触摸屏工作原理

触摸屏工作原理

触摸屏是一种现代化的输入设备,广泛应用于智能手机、平板电脑、导航系统等电子产品中。它具备方便易用、快捷高效的特点,为我们

的日常生活提供了极大的便利。那么,触摸屏是如何工作的呢?本文

将介绍触摸屏的工作原理。

一、电阻式电阻式触摸屏是最早应用的触摸技术之一。它由玻璃面板、导电膜、玻璃背板和一个分压器组成。导电膜和玻璃背板之间存

在微小的空隙,称为触摸层。当我们用手指或者触摸笔触摸屏幕时,

屏幕上形成一个电压分布,导电膜上的电流通过触摸点到导电膜和玻

璃背板之间的空隙,形成一个电压分压。

触摸屏控制器会通过测量这个分压来确定触摸点的位置。具体来说,控制器会在触摸屏的四个角上施加一个基准电压,然后在两个轴上测

量分压。通过计算两个轴上的分压值,控制器能够确定触摸点的精确

位置。接下来,系统会将这个信息传递给应用程序,从而实现各种触

摸操作。

二、电容式电容式触摸屏是目前主流的触摸技术。它由一个玻璃面

板和一个感应电极层构成。感应电极层由纵横两个互相垂直的导电层

组成,它们之间存在着微小的电容。

当我们用手指触摸屏幕时,手指会改变感应电极层之间的电场分布。电容式触摸屏控制器会感知到这个改变,并将其转化为坐标信息。由

于电容式触摸屏的电场不会受到压力大小的影响,所以相比于电阻式

触摸屏具有更好的灵敏度和精准度。

不同类型的电容式触摸屏根据感应电极层的不同结构,又可以分为

表面电容式和投射式电容式触摸屏。表面电容式触摸屏在玻璃面板上

涂覆一层薄膜电极,感应电极层位于玻璃下方。而投射式电容式触摸

屏则将感应电极层内嵌在玻璃面板中,增加了触摸屏的耐用性和透明度。

三、表面声波表面声波触摸屏采用声波传导的原理来实现触摸功能。它由一个玻璃面板和四个角落上的发射器和接收器组成。发射器会向

玻璃面板表面发射超声波,而接收器则用于接收超声波的反射信号。

当我们触摸屏幕时,手指会改变超声波在玻璃面板上的传播路径,

进而影响到接收器接收到的信号。触摸屏控制器会分析接收到的信号,从而确定触摸点的位置。表面声波触摸屏可以实现多点触摸,并且对

触摸物体的硬度没有要求,因此具有较好的抗污染性能。

总结:

触摸屏是一种常见的现代化输入设备,具备方便易用、快捷高效的

特点。不同类型的触摸屏采用了不同的工作原理,包括电阻式触摸屏、电容式触摸屏和表面声波触摸屏。通过电压分压、电场分布和声波传

导等方式,触摸屏能够准确感知到人们的触摸操作,并将其转化为坐

标信息。这使得我们可以通过触摸屏来进行各种操作,如点按、滑动、缩放等,为我们的日常生活带来了便利。不断创新的触摸技术将进一

步提升触摸屏的性能和体验,将来可期。

触摸屏工作原理

触摸屏工作原理 触摸屏技术已经成为现代智能设备中不可或缺的一部分。不管是智能手机、平板电脑还是电脑显示器,触摸屏都可以提供直观、快速的用户交互体验。在我们日常使用中,我们通过触摸屏来进行滑动、点击、放大缩小等操作,但你了解触摸屏的工作原理吗?本文将介绍几种常见的触摸屏工作原理。 一、电阻式触摸屏工作原理 电阻式触摸屏是最早应用的触摸技术之一,它由两层导电材料分别作为触摸屏面板的两个电极。当用户触摸屏幕时,上层导电材料会与下层导电材料接触,形成一个电阻。触摸后的电阻变化会被检测到并转化为坐标信息。 二、电容式触摸屏工作原理 电容式触摸屏是目前最常见的触摸技术之一,它利用电容的原理来检测触摸。电容式触摸屏由触摸层和感应电极层组成。触摸层上有一薄而透明的导电层,当用户触摸屏幕时,手指与导电层之间会形成一个电容。感应电极层会检测这个电容的变化,并转化为坐标信息。 三、表面声波触摸屏工作原理 表面声波触摸屏使用压电传感器来感应触摸。触摸屏上有一组发射器和接收器,它们发射和接收超声波信号。当用户触摸屏幕时,超声波信号会发生变化,接收器会检测到这个变化并转化为坐标信息。

