离心式压缩机 特性及调节

离心式压缩机 特性及调节
离心式压缩机 特性及调节

离心式压缩机特性及调节

1)工况变动时对性能的影响

工况变动时,离心式制冷压缩机的性能也将发生变化,它与活塞式制冷压缩机有类似之处。

1)蒸发温度对性能的影响当转速和冷凝温度不变时,制冷量随蒸发温度的变化情况。从图中可以看出,蒸发温度愈低,制冷量下降愈剧烈。蒸发温度对性能的影响较大。

2)冷凝温度对性能的影响当转速和蒸发温度不变时,制冷量随玲凝温度变化时的情况。从图中可以看出,当冷凝温度高于设计值时,离心式制冷压缩机的制冷量将急剧下降。

3)转速对性能的影响由于离心式压缩机产尘的能量头与转速的平方成正比,因此随转速的降低能量头急剧下降,因而制冷量也将急剧下降。

(2)喘振与堵塞

图4—15示出离心式制拎压缩机的特性曲线。若压缩机在设计工况A点下工作时,气流方向和叶片流道方向一致,不出现边界层脱离现象,效率达最高值。当流量减小时(工作点向At移动),气流速度和方向均发生变化,使非工作面上出现脱离现象,当流量减少到临界值(A1)点时,脱离现象扩展到整个流道,使损失大大增加,压缩机产生的能量头不足以克服冷凝压力,致使气流从冷凝器倒流,倒流的气体与吸进来的气体混合,流量增大,叶轮又可压送气体。但由于吸入气体量没有变化,流量仍然很小,故又将产生脱离,再次出现倒流现象,如此周而复始。这种气流来回倒流撞击的现象称为“喘振”,它将使压缩机产生强烈的振动和噪声,严重时会损坏叶片甚至整个机组。

为了防止当压缩机工况发生变化或调节压缩机制冷量(减少负荷)时发生喘振现象,机组中可采取反喘振措施。例如从压缩机出口旁通—部分气流直接进入压缩机的吸入口,加大它的吸入量,从而避免喘振现象的发生。

所谓堵塞.即流量已达最大值,如图4—15中的A2点,此时,压缩机流道中某个最小截面处的气流速度达到了音速,流量不可能继续增加。

从堵塞点(最大流量点)到喘振点(最小流量点)这一范围,称为离心式压缩机的稳定工作区。它的大小也是压缩机性能好坏的标志之一。

二、能量调节

离心式制冷压缩机制冷量的调节方法很多,如改变压缩机转速、进气节流、改变叶轮进口前可转导叶的转角、改变冷凝器的冷却水量、吸气旁通等。其中,改变叶轮进口前可转导叶的转角的方法调节,经济性较好,调节范围较宽,方法又较简单,故被广泛采用。

它在叶轮进口前装有一组放射性可转动叶片,当改变它的角度时,就改变了进入叶轮气流的方向,致使叶轮产生的能量头发生变化,达到制冷量调节的目的。

1. 压缩机对机组能量的调节

(1)进气节流调节

(2)采用可调节进口导流叶片调节

图6-22所示为空调用制冷机组中进口导流叶片自动能量调节的示意图。

编制: 强旭敏YORK Wuxi 2006-9-21

基础理论

离心式压缩机YSJ/2.3 6/6

(3)改变压缩机转速的调节当用汽轮机或可变转速的电动机拖动时,可改变压缩机的转速进行调节,这种调节方法最经济。如图6-23所示,

压缩机转速的改变可采用变频调节以改变电动机转速来实现。

VSD根据冷水出水温度和压缩机压头来优化电动机的转速和导流叶片的开度,从而使机组始终在最佳状态

区运行。图6-24为VSD工作原理图。

2. 改变换热器参数(如改变冷却水水量)对机组能量的调节由前可知当改变冷凝器冷却水流量时,可以得到不同的冷凝器特性曲线,从而可使工作点移动,达到调节能量的目的。但这种调节方法不经济,一般只在采用其它调节方法的同时作为一种辅助性的调节。

离心压缩机小知识

1. 离心式压缩机的效率比活塞式低且不适于气量太小及压力较高的场合,稳定工况较窄,经济性较差。 2. “级”就是一个叶轮和其相匹配的固定元件所构成的基本单元。 3. 首级由吸气室、叶轮、扩压器、弯道、回流器组成;末级由叶轮扩压器和蜗壳组成。 4. 段是以中间冷却器作为分段标志,气流从吸入被冷却。 5. 缸是将一个机壳称为一缸 6. 离心式压缩机的主要性能参数有排气压力、排气量、压缩比、转速、功率、效率。 7. 选择和合理使用压缩机的重要依据是主要性能参数。 8. 主轴按结构分三种:阶梯式节鞭式和光轴。 9. 开式叶轮是由轮毂和径向叶片组成。 10. 叶轮及轴上零件与主轴的配合一般采用过盈配合。 11. 轴向力最终由推力盘来承担。 12. 轴向力的危害是影响轴承的使用寿命,严重烧轴瓦,转子窜动时使转子上的零件和固定元件碰撞以致机器损坏。 13. 平衡轴向力的方式有叶轮对称排列、平衡盘装置、叶轮背面加筋。 14. 轴套的作用防止叶轮轴向窜动、还起密封作用。 15. 扩压器分三种无叶片扩压器、有叶片扩压器和直臂扩压器。 16. 无叶片扩压器的气体从叶轮中通过环形流道流出达到减速增压的目的。 17. 弯道和回流器的作用是把扩压器后的气体引导到下一级延续压缩。 18. 离心式压缩机轴承分径向轴承和止推轴承两大类。 19. 滑动轴承的按工作原理分静压轴承和动压轴承两类。 20. 动压轴承是由依靠轴颈本身的旋转把有带入轴颈和轴瓦间形成楔状油楔,油楔受到负荷挤压而产生油压,使轴和轴瓦分开形成油膜。 21. 动压轴承按结构形成分为圆瓦轴承、可倾瓦轴承和椭圆瓦轴承。 22. 可倾瓦轴承在任何情况下都有利于形成最佳油膜,不易产生油膜震荡。 23. 止推轴承分米楔尔轴承、金丝伯雷轴承。 24. 止推瓦块之间受力不均匀的轴承是米楔尔轴承。 25. 金丝伯雷轴承活动部分由扇形止推块、上摇块、下摇块三层叠加而成。 26. 止推块和上摇块为球面接触。 27. 金丝伯雷轴承承载力能力大允许推力盘有较大的线速度,磨损慢,使用寿命长,更适宜用于高速重载离心式压缩机。 28. 金丝伯雷轴承的缺点轴向尺寸较大,制造工艺复杂。 29. 金丝伯雷轴承又称浮动叠层式轴承。金丝伯雷轴承广泛应用于高速高压的离心式压缩机。 30. 米楔尔轴承由止推瓦块、基环和副推力瓦块组成。 31. 在推力盘的两侧分主推力瓦和副推力瓦,正常运动时,轴的轴向力是由主推力瓦来承受,然后,才是通过基环传动给轴承座。 32. 副推力瓦块是在启动或停机时可能出现的反向轴向力时起作用。 33. 米楔尔轴承的止推盘的轴向位置是止推轴承来保证的,即由止推盘和止推轴承的间隙位置来确定的。 34. 推力盘和瓦块间的间隙称为推力间隙和轴子的工作窜量。 35. 离心式压缩机密封分内部密封和外部密封,内部密封如轮盖、定距套、平衡盘上的密封一般为迷宫式密封;外部密封有毒有害易燃易爆气体,采用液体密封、机械密封、干气密封,对于无毒无危险的介质可采用迷宫式密封。

