材料的弯曲.扭转组合变形的强度计算

机械工业出版社

https://www.360docs.net/doc/cd2086399.html,

A C E

机械中的转轴,通常在弯

曲与扭转组合变形下工作。现以电机轴为例,说明这种组合变形的强度计算。图示的电机轴,在

外伸端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的带传递给其他设备。设带的紧边

拉力为2F ,松边拉力为F ,不计带轮自重。

第二节

弯曲与扭转组合变形的强度计算

F

2F

机械工业出版社

https://www.360docs.net/doc/cd2086399.html,

(1) 外力分析将电机轴的外伸

部分简化为悬臂梁,把作用于带上

的拉力向杆的轴线简化,得到一个

力F'和一个力偶M

e

其值分别为

F'=3F

M e=2FD/2-FD/2=FD/2

力F'使轴在垂直平面内发生弯曲,

力偶M

e

使轴扭转,故轴上产生弯曲与扭转组合变形。

M e

l

B x z

y

A

F'

(2) 内力分析轴的弯曲图和扭矩如图。由图可知,固定端截面A 为危险截面,其上的弯矩和扭矩值分别为

M

n M n图+

_

M图

F'l

M=F'l M n=M e=FD/2A

C

E

F2F

机械工业出版社

https://www.360docs.net/doc/cd2086399.html,

(1) 外力分析F '=3F M e =FD /2

M e

l

B x z

y A

F '

(2) 内力分析M =F 'l M n =FD /2(3)应力分析由于在危险截面上同时作用着弯矩和扭矩,故该截面上必然同时存在弯曲正应力和扭转切应力,其分布情况如图。由应力分布图可见,C 、E 两点的正应力和切应力均分别达到了最大值。

因此,C 、E 两点为危险点,该两点的弯曲正应力和扭转切应力分别为

C

E

M

C

E

M n

z

W M =

σn

n

W M =τ(a )A C E F 2F

机械工业出版社

https://www.360docs.net/doc/cd2086399.html,

(1) 外力分析F '=3F M e =FD /2

M e

l

B x

z

y A

F '

(2) 内力分析

M =F 'l M n =FD /2

(3)应力分析C

E

M

C

E

M n

z W M =σn

n W M =τ点C 、点E 上同时并存有正应力

与切应力,这两种应力或因方向不同、或因破坏机理不同,它们是不能直接相加的。故在理论上提出将它们按各自对材料的破坏效果相加,但这种破坏效果的评估却因各方提出的材料破坏原因的假说而各翼,于是就形成了各式各样的强度理论。

A C E F 2F

(2) 内力分析

n (3)应力分析z W M =σn

n W M =τ(4) 建立强度条件对于塑性材料制成的转轴,因其抗拉、压强度相同,因此,C 、E 两点的危险程度是相同的,故只需取其一点来研究。

对于塑性材料,目前常用的是第三、第四强度理论,它们所建立破坏效果相当的应力(简称相当应力)分别为

(a )

(b )σxd3=224τσ+(c )

σxd4=2

23τσ+

(2) 内力分析n (3)应力分析

z W M =

σn

n

W M =

τ(4) 建立强度条件

(a )

(b )σxd3=224τσ+(c )

σxd4=2

23τσ+将式(a)代入式(b)、(c),并注意到圆轴的W n =2W z 即可得到按第三和第四强度理论建立的强度条件为

(8-3)

σxd3=

z

W M M 2n

2

+(8-4)

σxd4=

M M 2n

2

75.0+

机械工业出版社

https://www.360docs.net/doc/cd2086399.html,

按第三和第四强度理论建立的强度条件为

(8-3)

σxd3=

z

W M M 2n

2

+(8-4)

σxd4=

z

W M M 2n

2

75.0+需要指出的是,式(8-3)和式(8-4)只适用于由塑性材料制成

的弯扭组合变形的圆截面和空心圆截面杆。

机械工业出版社https://www.360docs.net/doc/cd2086399.html,

图示转轴AB 由电机带动,轴长l =1m ,在跨中央装有带轮,轮的直径D =1m ,重力不计,带紧边和松边的张力分别为F l =4kN ,F 2=2kN ,转轴材料的许用应力为[ ]=140MPa 。试用第三强度理论确定轴的直径d 。