四、投射式电容触摸屏工作原理 投射式电容触摸屏是目前应用最广泛的触摸技术之一,它利用电容 的原理来检测触摸。触摸屏由一个玻璃面板和一层导电涂层组成。导 电涂层上有许多微小的电容。当用户触摸屏幕时,手指与导电涂层之 间形成电容,改变了电场的分布。控制器会检测这个变化并转化为坐 标信息。 总结: 触摸屏工作原理多种多样,每种原理都有其独特的应用场景和优势。电阻式触摸屏适用于需要精确操作的场景,但在触摸感应和透明度方 面有一定限制。电容式触摸屏能够提供更好的触摸体验,适用于多点 触控和手势操作。表面声波触摸屏适用于户外环境和对触摸精确度要 求较高的场景。投射式电容触摸屏是最常见和普遍使用的触摸技术, 它结合了高灵敏度、高透明度和多点触控等特点。 随着科技的不断进步,触摸屏技术也在不断发展和创新。例如,近 年来出现了更灵活、更可弯曲的触摸屏技术,使触摸屏能够应用于更 多不同的设备和场景。我们期待触摸屏技术在未来的发展中继续为我 们带来更加便捷、智能的操作体验。

触摸屏工作原理

触摸屏工作原理 触摸屏是一种常见的人机交互设备,广泛应用于手机、平板电脑、电子签名板等各种电子设备中。它的工作原理基于电容技术或者电阻技术,能够感知人体触摸并将触摸信号转化为电信号,从而实现对电子设备的控制。 一、电容触摸屏原理 电容触摸屏是目前应用最广泛的触摸屏技术之一,其工作原理是基于电容效应。电容触摸屏通常由两层导电层面组成,上层为导电触摸面板,下层为驱动电极面板。触摸面板上通过一个微小的间隙与驱动电极面板相隔,并且两者之间电绝缘。 当我们用手指触摸触摸面板时,人体本身就是一个带电体,会改变触摸面板上的电场分布。触摸面板上的驱动电极会感应到这一变化,并将其转化为电信号。 电容触摸屏可分为电容传感型和投影电容型。电容传感型触摸屏是在触摸面板上布置一些小电容传感器,通过检测这些传感器的电容变化来定位触摸位置。而投影电容型触摸屏则是在触摸面板背后布置一层导电物质成像层,通过检测导电物质在触摸位置上的电容变化来实现定位。 二、电阻触摸屏原理

电阻触摸屏是另一种常见的触摸屏技术,其工作原理是基于电阻效应。电阻触摸屏通常由两层导电玻璃面板组成,两层导电面板之间通 过绝缘层隔开。 当我们用手指触摸电阻触摸屏时,手指会压在上层导电玻璃面板上,导致上层导电玻璃面板弯曲。由于两层导电面板之间存在电阻,触摸 点位置的电阻值会发生变化。 电阻触摸屏通过检测触摸点位置导致的电阻变化来实现定位。通常 采用四线电阻触摸屏或五线电阻触摸屏,其中四线电阻触摸屏通过两 根垂直电流引线和两根水平电流引线来测量电阻变化,而五线电阻触 摸屏则多了一根触摸屏边界线。 三、与屏幕的互动 触摸屏通过感知人体触摸信号,将其转化为电信号后,通过控制芯 片将信号传递给显示器,从而实现对电子设备的操作。电子设备会解 析接收到的信号,并根据信号的不同作出相应的反应,比如移动、点击、缩放等。 触摸屏的工作原理使得用户能够通过手指触摸屏幕,直接对显示器 上的图像和内容进行操作。这种直观、高效的操作方式极大地提高了 电子设备的使用体验,使之更加便捷和人性化。 总结起来,触摸屏的工作原理主要有电容触摸屏和电阻触摸屏两种。电容触摸屏基于电容效应感知人体触摸,电阻触摸屏则基于电阻效应