第三章 离心泵习题与作业

第三章离心泵习题与作业 单选题: 题1:离心泵叶轮的作用是________。(1分) A. 传递能量 B. 汇集液流 C. 吸收热量 D. 使液体旋转 题2:离心泵采用后弯叶瓣,可使泵获得较高的______。(1分) A. 效率 B. 总压头 C. 流量 D. 动压头 题3:离心泵的吸入滤器清洗后________。(1分) A. 流量增加 B. 轴功率降低 C. 轴功率增加 D. A十C 题4:离心泵采用后弯叶片与前弯、径向叶片相比,它________。(1分) A. 产生的动压头相对较小 B. 产生的动压头相对较大 C. 产生的总压头相对较大 D. 产生静压头相对较大 题5:离心泵叶轮一般采用________叶片。(1分) A. 径向 B. 后弯 C. 先前弯再后弯 D. 前弯 题6: 用节流阀改变泵的流量一般应改变______阀的开度。(1分) A. 吸入 B. 排出 C. 旁通 D. 调压 题7:离心泵关排出阀起动时________。(1分) A. 扬程最低 B. 起动功率最小 C. 效率最高 D. 工作噪音最低 题8:表征离心泵叶轮特点的参数是________。(1分) A. 压头 B. 流量 C. 比转数 D. 外径 题9:离心泵用改变排出阀开度来调节流量可以_______。(1分) A. 改变泵的性能

B. 改变泵的比转数 C. 改变泵的运行工作点 D. 改善泵的运行经济性 题10:下列泵中适合关排出阀起动的是________。(1分) A. 旋涡泵 B. 离心泵 C. 齿轮泵 D. 水环泵 题11:正常情况下,离心泵动能转换为静压能的过程主要是在_________中进行。(1分) A. 蜗室 B. 扩压管 C. 叶轮 D. 排出管 题12: 泵管路特性表明了流过管路所需的压头与流量的关系,曲线的陡斜程度取决于________。(1分) A. 吸排液面间的高度差 B. 吸排液面间的压力差 C. 管路的阻力大小 D. 液体的密度 题13:离心泵叶轮的平衡孔开在________。(1分) A. 前盖板上 B. 后盖板上 C. 平衡盘上 D. A或B 题14: 离心泵有的叶轮作成双吸式主要是为了________。(1分) A. 平衡轴向推力 B. 便于安装轴承 C. 改变泵轴的悬臂状态 D. 限制进口流速 题15:提高离心泵的压头,采用______的方式较为适宜。(1分) A. 增大叶轮直径 B. 提高泵的转速 C. 串联多个叶轮 D. 降低液体温度 题16:在一般情况下,离心泵工作________后应检查阻漏环的径向间隙。(1分) A. 8000h B. 4000h C. 1000h D. 2000h 题17:能完全平衡离心泵轴向推力的方法是________。(1分) A. 双吸叶轮法 B. 平衡管法 C. 平衡孔法 D. 液力自动平衡装置

离心式压缩机操作问答题

离心式压缩机操作问答100题 1、压缩机的定义:压缩机是一种用来提高气体压力或输送气体的机器,从能量的观点看,压缩机是把驱动机(如电机、汽轮机)的机械能转化为气体压力能的一种机械。 2、离心式压缩机的工作原理是什么 答:当汽轮机带动压缩机主轴转动时,叶轮叶片流道里的气体被叶片带动,随主轴一起转动,在离心力作用下,气体被甩到叶轮外,进入扩压器。叶片中心将形成低压区域,外面的气体从而进入叶轮,填补稀薄地带,由于叶轮连续旋转,故气体在离心力作用下不断甩出,外界气体就连续流入,进入扩压器。 3、离心式压缩机有哪些主要性能参数 答:表征离心式压缩机性能的主要参数有:流量、排气压力、压缩比、转速、功率、效率和排气温度。 4、离心式压缩机气体通流部份主要部件作用 答:气体通流部件由进气室、叶轮、扩压器、弯道、回流器、蜗壳组成。 1) 进气室--它是气体均匀引入到叶轮去的通道,压缩机各段第一级设有进气室。 2) 叶轮--使气体增压增速的部件。 3) 扩压器--实现气体动能转化为压力能的部件。

4) 弯道--把扩压器后的气体正确引入到下一级缸的通道。使气体的离心方向改变为向心方向。 5) 回流器--从弯道出来的均匀引入到下一级叶轮进口,继续提压的通道。 6) 蜗壳--汇集气体,降速升压并将气体导出的部件。 5、压缩机轴封有哪几种形式 答:压缩机的轴封有:迷宫型密封、浮环油膜密封、机械接触式密封。 6、本装置中压缩机的型号是什么代表的意思是什么 由沈阳透平机械股份有限公司制造。由一台型号为3MCL527离心压缩机和一台NK32/36型蒸汽透平组成。压缩机与汽轮机之间由联轴器连接。 3 M CL 52 7 7 ----表示一个缸内安装的叶轮级数为7级 52----表示叶轮的名义尺寸为52cm CL ----表示离心压缩机及无叶扩压器; M----表示机壳为水平剖分结构; 3----表示叶轮背靠背布置,中间带加气 7.离心式压缩机的结构由那几部分组成 答:转子和定子两部分。 转子主要包括轴、叶轮、平衡盘、联轴节、等零部件,叶轮是使

离心式压缩机操作法

精细化工事业部甲醇制芳烃离心式压缩机操作方法 (试用) 编制: 校对: 审核: 批准:

