发展柔性输电与直流输电技术,建设新一代直流输电联网工程,促进大规模风力发电场的并网,城市供电和孤岛供电等新技术的发展,满足持续快速增长的能源需求和能源的清洁高效利用,增强自主创新能力,符合我国国情和我国的经济发展规律,符合市场需求,符合电力工业发展规律和电网技术发展方向。 2柔性输电技术 2.1柔性交流输电技术 柔性交流输电(FA rS:Hexible AlternativeCurrent Transmission Systems)又叫做灵活交流输电,最早是在1988年由美国电力科学研究院(EPRI)的N.G.Hingorani博士提出来的。柔性交流输电技术是将电力电子技术、微处理机技术和控制技术等高新技术集中应用于高压输变电系统,以提高输配电系统可

柔性直流输电

南京工程学院 远距离输电技术概论 班级:输电112 学号: 206110618 姓名:钱中华 2014年12月10日

目录 0.引言 (3) 1.研究与应用现状 (4) 2.原理 (4) 3.特点 (5) 4.关键技术 (6) 5.发展趋势 (7) 6.小结 (9)

柔性直流输电技术 0.引言 随着能源紧缺和环境污染等问题的日益严峻,国家将大力开发和利用可再生清洁能源,优化能源结构。然而,随着风能、太阳能等可再生能源利用规模的不断扩大,其固有的分散性、小型性、远离负荷中心等特点,使得采用交流输电技术或传统的直流输电技术联网显得很不经济。同时海上钻探平台、孤立小岛等无源负荷,目前采用昂贵的本地发电装置,既不经济,又污染环境。另外,城市用电负荷的快速增加,需要不断扩充电网的容量,但鉴于城市人口膨胀和城区合理规划,一方面要求利用有限的线路走廊输送更多的电能,另一方面要求大量的配电网转入地下。因此,迫切需要采用更加灵活、经济、环保的输电方式解决以上问题。 柔性直流输电技术即电压源换流器输电技术(VSC HVDC)采用可关断电力电子器件和PWM 技术,是一种新型直流输电技术,它能弥补传统直流输电的部分缺陷,其发展十分迅速。为了进一步推动柔性直流输电技术在我国的研究和应用,本文结合ABB 公司几个典型应用工程, 详细介绍了柔性直流输电的系统结构、基本工作原理和与传统直流输电相比的技术优势,并就我国的实际情况讨论了柔性直流输电在我国多个领域,尤其是风电场的应用前景。 1.研究与应用现状 自1954 年世界上第一个直流输电工程(瑞典本土至GotIand 岛的20MW、100kV 海底直流电缆输电)投入商业化运行至今,直流输电系统的换流元件经历了从汞弧阀到晶闸管阀的变革。然而由于晶闸管阀关断不可控,目前广泛应用的基于PCC的传统直流输电技术有以下固有缺陷:1只能工作在有源逆变状态,且受端系统必须有足够大的短路容量,否则容易发生换相失败;2换流器产生的谐波次数低、谐波干扰大;3换流器需吸收大量的无功功率,需要大量的滤波和无功补偿装置;4换流站占地面积大、投资大。因此,基于PCC的常规直流输电技术主要用于远距离大容量输电、海底电缆输电和交流电网的互联等领域。 其先研究主要发展有一下几项基本技术: 1.高压大容量电压源变流器技术 模块化多电平变流器可以有效降低交流电压变化率,其拓扑结构如图 1 所示。桥臂中的每个子模块可以独立控制,每相上、下两个桥臂的电压和等于直流母线电压。交流电压通过控制每相中两个桥臂的子模块旁路比例来叠加实现,桥臂中的子模块越多,交流电压的谐波越小。与两电平变流器相比,由于不需要每一相上的所有器件在较高频率下同时动作,模块化多电平大大降低了器件的开关损耗。