触摸屏的基本原理及应用

触摸屏的基本原理及应用 1 触摸屏原理和主要结构: 触摸屏技术方便了人们对计算机的操作使用,是一种极有发展前途的交互式输入技术,触摸屏通常与显示器相结合,通过触摸屏上的传感元件(可以是电学的,光学的,声学的)来感应出触摸物在触摸屏上或显示器上的位置,从而达到无需键盘,鼠标即可直观地对设备或机器进行信息输入或操作的目的。 触摸屏根据不同的原理而制作的触摸屏可分为以下几类: 1.1电阻触摸屏 电阻触摸屏由上下两片ITO相向组成一个盒,盒中间有很小的间隔点将两片基板隔开,上板ITO是由很薄的PET ITO薄膜或很薄的ITO 基板构成,当触摸其上板时形成其变形,形成其电学上的变化,即可到触摸位置。 电阻式触摸屏又可分为数字式电阻式触摸屏和模拟式电阻触摸屏: 数字式电阻触摸屏将上下板的ITO分为X及Y方向的电极条,当在

某一个方向的电极上施加电压时,则在另一方向某条位置上电极可探测到的电压变化。 由于数字式电阻触摸屏是在一个方向输入信号,在另一个方向检测信号,理论上可以实现多点触摸的检测。 数字式电阻触摸屏最常见用于机器设备控制面板,自动售票机的人机输入界面。 其优点为:成本低,适合应用于低分辨率的场合。 单点控制IC成熟,商品化高。 其缺点为:耐用性不好(PET不够耐磨) 光学透过率不高(有15%-20%的光损失) 模拟式电阻触摸屏是由上下两面ITO相向组成盒,上下两面的ITO 分别在X及Y方向引出长条电极,在一个方向的电极上施加一个电压,用另一面的ITO检测其电压,所测得的电压与触摸点的位置有关。

模拟式电阻式触摸屏只能进行单点触摸,尤其适合用笔尖进行触摸,可进行书写输入。由于测量值是模拟值,其精度可以很高,主要取决于ITO的线性度。 模拟式电阻式触摸屏应用范围为中小尺寸2"-26" 其优点为:成本低,应用范围广。 控制IC成熟,商品化高。 其缺点为:耐用性不好(PET不够耐磨) 光学透过率不高(有15%-20%的光损失) 需校准,不能实现多点触摸 1.2 电容式触摸屏 电容式触摸屏分为表面电容式和投射电容式。 表面电容式触摸屏实现原理是先通过用户和触摸屏表面形成一个耦合电容,由于高频电流来说可使电容直接变成导体,于是手指从接触点吸走一个很小的电流。这个电流分从触摸屏的四角上的电极中流出,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。