一、岗位任务: Ⅰ、再生系统空气压缩机、再生气循环机: 合成油反应器催化剂GSK 一10再生时,空气经过MW—46.7/11型空气压缩机【J40202】三级压缩后,提压至1.2Mpa。与来自界区压力1.2Mpa 的氮气按比例混合温度不高于38℃,进入SV6-M压缩机【J40203】提压至2.0 Mpa,送往合成油反应器内进行循环烧炭反应。 Ⅱ、循环气压缩机:将气液分离后的合成气,经MCL-452离心式压缩机升压后送往合成油反应器,循环带走反应热。 二、职责范围: Ⅰ、管理本压缩机组及其附属设备,阀门,管线与本机组有关的电气,仪表,信号,安全防护联锁装置等。 Ⅱ、负责压缩机的正常操作,开车、停车、事故处理。 Ⅲ、保证压缩机正常运行,将各工艺条件稳定在操作指标内。 Ⅳ、负责设备的维护保养,消除跑、冒、滴、漏,做到岗位清洁,文明生产。 Ⅴ、运行期间每小时排污一次,并注意循环油箱液位。 Ⅵ、按时进行巡回检查,发现隐患或超工艺指标情况及时处理或汇报,确保安全稳定运行。 Ⅶ、经常检查各段进、出口气体压力和温度的变化情况;及压缩机振动、位移的变化;加减负荷时应加强与相关岗位的联系。

Ⅷ、压缩机开车正常运行后,向外工序送气时,必须待出口压力略高于系统压力时,才能开启出口阀门。 巡回检查 Ⅰ、根据操作要求,每小时做一次岗位记录,做到认真、准时、无误。Ⅱ、每十五分钟检查一次系统各点压力、温度和振动、位移。 Ⅲ、每半小时检查一次压缩机的运转情况及活门、气缸、活塞环、填料函,干气密封等有无异常情况; Ⅳ、每小时检查一次系统放空阀,近路阀、各排污阀的关闭情况。Ⅴ、各段分离器排污,每两小时排放一次。 Ⅵ、每一小时检查一次各冷却器溢流情况、气缸夹套冷却水溢流情况及循环油箱油位。 Ⅶ、每班检查一次系统设备、管道等泄漏和振动情况。 三、生产原理及操作原理: Ⅰ、SV6-M压缩机; HM-46.7/11空气压缩机为四列三级对称平衡型往复活塞式压缩机。由同步电机直接驱动,每分钟吸入46.7m3空气,最终排气压力1.1Mpa。活塞式压缩机的工作原理: 依靠活塞在气缸内的往复运动来压缩气体的。压缩气体的过程可分为四个过程:吸气、压缩、排气、膨胀过程。

离心压缩机喘振

喘振的概念 1)喘振的概念 喘振是离心式压缩机本身固有的特性,而造成喘振的唯一直接原因是进气量减小到一定值。 从前面我们已经知道,当气量减小到一定程度时,会出现旋转脱离,如这时进一步减小流量,在叶片背面将形成很大的涡流区域,气流分离层扩及整个通道,以至充满整个叶道,而把流道阻塞,气流不能顺利的流过,这时流动严重恶化,压缩机的出口压力会突然大大下降,由于压缩机总是和管网系统联合工作,这时管网中的压力不会马上减低,于是管网中的气体压力就会大于压缩机的出口处的压力,因而管网中的气体就倒流向压缩机,一直到管网中的压力下降到低于压缩机的出口压力为止,这时倒流停止,压缩机又开始向管网供气,经过压缩机的流量又增大,压缩机又恢复到正常工作。但当管网中的压力恢复到原来压力时,压缩机的流量又减少,系统中的气流又产生倒流,如此周而复始,就在整个系统中产生了周期性的气流振荡现象,这种现象就称作“喘振”。喘振现象不但和压缩机中严重的旋转脱离有关,还和管网系统有关。管网的容量越大,则喘振的振幅越大,频率越低。喘振的频率大致和管网容量的平方跟成反比。 2)喘振的现象及判断 机组喘振时,压缩机和其后的管道系统之间产生了一种低频高振幅的压力波动,整个机组发生强力的振动,发出严重的噪音,调节系统也大幅度的波动。一般根据下列方法判断是否进入喘振工况。 (1)监测压缩机出口管道气流噪音。正常工况时出口的声音是连续且较低的。而接近喘振时,整个系统的气流产生周期性的振荡,因而在出口管道处声音是周期性的变化,喘振时,噪音加剧,甚至有爆音出现。(2)观测压缩机流量及出口压力的变化。离心式压缩机稳定运行时其出口压力和进口流量变化是不大的,是脉动的,当接近或进入喘振工况时,二者的变化很大,发生周期性大幅度的脉动。 (3)观测机体和轴振动情况。当接近或进入喘振工况时,机体和轴振动都发生强烈的振动变化,其振幅要比平常运行时大大增加。 3)喘振的危害 喘振是离心式压缩机性能反常的一种不稳定运行状态。发生喘振时,表现为整个机组管网系统气流周期性的振荡。不但会使压缩机的性能显

离心泵常见事故及排除方法

离心泵操作 1、离心泵启动前的准备工作 (1)接到开泵通知时,应问清楚对方姓名,了解所送油品的种类、来源、去向车数、确定能使用的机泵并通知罐区、栈台、锅炉等相关岗位。 (2)穿戴好劳动护具,检查泵体对轮螺丝、地脚螺丝及安全罩是否良好。 (3)检查电流表、压力表、温度表是否良好。 (4)检查润滑油是否达到规定高度(油面控制在1/2~2/3高度)是否变质。 (5)盘车3~5圈(轴转后和原位置相差180°),检查转动是否平衡,有无杂音。(6)打开泵入口阀,排尽泵内气体,排完后关上放空阀。 2、离心泵的启动 (1)启动机泵前,与罐区、栈台、装置、锅炉等相关岗位约定启泵时间,并严格执行。(2)启动机泵时,无关人员应远离机泵。 (3)按约定时间,接通电源,启动机泵。 (4)机泵启动后,检查压力、电流、振动情况,检查泄漏及轴承、电机温度等情况。(5)待泵出口压力稳定后,缓慢打开出口阀,使压力和电流达到规定范围,并和相关岗位取得联系。 (6)重新全面检查机泵的运行情况,在泵正常运行10min后司泵人员方可离开,并做好记录。 注意事项: A:离心泵应严格避免抽空 B:离心泵启动后,在关闭出口阀的情况下,不得超过3min。 正常情况下,不得用调节入口阀的开度来调节流量。 3.离心泵正常运转及维护 (1)经常检查出口压力,电流有无波动,应及时调节,使其保持正常指标,严禁机泵长时间抽空,用出口阀控制流量,不准用入口阀控制流量。 (2)经常检查泵及电机的轴承温度是否正常,滚动轴承温度不得超过70℃,滑动轴承温度不得超过65℃,电机温度不得超过70℃。 (3)检查端面密封泄漏情况,轻质油不大于10滴/分,重质油不大于5滴/分。 (4)严格执行润滑三级过滤和润滑制度,经常检查润滑油的质量,发现乳化变质应立即更换,检查油标防止出现假油液面,液面控制在1/2~2/3高度。 (5)经常检查机泵的运行情况,做到勤摸、勤听、勤看、勤检查电机和泵体运转是否平稳,有无杂音。 (6)备用泵在备用期间及停用泵每班盘车一次(180°)。 (7)做好运行记录,保持泵、电机、泵房的清洁卫生。 4、离心泵的切换 (1)与相关岗位联系,准备切换泵。 (2)做好备用泵启动前准备工作,开泵的入口阀,使泵内充满液体,打开放空阀放空,放空后关闭放空阀。 (3)启动备用泵,电机运转1~2min后观察出口压力,电流正常后,缓慢打开泵出口阀门。 (4)打开备用泵出口阀时,逐渐关小原来运行泵的出口阀,尽量减小流量、压力的波动。(5)待备用泵运行正常后,停原来运行泵。 (6)紧急情况下,可先停运行泵,后启动备用泵。 5、离心泵的正常停泵 (1)慢慢关闭出口阀。 (2)切断电源。