解1)外力计算。将作用于带上的张力F 1和F 2向轴线简化,得

一个力F 和一个力偶M e ,M e 与电动机驱动力偶M 平衡。

F 和M e 的值分别为

F =F 1+F 2=6kN M e =(F 1-F 2) D /2 =1kN·m 例8-3

2) 内力分析。作出轴的弯矩图和扭矩图。由图可见,轴中部的截面C 为危险截面。

F M M e F 1

F 2

l /2l /2

C B

A C

B A M n

M n 图

+_

M 图Fl /4

机械工业出版社https://www.360docs.net/doc/cd2086399.html,

已知:l =1m ,D =1m ,F l =4kN ,F 2=2kN ,[σ]=140MPa 。求:d 。

解1)外力计算。F =6kN M e =1kN·m

2) 内力分析。

轴中部的截面C 为危险截面,

其上的弯矩和扭矩值分别为

M =Fl /4=6?1/4kN·m= 1.5kN·m M n =M e =1kN·m 3)确定轴的直径。将W z =πd 2/32和危险截面上的弯矩和扭矩值代入式(8-3),得轴的直径为

F M M e F 1

F 2

l /2l /2

C B

A C

B A M n

M n 图

+_

M 图Fl /4d ≥

3

2n

2

]

[π32σM

M +mm

140

π10

15.1323

6

2

2

??+=

=50.8mm

故取d =50mm 。

第八章组合变形构件的强度习题

第八章组合变形构件的强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上的变形,称为()变形。 二、计算题 1、如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm,两轴承间的距离l=80cm,轴的许用应力[]σ=80Mpa。试按第三强度理论设计轴的直径d。 2、图示手摇铰车的最大起重量P=1kN,材料为Q235钢,[σ]=80 MPa。试按第三强度理论选择铰车的轴的直径。 3、图示传动轴AB由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重G=5kN,半径R=0.6m,胶带紧边张力F1=6kN,松边张力F2=3kN。轴直径d=0.1m,材料许用应力[σ]=50MPa。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F=3kN及重物Q,该轴处于

平衡状态。若[σ]=80MPa。试按第四强度理论选定轴的直径d。 5、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F 的作用,许用应力[σ]=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D=1m的皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2.5KN,轮重F P=2KN,已知材料的许用应力[σ]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[σ]。

组合变形的强度计算

§9.1 组合变形概述 前面研究了杆件在拉伸(压缩)、剪切、扭转和弯曲四种基本变形时的强度和刚度问题。但在工程实际中,许多构件受到外力作用时,将同时产生两种或两种以上的基本变形。例如建筑物的边柱,机械工程中的夹紧装置,皮带轮传动轴等。 我们把杆件在外力作用下同时产生两种或两种以上的基本变形称为组合变形。常见的组合变形有: 1.拉伸(压缩)与弯曲的组合; 2.弯曲与扭转的组合; 3.两个互相垂直平面弯曲的组合(斜弯曲); 4.拉伸(压缩)与扭转的组合。 本章只讨论弯曲与扭转的组合。 处理组合变形问题的基本方法是叠加法,将组合变形分解为基本变形,分别考虑在每一种基本变形情况下产生的应力和变形,然后再叠加起来。组合变形强度计算的步骤一般如下: (1) 外力分析将外力分解或简化为几种基本变形的受力情况; (2) 内力分析分别计算每种基本变形的内力,画出内力图,并确定危险截面的位置; (3) 应力分析在危险截面上根据各种基本变形的应力分布规律,确定出危险点的位置及其应力状态。 (4) 建立强度条件将各基本变形情况下的应力叠加,然后建立强度条件进行计算。 §9.2 弯扭组合变形强度计算 机械中的转轴,通常在弯曲和扭转组合变形下工作。现以电机为例,说明此种组合变形的强度计算。图10-1a所示电机轴,在轴上两轴承中端装有带轮,工作时,电机给轴输入一定转矩,通过带轮的皮带传递给其它设备。带紧边拉力为F T1,松边拉力为F T2,不计带轮自重。

图10-1 (1) 外力分析将作用于带上的拉力向杆的轴线简化,得到一个力和一个力偶,如图10-1(b),其值分别为 力F使轴在垂直平面内发生弯曲,力偶M1和电机端产生M2的使轴扭转,故轴上产生弯曲和扭转组合变形。 (2) 内力分析画出轴的弯矩图和扭矩图,如图10-1(c)、(d)所示。由图知危险截面为轴上装带轮的位置,其弯矩和扭矩分别为

材料力学习题组合变形#(精选.)