触摸屏的工作原理

触摸屏的工作原理 触摸屏是一种常见的电子设备,广泛应用于智能手机、平板电脑、 电子签名板等设备中。它通过触摸屏上的触摸操作,实现人机交互功能。那么,让我们来了解一下触摸屏的工作原理。 一、电容式触摸屏 电容式触摸屏是一种运用电容感应原理的触摸屏技术。它的结构主 要由两个透明导电层(ITO薄膜)组成,中间隔以微小的间隙。当手 指或电容物体接触其中一面时,由于人体电容物体与触摸屏之间形成 了一个电容耦合,触摸屏上的电流产生变化。通过检测这种电流变化,触摸屏可以确定触摸的位置。 在电容式触摸屏上,X轴和Y轴均有电流传感器阵列。当触摸屏传 感器板上产生电流时,电场发生变化。当手指触摸触摸屏的时候,由 于人体带电,改变了电场。在电容电流检测的基础上,通过计算不同 位置的电流强度和时间差,触摸屏可以确定手指或者电容物体的具体 位置。 二、电阻式触摸屏 电阻式触摸屏是一种通过电阻改变来实现定位的触摸屏技术。它由 两个透明的导电膜层构成,中间夹着一层微弱的空气层或玻璃束缚物。当手指或者触控笔触摸平面时,上下两层导电膜之间的电阻产生变化,从而测量出触摸操作的位置。

在电阻式触摸屏上,两层导电膜分别连接到电路的四个角落。触摸时,当手指或者触控笔压在触摸屏上时,上下两层的导电膜接触到, 形成了一个电阻。改变了电流的路经,从而检测到触摸的位置。 三、表面声波式触摸屏 表面声波式触摸屏是通过声波传播来实现触摸定位的技术。它主要 由一组超声波发射器和接收器组成,位于触摸屏边框的四个角落。当 触摸屏被触摸时,声波将在表面传播,随后被接收器接收。 在表面声波式触摸屏上,超声波发射器会产生一定频率的声波,并 通过触摸面板的传导来传播。当触摸屏被触摸时,接收器会检测到声 波的变化,并根据变化的时间和位置计算出触摸的坐标位置。 结语 以上就是常见的触摸屏工作原理的介绍。不同类型的触摸屏采用不 同的技术,但它们的基本原理都是通过检测触摸面板上的物理变化, 来实现对触摸位置的定位。触摸屏技术的发展使得人机交互更加便捷,为我们的生活和工作带来了极大的便利。

触摸屏的工作原理

触摸屏的工作原理 触摸屏作为一种常见的人机交互技术,广泛应用于智能手机、平板电脑、电子签名板、自助点餐机等设备中。触摸屏的工作原理是指通过对触摸屏上的电压变化、电流变化或者电容变化进行检测,以实现与触摸屏上物理位置的对应关系。下面我将详细介绍几种常见的触摸屏工作原理。 首先是电阻式触摸屏。电阻式触摸屏由两层薄膜电阻器组成,上层电阻器和下层电阻器在正常情况下不接触。当用户用手指或者触笔按压在触摸屏上时,由于手指压力,上下电阻器会发生接触,形成一个电阻器网络。通过测量屏幕上不同位置的电阻值,可以确定用户的触摸位置。电阻式触摸屏的优点是精度较高,响应速度快,能适应各种环境。但由于使用了传感器,涂层易磨损,触摸时需要较大压力,易受到外界环境干扰。 接下来是电容式触摸屏。常见的电容式触摸屏有面板型电容式和投影型电容式两种。面板型电容式触摸屏是将多个电容感应器均匀分布在整个触摸屏表面上,当用户触摸屏幕时,由于人体或物体带有电容,电容感应器会检测到电容值的变化,从而确定触摸位置。投影型电容式触摸屏是在触摸屏表面覆盖一层透明导电物质,通过感应式的电磁波或电容感应技术,检测触摸点的位置。电容式触摸屏的优点是触摸灵敏度高,响应速度快,操作方便,使用寿命长。但由于使用了感应技术,容易受到静电和表面污染的干扰。 最后是表面声波式触摸屏。表面声波式触摸屏是将一组振动器安装在显示屏外壳的四个角上,振动器发出的声波沿屏幕表面