(完整word版)KCC219系列离心式空气压缩机

KCC215-9系列离心式空气压缩机 技术说明 浙江开山离心机械有限公司

目录 1、相关技术数据 2、产品特点 3、性能保证 4、性能测试情况介绍 5、技术服务和设计联络 6、甲方的备货范围 7、供货范围清单以及供应商 甲方(需方): 乙方(供方):浙江开山离心机械有限公司 2014 年 5 月18 日

KCC215-9 离心式空压机相关技术数据 项目/品牌开山 型号KCC215-9(215m3/min,0.9MPaA) 额定流量(m3/min)215(入口状态) 额定压力(BarG)8 空压机出口空气质量100%无油 节流范围(%)70~105%(对应进口导叶开度40~90°) 压缩段数 3 轴功率(KW)1035 冷却水消耗量(T/hr)130(含后冷却器用水) 冷却水温升(degC)8℃ 剖分形式水平剖分式平行轴斜齿整体齿轮增速齿轮箱 小齿轮材质17CrNiMo6 大齿轮材质17CrNiMo6 叶轮形式半开式、后倾式 叶轮材质17-4PH 高速轴轴向轴承形式推力盘 高速轴径向轴承形式水平剖分式可倾瓦轴承 高速轴油封形式迷宫 高速轴气封形式迷宫 低速轴(大齿轮轴)轴承形式水平剖分式轴套式滑动轴承 低速轴(大齿轮轴)油封形式迷宫式油封 蜗壳材质HT300 联轴器不锈钢膜片式并带防护罩 入口阀动力方式电动执行器调节进口导叶结构~220V ,4-20mA 放空阀动力方式电气动执行器,4-20mA 空气流道防腐处理材质按客户要求 扩压器材质铝合金 冷却器管束材质T2 冷却器翅片材质AL 疏水阀形式带有“V”形缺口的冷却器泄水阀 电机额定功率(KW)1120(华达) 额定电压(KV)10 电机转速(RPM)2975 电机效率:100%/75%/50%负荷0.95/0.95/0.94 电机功率因素:100%/75%/50%负荷0.88/0.85/0.77 绝缘等级 F 温升等级 B 防护等级IP23 启动方式液态软启动 启动电流(A) 3.5倍满载电流 电机轴承滚动轴承 电机轴承润滑脂润滑

单台离心泵工况调节方式分析

- 52 - 技术交流 石油和化工设备2014年第17卷 单台离心泵工况调节方式分析 方清华 (江汉大学机电与建筑学院, 湖北 武汉 430056) [摘 要] 本文以离心泵和管路系统的特性曲线图为依据,对离心泵常用的几种流量调节的方式进行了分析和比较,给出了调节原理、调节方法、调节范围、优缺点及适用场合。通过对比指出变速调节流量是较佳的离心泵调节方式。[关键词] 离心泵;流量;调节方式;分析;比较 作者简介:方清华(1972—),女,湖北宜城人,硕士,副教 授。在江汉大学机电与建筑学院主要从事机械类专业教学与研究工作。 通常,在工艺设计和生产实践中,离心泵的流量和扬程可能会比管路中要求的偏大,或者由于生产任务、工艺要求发生变化,需对泵的运转流量进行调节,以保持较高的运转效率。事实上,离心泵在实际使用中工作点的选择也会直接影响用户的能耗和成本费用,因此,如何合理地调节离心泵的流量显得尤为重要。 离心泵流量的大小取决于工作点的位置,而工作点是由泵的特性曲线和管路特性曲线共同决定的,改变任何一条曲线都可以使其工作点发生转移,从而达到调节流量的目的。本文就改变离心泵流量的几种主要方法进行了分析和比较,以寻求较佳的流量调节方式。 1 改变管路特性曲线 1.1 节流调节 节流调节是在管路上安装节流部件(通常为阀门),通过改变阀门的开度来控制流量大小的调节方法,有入口节流调节和出口节流调节两种。入口节流调节由于易产生汽蚀现象,已很少采用。出口节流调节因简单易行成为离心泵常用的调节方法。节流调节实质上是改变管路特性曲线的位置来改变泵的工作点。如图1所示,泵特性曲线Q ~H 与管路特性曲线Q ~h 的交点M 为阀门全开时泵的工作点。当出口阀关小时,管道局部阻力增加,管路特性曲线由Q ~h 变为(Q ~h )1,泵的工作点转移至M 1点,相应流量减少。阀门关得越小,流量也就越小。从图1可看出,以关小阀门来控制流量时,离心泵本身的供水能力不变,扬程特性不变,而管路特性随着阀门开度的改变而改变。这种方法操作简便,特别对比转数小的泵,其流量、扬程曲线较平坦,调节灵敏,调节 时流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资。但节流调节是人为增加阻力,造成扬程损失,能量利用率差,泵的效率也将随之下降,经济上不合理,工程应用中应尽 量避免使用。 图1 出口节流调节 图2 旁路调节

离心压缩机试车方案

陕西龙门煤化工有限责任公司28万吨合成氨项目 离心式压缩机试车方案 编制: 审核: 审批: 中国化学工程第四建设有限公司 二零壹伍年叁月

目录 一.编制依据及说明 (3) 1.1 编制依据 (3) 1.2.工程概况 (3) 二、试车前应具备的条件 (3) 2.1 蒸汽系统 (4) 2.2 油系统 (4) 2.3 凝汽系统 (5) 2.4 保安系统 (6) 2.5 调节系统 (6) 三、暖管及试车 (7) 3.1 试车 (7) 3.2 运行监视 (8) 3.3停车 (8) 3.3.1 正常停车 (8) 3.3.2 紧急停车 (9) 四、离心式压缩机开车 (9) 4.1 准备 (9) 4.1.1 压缩机装置启动的准备 (9) 4.1.2 检查压缩机是否具备运行的的条件 (10) 4.1.3 检查油系统 (10)