柔性交流输电技术的发展及其应用

柔性交流输电技术的发展及其应用 摘要:根据世界上柔性交流输电技术的发展和应用现状,对其特点和功能进行了详细的论述和分类,从多方面叙述了它的先进性、可用性和重要意义,最后介绍了该项技术在世界上的应用情况。 关键词:柔性交流输电技术;有功潮流;无功潮流;潮流控制;稳定性 柔性交流输电技术(flexible alternative current transmission systems,FACTS)是将电力电子技术、微处理机技术和控制技术等高新技术集中应用于高压输变电系统,以提高输配电系统可靠性、可控性、运行性能和电能质量并获取大量节电效益的一种新型综合技术。早期受电力电子设备发展的限制,使FACTS技术在经济上和运行可靠性方面优势不明显。随着大功率高电压电力电子技术、微处理机技术和控制技术在近十几年的高速发展和日益成熟稳定,FACTS技术可靠性有了大大的提高,造价也不断降低,使直接对高电压大功率的输电系统进行可靠和快速控制已成为可能,而与电力电子元器件配套的驱动回路、保护和冷却等辅助技术也日趋完善,使FACTS技术逐步进入了实用阶段。 FACTS 技术的发展和现状 柔性交流输电系统的概念是由美国电力科学研究院N. G. Hingorani博士于1988年首先 提出的,在此以前出现的静止无功补偿设备(static var com pensator, SVC)也属于此范筹。 1997年IEEE PES冬季会议上正式对FACTS做了定义。从早期出现的SVC开始,FACTS技术的发展经历了20多年。按其性能和功能的不同可划分为以下三代,而是否含有常规电力器件(电容器和电抗器,抽头,抽头变压器等)可以说是FACTS技术发展的分界线。 a) 第一代FACTS技术 从20多年前就出现的SVC开始,主要由晶闸管开关快速控制的电容器和电抗器组成的装置,以提供动态电压支持,其技术基础是常规晶闸管整流器(semiconductor controlled rectifier,SCR),后来出现的第一代FACTS装置是晶闸管控制的串联电容器(thyristor controlled series compensator,TCSC),它利用SCR控制串接在输电线路中的电容器组来控制线路阻抗,从而提高输送能力。 b) 第二代FACTS 技术 这一代装置同样具有支持电压和控制功率等功能,但在外部回路中不需要加设大型的电力设备(指电容器和电抗器组或移相变压器等)。这些新装置如静止无功发生器(static compensator,STATCOM)和串联补偿器(solid state series compensator, SSSC)设备采用了门极 可关断设备(gate turn off thristor, GTO;insulated gate bipolar transistor, IGBT)等一类全控型器件,起电子回路模拟出电容器和电抗器组的作用, 装置造价大大降低,性能却明显提高。c) 第三代FACTS 技术 将两台或多台控制器复合成一组FACTS装置,并使其具有一个共同的、统一的控制系统。如将一台STATCOM和一台SSSC复合而成的综合潮流控制器(unified power flowcontroller,UPFC),它可以控制线路阻抗,电压或功角的方法同时控制输电线路的有功和无功潮流。调 节双回路潮流的线间潮流控制器(inter phase power flow controller, IFPC)和可控移相器(thyristor controlled phase angle regulator, TCPR)都属于复合控制器。 FACTS技术用于配电领域也取得了显著进展,它主要用于改善配电网的电压和电流质

中国柔性交流输电技术发展概况

中国柔性交流输电技术发展与前景 班级:电力08-3 姓名:白锡岩 学号: 0805040601

摘要:本文从柔性交流输电的概念出发,结合中国国情,介绍了中国对柔性交流输电技术的需求,柔性交流输电技术中国的发展现状,并对未来的发展前景作了分析。 关键词:柔性交流输电发展现状前景分析

从1986年美国电力专家N.G.Hingorani提出来柔性交流输电技术以来,随着各种电力电子器件以及柔性交流输电控制器的发展,柔性交流输电技术已经进入“成型”阶段,为我国柔性交流输电技术的发展提供了契机和更高的要求。 1、柔性交流输电的概念 柔性交流输电技术(FACT一Flexible AC transmission system),也称灵活交流输电技术,它是综合电力电子技术、微处理和微电子技术、通信技术和控制技术而形成的用于控制交流输电的新技术。 1986年,美国电力研究院(EPRI)的N.G.Hingorani博士首先提出FACTS(Flexible AC Transis-sion System)的概念,引起各国电力工业界强烈迅速的反应和极大兴趣。N.C.Hingorani博士给FACTS技术早期的明确定义是“FACTS就是基于晶闸管组件的控制器,其中包移相器TCPS、新型静止无功补偿器TCSC、电气制动器、串联电容调节器、带负荷抽头调节器(纵向调压器)、故障电流限制器FCL以及其它一些尚未发明的控制器。” 2、中国柔性交流输电的发展需求 柔性交流输电系统能在较大范围有效地控制潮流;线路的输送能力可增大至接近导线的热极限;电网和设备故障的危害可得到限制,防止线路串级跳闸,以避免事故扩大;易阻尼消除电力系统振荡,提高系统的稳定性。 随着新建电厂的不断并网发电,中国电力系统总装机容量上了新的台阶,然而整个电力系统出现了输电网络建设滞后于电厂建设的