传播,当用户触摸屏幕时,触摸点会使声波传播路径上的振动器的振幅发生变化。通过检测振幅变化的位置和时间,可以确定触摸点的位置。表面声波式触摸屏的优点是触摸灵敏度高,不受外界干扰,使用寿命长。但由于需要安装振动器,在产品设计和制造方面相对复杂。 综上所述,触摸屏的工作原理可以分为电阻式、电容式和表面声波式三种。不同的工作原理适用于不同的应用场景,可以根据需求选择合适的触摸屏技术。随着科技的不断发展,触摸屏技术也在不断创新,未来可能会出现更多更先进的触摸屏工作原理。随着科技的不断发展,触摸屏技术已经成为了一种重要的人机交互方式,并且被广泛应用于各种电子设备中。触摸屏的工作原理是通过检测和感应触摸屏表面的变化,从而实现与触摸位置的对应。除了前文所提到的电阻式、电容式和表面声波式触摸屏,还有其他一些较为特殊的触摸屏工作原理,如红外感应式触摸屏和光学感应式触摸屏。 红外感应式触摸屏是通过在显示屏的周围安装红外线发射器和接收器,发射器发送红外线,接收器接收红外线。当用户触摸屏幕时,会阻挡红外线的传播路径,从而使接收器接收到的光信号发生变化。通过检测光信号的变化,可以确定触摸的位置。红外感应式触摸屏的优点是高精度,适应性强,对外界光线 的干扰较小。但也存在一些缺点,如易受污染和遮挡,需要额外的红外线发射器和接收器,造成了成本的增加。 光学感应式触摸屏是在显示屏的边缘或一侧安装光源和光电传感器。当用户触摸屏幕时,触摸点会使部分光线被遮挡,光电

触摸屏的原理

触摸屏附着在显示器的表面,与显示器相配合使用,如果能测量出触摸点在屏幕上的坐标位置,则可根据显示屏上对应坐标点的显示内容或图符获知触摸者的意图。 触摸屏按其技术原理可分为五类:矢量压力传感式、电阻式、电容式、红外线式、表面声波式,其中电阻式触摸屏在嵌入式系统中用的较多。 电阻触摸屏是一块4层的透明的复合薄膜屏,最下面是玻璃或有机玻璃构成的基层,最上面是一层外表面经过硬化处理从而光滑防刮的塑料层,中间是两层金属导电层,分别在基层之上和塑料层内表面,在两导电层之间有许多细小的透明隔离点把它们隔开。当手指触摸屏幕时,两导电层在触摸点处接触。 触摸屏的两个金属导电层是触摸屏的两个工作面,在每个工作面的两端各涂有一条银胶,称为该工作面的一对电极,若在一个工作面的电极对上施加电压,则在该工作面上就会形成均匀连续的平行电压分布。如图1所示,当在X方向的电极对上施加一确定的电压,而Y方向电极对上不加电压时,在X平行电压场中,触点处的电压值可以在Y+(或Y-)电极上反映出来,通过测量Y+电极对地的电压大小,便可得知触点的X坐标值。同理,当在Y 电极对上加电压,而X电极对上不加电压时,通过测量X+电极的电压,便可得知触点的Y 坐标。 电阻式触摸屏有四线和五线两种。四线式触摸屏的X工作面和Y工作面分别加在两个导电层上,共有四根引出线,分别连到触摸屏的X电极对和Y电极对上。五线式触摸屏把X工作面和Y工作面都加在玻璃基层的导电涂层上,但工作时,仍是分时加电压的,即让两个方向的电压场分时工作在同一工作面上,而外导电层则仅仅用来充当导体和电压测量电极。因此,五线式触摸屏的引出线需为5根。 电阻式触摸屏的原理: 这种触摸屏利用压力感应进行控制。电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的内表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。 当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X和Y两个方向上产生信号,然后送触摸屏控制器。控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。这就是电阻技术触摸屏的最基本的原理。