4.1.4 检查缓冲气体系统 (10) 4.2 启动 (11) 4.2.1 检查 (11) 4.2.2 压缩机的启动 (11) 4.3 停机 (12) 4.4 机组联动调试 (12) 4.5 停机 (14) 4.5.1 正常停机 (14) 4.5.2紧急停机 (15) 五、组织机构及劳动力组合安排 (16) 六、质量保证措施 (16) 七. 质量保证措施 (17) 八、 HSE保证措施 (19) 九.劳动力需求及施工进度计划 (21) 十、主要施工机具、施工手段用料及技措用料一览表 (22) 10.1主要施工机具一览表 (22) 10.2 主要施工手段及技措用料一览表 (22) 十一、交工技术文件 (23)

一.编制依据及说明 1.1 编制依据 1.1.1 沈阳透平机械股份有限公司离心式压缩机说明书 1.1.2 青岛捷能汽轮机股份有限公司汽轮机使用说明书 1.2.工程概况 合成氨装置设置3台离心式压缩机, 驱动机均为凝汽式汽轮机机组:烟道气压缩工段压缩机组型号为DMCL906+2MCL906,汽轮机组型号为N24-3.3型;氨压缩工段压缩机组型号为3MCL609,汽轮机组型号为N4.3-3.3型;合成压缩工段离心式压缩机组型号为2BCL528+2BCL458/A+BCL451/A,汽轮机组型号为N14.1-3.3型;压缩机与汽轮机由膜片联轴器联结。主机布置在二楼,润滑油站布置在一楼。压缩机汽轮机采用公用底座,属整机到货。整个机组采用润滑油站供油。合成气压缩机组结构布置图见下图。 汽轮机采用向上进汽和向下排汽的结构,带有空气冷凝器和液位自动调节系统,并配有起动抽气器和两级射汽抽气器以保证冷凝器正常工作。 二、试车前应具备的条件 A、速关阀前主蒸汽管路的蒸汽吹扫工作经相关方检查符合设计要求及(GB50235-97)规范要求。 B、油质检验经化验应符合设计及规范的要求。 C、机组试车前,业主、施工方、制造厂家及监理单位等各相关方会

离心压缩机考题

离心压缩机 一、问答题 1.同一台压缩机转速相同,分别压缩空气和二氧化碳气(进气状态相同,进口容积流量相同),试比较叶轮所提供的叶片功和压缩机的出口压力哪个大?若要求这两种气体有相同的压力比时,比较所需的级数。 2.写出理想气体在离心压缩机中分别为绝热压缩过程和多变压缩过程时,压缩机对每公斤气体所作的压缩功的公式(对每公斤气体而言,压缩机向外传出的热量很少,可忽略)。比较哪个过程的功大?并说明原因(介质初始进气条件和终压均相等)。 3.DA140—61硝酸气压缩机,气体主要成分是氮气、一氧化碳、氧气和空气,设计流量Q s0 =140m3/min,出口压力p d0=3.5×105 Pa(绝),但在某工厂实际操作中流量Q=120m3/min,出口压力p d =3.0×105 Pa(绝),达不到设计要求,试定性分析: (1).流量和压力达不到设计要求的原因可能是什么? (2).若该厂在实际操作中降低出口管网压力而其他条件不变时,流量和出口压力能否达到要求? 4.分析离心压缩机中产生冲击损失的原因及影响冲击损失大小的因素。 5.什么叫临界马赫数M cr ?什么叫最大马赫数M max? 6.离心压缩机完全相似的三个先决条件是什么?在性能换算中有两种近似相似情况是哪两种? 7.离心压缩机设计时,进口相对速度马赫数M w1常取在临界马赫数M cr 和最大马赫数M max之间,为什么? 8.在同温度下空气和氢气哪个音速大?哪种气体更难于压缩?如果在M w1 =0.85下压缩气体,以同一叶轮在同样进气温度下工作,压缩空气和氢气哪个允许的叶轮圆周速度大? 9.离心压缩机常采用的叶轮型式有哪几种?其中最常用的是哪一种?其叶片出口安放角大致范围是多少? 10.浮环密封装置中浮环有高压侧和大气侧浮环之分,哪侧浮环与轴的间隙较小,为什么?密封油和机内介质的压力差用什么来控制? 11.同一离心压缩机的绝热效率和多变效率哪个值大,为什么? 12.叶片扩压器的优点是什么?它适用于叶轮出口气流角α2 较大还是较小的场合,为什么? 13.离心压缩机中流量大于和小于设计流量时,其冲角是正值还是负值?叶轮内涡流区主要出现在工作面还是非工作面? 14.试写出下列离心压缩机中常用的方程式和表达式: (1).稳定流动焓值方程; (2).伯努利方程; (3).多变压缩功(多变能头); (4).特征马赫数。 15.滞止焓是气流在什么时候的焓?在压缩机扩压器流道中滞止温度和滞止压力是如何变化的,为什么? 16.径向直叶片叶轮适用于何种情况?它常作成半开式型式,为什么?在多级压缩机中如何使用?

离心泵基础知识

2-2 离心泵 离心泵结构简单,操作容易,流量均匀,调节控制方便,且能适用于多种特殊性质物料,因此离心泵是化工厂中最常用的液体输送机械。近年来,离心泵正向着大型化、高转速的方向发展。 2.2.1 离心泵的主要部件和工作原理 图2-1 离心泵活页轮 一、离心泵的主要部件 1.叶轮 叶轮是离心泵的关键部件,它是由若干弯曲的叶片组成。叶轮的作用是将原动机的机械能直接传给液体,提高液体的动能和静压能。 根据叶轮上叶片的几何形式,可将叶片分为后弯、径向和前弯叶片三种,由于后弯叶片可获得较多的静压能,所以被广泛采用。 叶轮按其机械结构可分为闭式、半闭式和开式(即敞式)三种,如图2-1所示。在叶片的两侧带有前后盖板的叶轮称为闭式叶轮(c图);在吸入口侧无盖板的叶轮称为半闭式叶轮(b图);在叶片两侧无前后盖板,仅由叶片和轮毂组成的叶轮称为开式叶轮(a图)。由于闭式叶轮宜用于输送清洁的液体,泵的效率较高,一般离心泵多采用闭式叶轮。 叶轮可按吸液方式不同,分为单吸式和双吸式两种。单吸式叶轮结构简单,双吸式从叶轮两侧对称地吸入液体(见教材图2-3)。双吸式叶轮不仅具有较大