组合变形 基 本 概 念 题 一、选择题 1. 偏心压缩时,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到 形心的距离e 和中性轴到形心距离d 之间的关系是( )。 A .e = d B .e >d C .e 越小,d 越大 D .e 越大,d 越小 2.三种受压杆件如图所示,设 杆1、杆2和杆3中的最大压应力(绝 对值)分别用1max σ、2max σ、 3max σ表示,则( )。 A .1max σ=2max σ=3max σ B .1max σ>2max σ=3max σ C .2max σ>1max σ=3max σ D .2max σ<1max σ=3max σ 题2图 3.在图示杆件中,最大压应力发生在截面上的( )。 A .A 点 B .B 点 C .C 点 D .D 点 题3图 题4图 4. 铸铁杆件受力如图4所示,危险点的位置是( )。 A .①点 B .②点 C .⑧点 D .④点 5. 图示正方形截面直柱,受纵向力P 的压缩作用。则当P 力作用点由A 点移至B 点时柱内最大压应力的比值()max A σ﹕()max B σ为( )。 A .1﹕2 B .2﹕5 C .4﹕7 D .5﹕2 6. 图示矩形截面偏心受压杆件发生的变形为( )。 A .轴向压缩和平面弯曲组合 B .轴向压缩,平面弯曲和扭转组合 C .轴向压缩,斜弯曲和扭转组合 D .轴向压缩和斜弯曲组合 -41-

题5图 题6图 7. 图所示悬臂梁的横截面为等边角钢,外力P 垂直于梁轴,其作用线与形心轴 y 垂直,那么该梁所发生的变形是( )。 A .平面弯曲 B .扭转和斜弯曲 C .斜弯曲 D .两个相互垂直平面(xoy 平面和xoz 平面)内的平面弯曲 题7图 8. 图示正方形截面杆受弯扭组合变形,在进行强度计算时,其任一截面的危 险点位置有四种答案,正确的是( )。 A .截面形心 B .竖边中点A 点 C .横边中点B 点 D .横截面的角点D 点 题8图 题9图 9. 图示正方形截面钢杆,受弯扭组合作用,若已知危险截面上弯矩为M ,扭 矩为T ,截面上A 点具有最大弯曲正应力σ和最大剪应力τ,其抗弯截面模量为W 。关于A 点的强度条件是( )。 A .σ≤[σ],τ≤[τ] B .W T M 2122)(+≤[σ] C .W T M 2122)75.0(+≤[σ] D .122)3(τσ+≤[σ] 10. 折杆危险截面上危险点的应力状态是图中的( )。 -42-

第十二章 组合变形的强度计算

第十二章 组合变形的强度计算 思 考 题 1 何谓组合变形?如何计算组合变形杆件横截面上任一点的应力? 2 何谓平面弯曲?何谓斜弯曲?二者有何区别? 3 何谓单向偏心拉伸(压缩)?何谓双向偏心拉伸(压缩)? 4 将斜弯曲、拉(压)弯组合及偏心拉伸(压缩)分解为基本变形时,如何确定各基本变形下正应力的正负? 5 对斜弯曲和拉(压)弯组合变形杆进行强度计算时,为何只考虑正应力而不考虑剪应力? 6 什么叫截面核心?为什么工程中将偏心压力控制在受压杆件的截面核心范围内? 习 题 1 矩形截面悬臂梁受力如图所示,F通过截面形心且与y轴成角,已知F=1.2kN ,l=2m,5.1, 12==?b h ?,材料的容许正应力[σ]=10MPa ,试确定b和h的尺寸。 2 承受均布荷载作用的矩形截面简支梁如图所示,q与y轴成?角且通过形心,已知l=4m,b=10cm,h=15cm,材料的容许应力[σ]=10MPa ,试求梁能承受的最大分布荷载m ax q 。 题 1 图 题 2 图 3 如图所示斜梁横截面为正方形,a =10cm,F=3kN作用在梁纵向对称平面内且为铅垂方向,试求斜梁最大拉压应力大小及其位置。