触摸屏种类与工作原理

触摸屏种类与工作原理 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口) 送到CPU,从而确定输入的信息。 触摸屏系统一般包括触摸屏控制器(卡)和触摸检测装置两个部分。其中,触控屏控制器(卡)的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏 控制卡。 1.电阻触摸屏(电阻式触摸屏工作原理图) 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小 (小于千分之一英寸)的透明隔离点把它们隔开绝缘。 当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。电阻类触摸屏的关键在于材料科技。电阻屏根据引出线数多少,分为四线、五线、六线等多线电阻触摸屏。电阻式触摸屏在强化玻璃表面分别涂上两层OTI透明氧化金属导电层,最外面的一层OTI涂层作为导电体,第二层OTI则经过精密的网络附上横竖两个方向的+5V至0V的电压场,两层OTI之间以细小的透明隔离点隔开。当手指接触屏幕时,两层OTI导电层就会出现一个接触点,电脑同时检测电压及电流,计算出触摸的位置,反应速度为 10-20ms。 五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触控屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电

触摸屏工作原理

触摸屏工作原理 触摸屏是一种现代化的输入设备,广泛应用于智能手机、平板电脑、导航系统等电子产品中。它具备方便易用、快捷高效的特点,为我们 的日常生活提供了极大的便利。那么,触摸屏是如何工作的呢?本文 将介绍触摸屏的工作原理。 一、电阻式电阻式触摸屏是最早应用的触摸技术之一。它由玻璃面板、导电膜、玻璃背板和一个分压器组成。导电膜和玻璃背板之间存 在微小的空隙,称为触摸层。当我们用手指或者触摸笔触摸屏幕时, 屏幕上形成一个电压分布,导电膜上的电流通过触摸点到导电膜和玻 璃背板之间的空隙,形成一个电压分压。 触摸屏控制器会通过测量这个分压来确定触摸点的位置。具体来说,控制器会在触摸屏的四个角上施加一个基准电压,然后在两个轴上测 量分压。通过计算两个轴上的分压值,控制器能够确定触摸点的精确 位置。接下来,系统会将这个信息传递给应用程序,从而实现各种触 摸操作。 二、电容式电容式触摸屏是目前主流的触摸技术。它由一个玻璃面 板和一个感应电极层构成。感应电极层由纵横两个互相垂直的导电层 组成,它们之间存在着微小的电容。 当我们用手指触摸屏幕时,手指会改变感应电极层之间的电场分布。电容式触摸屏控制器会感知到这个改变,并将其转化为坐标信息。由 于电容式触摸屏的电场不会受到压力大小的影响,所以相比于电阻式 触摸屏具有更好的灵敏度和精准度。

不同类型的电容式触摸屏根据感应电极层的不同结构,又可以分为 表面电容式和投射式电容式触摸屏。表面电容式触摸屏在玻璃面板上 涂覆一层薄膜电极,感应电极层位于玻璃下方。而投射式电容式触摸 屏则将感应电极层内嵌在玻璃面板中,增加了触摸屏的耐用性和透明度。 三、表面声波表面声波触摸屏采用声波传导的原理来实现触摸功能。它由一个玻璃面板和四个角落上的发射器和接收器组成。发射器会向 玻璃面板表面发射超声波,而接收器则用于接收超声波的反射信号。 当我们触摸屏幕时,手指会改变超声波在玻璃面板上的传播路径, 进而影响到接收器接收到的信号。触摸屏控制器会分析接收到的信号,从而确定触摸点的位置。表面声波触摸屏可以实现多点触摸,并且对 触摸物体的硬度没有要求,因此具有较好的抗污染性能。 总结: 触摸屏是一种常见的现代化输入设备,具备方便易用、快捷高效的 特点。不同类型的触摸屏采用了不同的工作原理,包括电阻式触摸屏、电容式触摸屏和表面声波触摸屏。通过电压分压、电场分布和声波传 导等方式,触摸屏能够准确感知到人们的触摸操作,并将其转化为坐 标信息。这使得我们可以通过触摸屏来进行各种操作,如点按、滑动、缩放等,为我们的日常生活带来了便利。不断创新的触摸技术将进一 步提升触摸屏的性能和体验,将来可期。