的吸液能力,而且可以基本上消除轴向推力。 2.泵壳 泵体的外壳多制成蜗壳形,它包围叶轮,在叶轮四周展开成一个截面积逐渐扩大的蜗壳形通道(见图2-2)。泵壳的作用有:①汇集液体,即从叶轮外周甩出的液体,再沿泵壳中通道流过,排出泵体;②转能装置,因壳内叶轮旋转方向与蜗壳流道逐渐扩大的方向一致,减少了流动能量损失,并且可以使部分动能转变为静压能。 若为了减小液体进入泵壳时的碰撞,则在叶轮与泵壳之间还可安装一个固定不动的导轮(见教材图2-4中3)。由于导轮上叶片间形成若干逐渐转向的流道,不仅可以使部分动能转变为静压能,而且还可以减小流动能量损失。 注意:离心泵结构上采用了具有后弯叶片的叶轮,蜗壳形的泵壳及导轮,均有利于动能转换为静压能及可以减少流动的能量损失。 3.轴封装置 离心泵工作时是泵轴旋转而泵壳不动,泵轴与泵壳之间的密封称为轴封。轴封的作用是防止高压液体从泵壳内沿间隙漏出,或外界空气漏入泵内。轴封装置保证离心泵正常、高效运转,常用的轴封装置有填料密封和机械密封两种。 二、离心泵的工作原理 装置简图如附图。 1.排液过程 离心泵一般由电动机驱动。它在启动前需先向泵壳内灌满被输送的液体(称为灌泵),启动后,泵轴带动叶轮及叶片间的液体高速旋转,在惯性离心力的作用下,液体从叶轮中心被抛向外周,提高了动能和静压能。进而泵壳后,由于流道逐渐扩大,液体的流速减小,使部分动能转换为静压能,最终以较高的压强从排出口进入排出管路。 2.吸液过程 当泵内液体从叶轮中心被抛向外周时,叶轮中心形成了低压区。由于贮槽液面上方的压强大于泵吸入口处的压强,在该压强差的作用下,液体便经吸入管路被连续地吸入泵内。 3.气缚现象 当启动离心泵时,若泵内未能灌满液体而存在大量气体,则由于空气的密度

压缩机试题-A卷-答案

一、填空题(每空0.5分,共20分) 1.离心压缩机的性能曲线左端受喘振工况限制,右端受堵塞工况限制,这两者之间的区域称为稳定工况区。 2.离心压缩机级内的能量损失主要包括:轮阻损失、内漏气损失和流动损失。 3.离心压缩机轴封形式主要有机械密封、浮环密封、迷宫密封和抽气密封。 4.往复式压缩机由传动机构、工作机构、机体和辅助机构四部分组成。 5.活塞通过活塞杆由传动部分驱动,活塞上设有活塞环以密封活塞与气缸的间隙。 6.如果气缸冷却良好,进气过程加入气体的热量减少,则温度系数取值大; 传热温差大,造成实际气缸工作容积利用率减小,温度系数取值小。 7.气阀主要由阀座、弹簧、阀片和升程限制器四部分组成。 8.生产中往复活塞式压缩机的排出压力取决于背压(排出管路内压力)。 9.往复活塞式压缩机缸内实际平均吸气压力低于(高于、等于、低于)名义吸气压力,缸内实际平均排气压力高于(高于、等于、低于)名义排气压力。 10.转子型线的影响要素主要有:接触线、泄漏三角形、封闭容积和齿间面积。 11.泄漏三角形三顶点:两转子接触线的最高点、阴转子齿顶与两汽缸孔交线的交点、阳转子齿顶与两汽缸孔交线的交点。 12.螺杆压缩机阴阳转子的传动比等于两转子转角之比,等于两转子转速之比,等于两转子角速度之比,等于两转子节圆半径之比,还等于两转子齿数 之比。 13.螺杆压缩机吸气过程中,吸气腔一直与吸气口相连通,不能与排气口相连通。 14.当螺杆压缩机的内压力比大于(大于或小于)外压力比时,此时产生过压缩;当内压力比小于(大于或小于)外压力比时,此时产生欠压缩。 15.螺杆压缩机喷液的作用是:冷却、密封、润滑和降噪等。 16.同一台螺杆压缩机用于压缩空气和丙烷,相比之下当压缩空气时,其压缩比较大(大或小),其排气温度较高(高或低)。

离心压缩机的调节方法

1、变转速调节 采用变转速调节方法可以使得工况变动时,效率的变化不大,并且机器的机构不要求具有可变动部件。因此它具有运行经济性高、制造简便、构造较简单的优点。但是采用变转速调节时,压缩机的工作区域受机器最大转速及喘振区的限制,而且因为这种调节方法需要用可变速的原动机,因此这种调节方法还未普遍被采用。 2、转动入口导叶角度的调节 转动叶片的调节包括进口导流器、叶片扩压器及工作叶片可转动的调节。采用转动叶片调节大大地扩大了压缩机的工作范围,并且在运行经济性上可以与变转速调节相接近,而它的喘振区域要比变转速调节时小,也就是说在流量小的时候用这种调节方法可以比转速调节时得到更高的能量头。采用这种调节方法的唯一缺点是,由于有可转动的元件,使机器的构造复杂。但是,由于它可用于原动机不变的机器,并且这种调节方法本身也有较大的优点,因此,虽然结构上比变转速调节复杂,但随着调节构造的不断改进与简化,将广泛地用于压缩机调节。 3、进气节流 采用进气节流调节时,在压缩机进气端装1个节流阀门。从运转经济性来看,它比转速调节和叶片转动调节要低。但是采用这种调节方法,可以在不需要变速,也不需要转动压缩机叶片的情况下,满足工况变动时的要求。由于构造简单,成本低,调节简单,而且在吸气调节时比上述两种调节方法具有较小的喘振区,因此在一般电机拖动的压缩机中应用得较广。4、排气端节流调节这种调节方法实际上只是相当于改变管网的特性曲线,而对压缩机供给特性曲线没有影响。出气节流所带来的损失将使整个装置的效率大大降低,因此这种调节方法最不经济。而且喘振界限仍然为压缩机原来的喘振点,故一般都不用它作为压缩机的正常调节。 5、放气调节,离心压缩机所用的放气调节多为排气管旁通管路调节。如果用户要求输气量在较大范围内变动,而压力变动较小,而且所需气量小于机器本身喘振时的流量时,用变转速或进气节流调节显然是不合适的。这时为了满足工况要求,可采用在压缩机的排气端开启旁路阀,使多余一部分气体排至大气或回到吸气管的方法进行调节。采用这种调节方法,可使用户获得对应于旁路阀全闭时的某一最大流量起到流量为零时为止的这个范围内的任何一个流量。采用旁路气流调节的唯一好处就是它的调节区域比任何其他调节方法都来得大。由于经济性太差,不能作为压缩机正常调节方法,而一般只是在防止喘振发生时才采用这种调节。 目前大型离心压缩机都采用了自动调节装置来保证压缩机安全运行,防止喘振发生。这种自动调节器主要由感受元件、调节机构、传动机构三部分组成。

离心泵的流量控制方法.