柔性紧凑型输电模式及其实现技术

柔性紧凑型输电模式及其实现技术 柴旭峥1,2,梁曦东1,曾 嵘1,刘世宇1 (1.清华大学电机系电力系统国家重点实验室,北京100084; 2.河南电力调度通信中心,郑州450052) 摘 要:针对远距离大容量输电的需要和输电线路走廊占地及电磁环境的压力,提出了将紧凑型架空输电线路技术和柔性交流输电技术有机结合的柔性紧凑型输电系统。在介绍3种输电模式技术并初步仿真计算和比较其输送能力后,分析了实现这种输电模式将面对的综合性问题。研究结果表明,这种输电模式将有较强的远距离输送能力,同时具有紧凑型输电线路节约土地资源和改善电磁环境的特点,在我国“西电东送”的发展背景下,值得在超高压和特高压的输电等级上进一步研究实施。 关键词:电力系统;交流输电;柔性紧凑型输电系统;远距离大容量输电;线路走廊;电磁环境中图分类号:TM722文献标志码:A 文章编号:100326520(2007)1120155205 基金资助项目:国家重点基础研究专项经费项目(2004 CB217906)。 Project Supported by Special Fund of t he National Priority Basic Research of China (2004CB217906). Flexible Compact T ransmission Mode and Its R ealization T echnologies CHA I Xu 2zheng 1,2,L IAN G Xi 2dong 1,ZEN G Rong 1,L IU Shi 2yu 1 (1.State Key Lab of Power Systems ,Depart ment of Elect rical Engineering ,Tsinghua U niversity ,Beijing 100084,China ;2.Henan Elect ric Power Dispatching Center ,Zhengzhou 450052,China ) Abstract :The stress f rom the right 2of 2way of lines and electromagnetic environment ,the long 2distance ,large 2capac 2ity ,saving 2corridor and well 2electromagnetic 2environment power transmission mode is actually required in China.This paper proposes the concept of flexible compact transmission system ,which would combine technical advantages of compact transmission line and flexible AC transmission system.It is promising to solve these problems syntheti 2cally with flexible compact transmission system mode.Its technical contents are introduced ,and preliminary simula 2tions and calculations in transmission capacity of flexible compact transmission system are performed ,and the com 2plex problems are discussed.The preliminary research shows that flexible compact transmission system will have large transmission capacity for long 2distance power transmission ,and obvious efficiency of saving corridor and mel 2iorating electromagnetic environment because of characteristics of compact transmission lines.On the background of electric power system development strategy "transmission of electric power f rom the western to the eastern region"in China ,the flexible compact power transmission systems are worthy of being researched and performed in EHV AC and U HV AC power transmission system. K ey w ords :power system ;AC power transmission ;flexible compact transmission system ;long 2distance and large 2capacity power transmission ;right 2of 2way of lines ;electromagnetic environment 0 引 言 随着我国经济的高速发展,能源资源与电力负荷分布之间的不平衡日益明显,“西电东送”已成为我国电力工业发展的基本格局和发展战略。我国幅员辽阔,将西北的煤电送往华东、西南的水电送往广东都需要跨越较长的输电距离,故“西电东送”对输电系统提出了远距离、大容量输电的具体要求。 大容量远距离输电仍需选择直流或交流输电方式。超高压和特高压直流输电技术具有较强的远距 离输电能力,且具有线路造价低、节省线路走廊、不 存在系统稳定问题等经济、技术优势,但也存在换流设备造价昂贵、不利于电能的灵活分配、缺乏直流开关(灭弧困难)等经济、技术上的劣势[1,2],故应综合输送距离和输送容量的具体选择采用。我国正在进行特高压交流输电技术的研究和实施,电压等级的升高可较大幅度增加交流线路的远距离输送能力,但对于远距离的交流输电,稳定性水平是限制输送能力的主要因素[3],特高压的远距离输送能力随输电距离的增加将大大降低。随着我国大批交流输电线路的建设和特高压输电的实施,节约输电走廊占地意义重大。输电线路良好的电磁环境不仅可改善对生态的影响[4],而且将直接影响特高压输电系统建设投资的经济性[5]。 ? 551? 第33卷第11期 2007年 11月 高 电 压 技 术 High Voltage Engineering Vol.33No.11 Nov. 2007

相关文档
最新文档