触摸屏的基本原理

触摸屏的基本原理 触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232 串行口)送到CPU,从而确定输入的信息。 触摸屏系统一般包括触摸屏控制器(卡)和触摸检测装置两个部分。其中,触控屏控制器(卡)的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏控制卡。 1.电阻触摸屏(电阻式触摸屏工作原理图) 电阻触摸屏的屏体部分是一块与显示器表面相匹配的多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层,上面再盖有一层外表面硬化处理、光滑防刮的塑料层,它的内表面也涂有一层透明导电层,在两层导电层之间有许多细小 (小于千分之一英寸)的透明隔离点把它们隔开绝缘。 当手指触摸屏幕时,平常相互绝缘的两层导电层就在触摸点位置有了一个接触,因其中一面导电层接通Y轴方向的5V均匀电压场,使得侦测层的电压由零变为非零,这种接通状态被控制器侦测到后,进行A/D转换,并将得到的电压值与5V相比即可得到触摸点的Y轴坐标,同理得出X轴的坐标,这就是所有电阻技术触摸屏共同的最基本原理。电阻类触摸屏的关键在于材料科技。电阻屏根据引出线数多少,分为四线、五线、六线等多线电阻触摸屏。电阻式触摸屏在强化玻璃表面分别涂上两层OTI透明氧化金属导电层,最外面的一层OTI涂层作为导电体,第二层OTI则经过精密的网络附上横竖两个方向的+5V至0V的电压场,两层OTI之间以细小的透明隔离点隔开。当手指接触屏幕时,两层OTI导电层就会出现一个接触点,电脑同时检测电压及电流,计算出触摸的位置,反应速度为10-20ms。 五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触控屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。 电阻触摸屏是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室内有限人的使用。电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太

触摸屏的原理、分类、优缺点评价

触摸屏的原理、分类、优缺点,58触屏寿命

想必大家很关心的一个问题就是手机的触摸屏寿命是多少吧!还有就是到底是电阻式触摸屏(诺基亚的)好还是电容式触摸屏(iPhone等)好呢……本文从原理阐述讲解,希望对大家的认知有一些帮助! 先说触摸屏的原理 触摸屏系统一般包括两个部分:触摸检测装置和触摸屏控制器。触摸检测装置安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 触摸屏技术也经历了从低档向高档逐步升级和发展的过程。根据其工作原理,其目前一般被分为四大类:电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波触摸屏。 1、电阻式触摸屏 电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO膜),上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层。它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。当手指接触屏幕时,两层ITO 发生接触,电阻发生变化,控制器根据检测到的电阻变化来计算接触点的坐标,再依照这个坐标来进行相应的操作。电阻屏根据引出线数多少,分为四线、五线等类型。五线电阻触摸屏的外表面是导电玻璃而不是导电涂覆层,这种导电玻璃的寿命较长,透光率也较高。 电阻式触摸屏的ITO涂层若太薄则容易脆断,涂层太厚又会降低透光且形成内反射降低清晰度。由于经常被触动,表层ITO使用一定时间后会出现细小裂纹,甚至变型,因此其寿命并不长久。 电阻式触摸屏价格便宜且易于生产,因而仍是人们较为普遍的选择。四线式、五线式以及七线、八线式触摸屏的出现使其性能更加可靠,同时也改善了它的光学特性。 2、电容式触摸屏 电容式触摸屏的四边均镀上了狭长的电极,其内部形成一个低电压交流电场。触摸屏上贴有一层透明的薄膜层,它是一种特殊的金属导电物质。当用户触摸电容屏时,用户手指和工作面形成一个耦合电容,因为工作面上接有高频信号,于是手指会吸走一个很小的电流,这个电流分别从屏的四个角上的电极中流出;且理论上流经四个电极的电流与手指到四角的距离成比例,控制器通过对四个电流比例的精密计算,即可得出接触点位置。 电容触摸屏的双玻璃不但能保护导体及感应器,更能有效地防止外在环境因