离心泵流量控制方法探讨 前言 离心泵是目前使用最为广泛的泵产品,广泛使用在石油天然气、石化、化工、钢铁、电力、食品饮料、制药及水处理行业。如何经济有效的控制泵输出流量曾经引发过大讨论,曾一度流行全部使用变频调速来控制输出流量,取消所有控制阀控制流量的型式,单从目前来看市场上有4种广泛使用的方法:出口阀开度调节、旁路阀调节、调整叶轮直径、调速控制。现在我们来逐一分析讨论各种方法的特点。 离心泵流量常用控制方法 方法一:出口阀开度调节 这种方法中泵与出口管路调节阀串联,它的实际效果如同采用了新的泵系统,泵的最大输出压头没有改变,但是流量曲线有所衰减。 方法二:旁路阀调节 这种方法中阀门和泵并联,它的实际效果如同采用了新的泵系统,泵的最大输出压头发生改变,同时流量曲线特性也发生变化,流量曲线更接近线形。 方法三:调整叶轮直径 这种方法不使用任何外部组件,流量特性曲线随直径变化而变化。 方法四:调速控制 叶轮转速变化直接改变泵的流量曲线,曲线的特性不发生变化,转速降低时,曲线变的扁平,压头和最大流量均减小。 泵系统的整体效率 出口阀调节与旁路调节方法均增加了管路压力损失,泵系统效率都大幅减小。叶轮直径调整对整个泵系统效率影响较小,调速控制方法基本不影响系统效率,只要转速不低于正常转速的50%。 能耗水平 假定通过上述四种办法将泵的输出流量从60m3/h调整到50m3/h,输出为 60m3/h时的功率消耗为100%(此时压头为70m),那么几种控制流量的办法对泵消耗的功率影响如何? (1)出口阀开度调节,能量消耗为94%,流量较低时消耗功率较大。 (2)旁路调节,旁路阀将泵的压头减小到55M,这只能通过增加泵的流量来实现,结果能耗增加了10%。 (3)调整叶轮直径,缩小叶轮直径后泵的输出流量和压力均降低,能耗缩减到67%。 (4)调速控制,转速降低,泵的流量和压头均减小,能耗缩减到65%。 总结 下表中总结出了各种流量调节方法,每种方法各有优缺点,应根据实际情况

泵与压缩机[参考内容]

参考。材料 1 《泵与压缩机》综合复习资料 一、简述题 1.简述离心泵的抗汽蚀措施,说明较为有效实用的抗汽蚀措施。 2.简述离心压缩机的单级压缩和多级压缩的性能特点。 3.简述往复活塞式压缩机的工作循环,指出工作循环中的热力过程。 4.简述离心泵的性能曲线,说明性能曲线的主要用途。 5.简述离心压缩机的喘振工况和堵塞工况,说明对离心压缩机性能影响较大的特殊工况。 6.简述往复活塞式压缩机的排气量调节方法,说明较为实用有效的调节方法。 7.简述离心泵的主要零部件,说明离心泵的工作原理。 8.简述往复活塞式压缩机的动力平衡性能,说明动力平衡的基本方法。 9.简述离心泵的速度三角形和基本方程式。 10.简述离心压缩机的工况调节方法,说明较为节能实用的工况调节方法。 11.简述往复活塞式压缩机多级压缩的性能特点。 二、计算题 1.一台离心水泵,实测离心泵出口压力表读数为0.451 MPa ,入口真空表读 数为256 mmHg ,出口压力表和入口真空表之间的垂直距离Z SD =0.5 m ,离心泵入口管径与出口管径相同,水密度ρ=1000 kg/m 3。求离心泵的实际 扬程H (m )。 2.一台单级双吸式离心水泵,流量Q =450 m 3/h ,扬程H =92.85 m ,转速n =2950 r/min 。求离心泵的比转数n s 。 3.一台单级离心式空气压缩机,压缩机叶轮圆周速度u 2=255.235 m/s ,流量系数φ2r =0.28,叶片出口安装角β2A =50o,叶片数z =20。求离心压缩机的理论能头H T (J/kg )。 4.一台离心泵流量Q 1=100.0 m 3/h ,扬程H 1=80.0 m ,功率N 1=32.0 kW ,转速n 1=2900 r/min 。求离心泵转速调节至n 2=1450 r/min 时的流量Q 2(m 3/h )、扬程H 2(m )和功率N 2(kW )。 5.一台离心水泵,离心泵样本允许汽蚀余量[H s ]=5.0 m ,使用当地大气压p a ′=0.07 MPa ,使用当地饱和蒸汽压p v ′=1400 Pa ,水密度ρ=1000 kg/m 3。求离心泵在当地使用的允许真空度[H s ]′(m )。 6.一台多级离心式空气压缩机,第一级理论能头H T =44786.0 J/kg ,内漏气损失系数βl =0.012,轮阻损失系数βdf =0.030,有效气体流量m =27000 kg/h 。求离心压缩机第一级的总功率H tot (kW )。 7.一台往复活塞式空气压缩机,单级双缸单作用结构型式,标准吸入状态排气量Q =0.60 m 3/min ,容积系数λv =0.798,一级系数λp λT λl =0.900,转速n =1200 r/min ,活塞行程S =0.055 m 。求往复压缩机的气缸工作容积V h (m 3)和气缸直径D (m )。 8.一台单级往复活塞式空气压缩机,容积系数λv =0.800,气缸工作容积V h =0.1330 m 3,压缩机转速n =330 r/min ,当量过程指数m =1.33,平均实际吸气压力p 1'=92910 Pa ,平均实际排气压力p 2'=422741 Pa 。求往复压缩机的指示功率N i (kW )。