触摸屏工作原理

触摸屏工作原理 触摸屏是一种人机交互设备,用于接收用户通过手指或特定工具在屏幕上的触摸动作,并将之转化为电信号进行处理。触摸屏的工作原理可以分为四种主要类型:电阻式触摸屏、电容式触摸屏、表面声波触摸屏和红外线触摸屏。 1. 电阻式触摸屏:电阻式触摸屏是最早出现的触摸屏类型之一。它由两层导电薄膜组成,两层膜之间有微小的间隙,且每一层膜只在一个方向上导电。当用户触摸屏幕时,上下两层膜之间的电阻值会发生变化,从而检测到触摸位置。电阻式触摸屏需要施加一定的压力才能够触发,且易受到外界环境的干扰。 2. 电容式触摸屏:电容式触摸屏利用人体的电容特性进行工作。触摸屏表面覆盖有一层导电的玻璃或透明导电膜,当用户触摸屏幕时,人体与触摸面板之间形成电容。通过检测电容变化的方式,可以确定触摸点的位置。电容式触摸屏对于触摸的灵敏度高,操作流畅,但对于非导电物体的触摸无法识别。 3. 表面声波触摸屏:表面声波触摸屏由位于屏幕四角的发射器和接收器组成,它们可以发射超声波震动,并沿触摸屏表面传播。当用户触摸屏幕时,触摸点的位置会引起声波的散射,接收器检测到散射波后,通过计算声波传播的时间差,可以确定触摸点的位置。表面声波触摸屏具有高的透光性,且可以支持多点触控。 4. 红外线触摸屏:红外线触摸屏利用红外线传感器或编码器的原理进行工作。触摸屏的周边会放置红外线发射器和接收器,

形成一个网状的红外线阵列。当用户触摸屏幕时,会阻挡红外线的传播,接收器检测到阻挡的位置后,通过计算红外线的位置,确定触摸点的位置。红外线触摸屏对于透光性没有特殊要求,但需要定期清洁以保持良好的触控效果。 以上是四种主要的触摸屏工作原理,各有优劣。不同的触摸屏类型适用于不同的应用场景和用户需求。

触摸屏原理

触摸屏原理 随着多媒体信息查询的与日俱增,人们越来越多地谈到触摸屏,因为触摸屏不仅适用于中国多媒体信息查询的国情,而且触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户。 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。将来,触摸屏还要走入家庭。 随着使用电脑作为信息来源的与日俱增,触摸屏以其易于使用、坚固耐用、反应速度快、节省空间等优点,使得系统设计师们越来越多的感到使用触摸屏的确具有具有相当大的优越性。触摸屏出现在中国市场上至今只有短短的几年时间,这个新的多媒体设备还没有为许多人接触和了解,包括一些正打算使用触摸屏的系统设计师,还都把触摸屏当作可有可无的设备,从发达国家触摸屏的普及历程和我国多媒体信息业正处在的阶段来看,这种观念还具有一定的普遍性。事实上,触摸屏是一个使多媒体信息或控制改头换面的设备,它赋予多媒体系统以崭新的面貌,是极富吸引力的全新多媒体交互设备。发达国

家的系统设计师们和我国率先使用触摸屏的系统设计师们已经清楚的知道,触摸屏对于各种应用领域的电脑已经不再是可有可无的东西,而是必不可少的设备。它极大的简化了计算机的使用,即使是对计算机一无所知的人,也照样能够信手拈来,使计算机展现出更大的魅力。解决了公共信息市场上计算机所无法解决的问题。 随着城市向信息化方向发展和电脑网络在国民生活中的渗透,信息查询都已用触摸屏实现--显示内容可触摸的形式出现。为了帮助大家对触摸屏有一个大概的了解,笔者就在这里提供一些有关触摸屏的相关知识,希望这些内容能对大家有所用处。 一、触摸屏的工作原理 为了操作上的方便,人们用触摸屏来代替鼠标或键盘。工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。 二、触摸屏的主要类型 按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。

相关文档
最新文档