离心压缩机基础知识

离心压缩机基础知识 分类 (1)按轴的型式分:单轴多级式,一根轴上串联几个叶轮;双轴四级式,四个叶轮分别悬臂地装在两个小齿轮的两端,旋转靠电机通过大齿轮驱动小齿轮。 (2)按气缸的型式分:水平剖分式和垂直剖分式。 (3)按压缩介质分类:空气压缩机、氮气压缩机、氧气压缩机等。 特点与应用 ? 优点 由于是连续旋转式机械,可以大大地提高进入其中的工质量,提高功率。所以,离心式压缩机的第一个特点是:功率大。 由于工质量可以提高,必然导致叶片转速的提高,所以第二个特点是高速性。 无往复运动部件,动平衡特性好,振动小,基础要求简单; 易损部件少,故障少、工作可靠、寿命长; 机组单位功的重量、体积及安装面积小; 机组的运行自动化程度高,调节范围广,且可连续无级调节; 在多级压缩机中容易实现一机多种蒸发温度;

润滑油与介质基本上不接触,从而提高了冷凝器及蒸发器的传热性能;对大型压缩机,可由蒸气动力机或燃气动力机直接带动,能源使用经济合理; ? 缺点 单机容量不能太小,否则会使气流流道太窄,影响流动效率; 因依靠速度能转化成压力能,速度又受到材料强度等因素的限制,故压缩机每级的压力比不大,在压力比较高时,需采用多级压缩; 特别情况下,机器会发生喘振而不能正常工作; 离心压缩机的工作原理分析 ? 常用名词解释 (1)级:每一级叶轮和与之相应配合的固定元件(如扩压器等)构成一个基本的单元,叫一个级。 (2)段:以中间冷却器隔开级的单元,叫段。这样以冷却器的多少可以将压缩机分成很多段。一段可以包括很多级。也可仅有一个级。(4)进气状态:一般指进口处气体当时的温度、压力。 (7)表压(G):以当地大气为基准所计量的压强。 (8)绝压(A):以完全真空为基准所计量的压强。 (9)真空度:与当地大气负差值。 (10)压比:出口压力与进口压力的比值。 性能参数

离心泵常用调节方式

离心泵常用调节方式 离心泵在水利、化工等行业应用十分广泛,对其工况点的选择和能耗的分析也日益受到重视。所谓工况点,是指水泵装置在某瞬时的实际出水量、扬程、轴功率、效率以及吸上真空高度等,它表示了水泵的工作能力。通常,离心泵的流量、压头可能会与管路系统不一致,或由于生产任务、工艺要求发生变化,需要对水泵的流量进行调节,其实质是改变离心泵的工况点。除了工程设计阶段离心泵选型的正确与否以外,离心泵实际使用中工况点的选择也将直接影响到用户的能耗和成本费用。因此,如何合理地改变离心泵的工况点就显得尤为重要。 离心泵的工作原理是把电动机高速旋转的机械能转化为被提升液体的动能和势能,是一个能量传递和转化的过程。根据这一特点可知,离心泵的工况点是建立在水泵和管道系统能量供求关系的平衡上的,只要两者之一的情况发生变化,其工况点就会转移。工况点的改变由两方面引起:一.管道系统特性曲线改变,如阀门节流;二.水泵本身的特性曲线改变,如变频调速、切削叶轮、水泵串联或并联。 下面就这几种方式进行分析和比较: 一、阀门节流 改变离心泵流量最简单的方法就是调节水泵出口阀门的开度,而水泵转速保持不变(一般为额定转速),其实质是改变管路特性曲线的位置来改变泵的工况点。水泵特性曲线Q-H与管路特性曲线Q-∑h的交点为阀门全开时水泵的极限工况点。关小阀门时,管道局部阻力增加,水泵工况点向左移,相应流量减少。

阀门全关时,相当于阻力无限大,流量为零,此时管路特性曲线与纵坐标重合。由此可见,以关小阀门来控制流量时,水泵本身的供水能力不变,扬程特性不变,管阻特性将随阀门开度的改变而改变。这种方法操作简便、流量连续,可以在某一最大流量与零之间随意调节,且无需额外投资,适用场合很广。但节流调节是以消耗离心泵的多余能量(图中阴影部分)来维持一定的供给量,离心泵的效率也将随之下降,经济上不太合理。 二、变频调速 工况点偏离高效区是水泵需要调速的基本条件。当水泵的转速改变时,阀门开度保持不变(通常为最大开度),管路系统特性不变,而供水能力和扬程特性随之改变。在所需流量小于额定流量的情况下,变频调速时的扬程比阀门节流小,所以变频调速所需的供水功率也比阀门节流小。很显然,与阀门节流相比,变频调速的节能效果很突出,离心泵的工作效率更高。另外,采用变频调速后,不仅有利于降低离心泵发生汽蚀的可能性,而且还可以通过对升速/降速时间的预置来延长开机/停机过程,使动态转矩大为减小,从而在很大程度上消除了极具破坏性的水锤效应,大大延长了水泵和管道系统的寿命。

离心泵的控制方案

一、 离心泵的控制方案 1、离心泵工作原理 离心泵是通过离心力的原理工作的。离心泵工作原理是在泵内充满液体的情况下,叶轮旋转产生离心力,叶轮槽道中的液体在离心力的作用下被甩向外围而流进泵壳,于是叶轮中心压力降低,这个压力低于进水池液面的压力,液体就在这个压力的作用下有吸入池进入叶轮,这样泵就可以不断的吸入压出,完成液体的输送。 2、离心泵的主要参数 离心泵的主要参数包括:流量、扬程、功率、效率、转速和汽蚀余量等。 3、泵的类型 ①叶片式泵:它对介质的输送是靠有叶片的叶轮高速旋转而完成的。 ②容积式泵:它对介质的输送是靠泵体工作室容积的周期性变化而完成的。 ③其他类型泵:只改变输送介质的位能和利用输送介质本身能量的泵。 4、离心泵特性 由于离心泵的叶轮和机壳之间存在空隙,泵的出口阀全闭,液体在泵体内循环,泵的排量为零,压头最大;随着出口阀的逐步开启,排出量随之增大,出口压力将慢慢下降。 泵的压头H ,排量Q 和转速n 之间的函数关系:、 排出量Q → ↑ 压头 n 1 n 2 n 3 n 4 a a’

H =R 1n 2 – R 2Q 2 5、管路特性 HL=hp+hL+hf +hv 4项阻力: 1)管路两端的静压差引起的压头hp ; 2)管路两端的静压柱高度hL ; 3)管路中的摩擦损失压头hf ; 4)控制阀两端节流损失压头hv ; 当系统达到稳定工作状态时,泵的压头H 必然等于HL ,这是建立平衡得条件。左图中泵的 特性曲线与管路特性曲线的交点C ,即是泵的平衡工作点。 工作点C 的流量应符合工艺预定的要求,可以通过改变hv 或其它手段来满足这一要求,这是离心泵的压力(流量)的控制方案的主要依据。 6、离心泵的控制方案 1)直接节流法 排出量Q → ↑ 压头

相关文档
最新文档