4 矩形截面杆受力如图所示,F 1和F2的作用线均与杆的轴线重合,F3作用在杆的对称平面内,已知F1=5kN ,F2=10kN ,F3.=1.2kN , =2m,b=12cm ,h=18cm ,试求杆中的最大压应力。 题 3 图 题 4 图 5 图为起重用悬臂式吊车,梁AC由№18工字钢制成,材料的许用正应力[σ] =100MPa 。当吊起物重(包括小车重)Q=25kN,并作用与梁的中点D时,试校核梁AC的强度。 6 柱截面为正方形,边长为a,顶端受轴向压力F作用,在右侧中部挖一个槽(如图),槽深4 a 。求开槽前后柱内的最大压应力值。 题 5 图 题 6 图 7 砖墙及其基础截面如图,设在1m长的墙上有偏心力F=40kN 的作用,试求截面1-1和2-2上的应力分布图。 8 矩形截面偏心受拉木杆,偏心力F=160kN ,e=5cm ,[σ]=10MPa ,矩形截面宽度b=16cm ,试确定木杆的截面高度h

第八章组合变形构件的强度

第八章 组合变形构件的强度 8.1概 述 到现在为止,我们所研究过的构件,只限于有一种基本变形的情况,例如拉伸(或压缩)、剪切、扭转和弯曲。而在工程实际中的许多构件,往往存在两种或两种以上的基本变形。例如图8—1a 中悬臂吊车的横梁AB ,当起吊重物时,不仅产生弯曲,由于拉杆BC 的斜向力作用,而且还有压缩(图8—lb)。又如图8—2a 所示的齿轮轴,若将啮合力P 向齿轮中心平移、则可简化成如图8—2b 所示的情况。载荷P 使轴产生弯曲变形;矩为C m 和D m 的两个力偶则使轴产生扭转变形。这些构件都同时存在两种基本变形,前者是弯曲与压缩的组合;后者则是弯曲与扭转的组合。在外力作用下,构件若同时产生两种或两种以上基本变形的情况,就称为组合变形。

由于我们所研究的都是小变形构件,可以认为各载荷的作用彼此独立,互不影响,即任一载荷所引起的应力或变形不受其他载荷的影响。因此,对组合变形构件进行强度计算,可以应用叠加原理,采取先分解而后综合的方法。其基本步骤是:(1)将作用在构件上的载荷进行分解,得到与原载荷等效的几组载荷,使构件在每组载荷作用下,只产生一种基本变形;(2)分别计算构件在每种基本变形情况下的应力;(3)将各基本变形情况下的应力叠加,然后进行强度计算。当构件危险点处于单向应力状态时,可将上述应力进行代数相加;若处于复杂应力状态,则需求出其主应力,按强度理论来进行强度计算。 本章将讨论弯曲与拉伸(或压缩)的组合以及弯曲与扭转的组合构件的强度问题。 8.2 弯曲与拉伸 (或压缩) 的组合 在外力作用下,构件同时产生弯曲和拉伸(或压缩)变形的情况,称为弯曲与拉伸(或压缩)的组合变形。图8—1所示悬臂吊的横梁同时受到横向载荷和纵向载荷的作用,这是弯曲与拉伸(或压缩)组合构件的一种受力情况。在工程实际中,常常还遇到这样一种情况,即载荷与杆件的轴线平行,但不通过横截面的形心,此时,杆件的变形也是弯曲与拉伸(或压缩)的组合,这种情况通常称为偏心拉伸(或压缩)。载荷的作用线至横截面形心的垂直距离称为偏心距。例如图8—3a 中的开口链环和图8—4a 中的厂房柱子,如果将其上的载荷P 向杆件横截面的形心平移,则作用于杆件上的外力可视为两部分:一个轴向力P 和一个矩为Pe M =0 的力偶(图8—3b 、8—4b)。轴向力P 将使杆件产生轴向拉伸(或压缩);力偶将使杆件产生弯曲。由此可见,偏心拉伸(或压缩)实际上就是弯曲与拉伸(或压缩)的组合变形。 现在讨论弯曲与拉伸(或压缩)组合变形构件的应力和强度计算。 设一矩形截面杆,一端固定,一端自由(图8—5a),作用于自由端的集中力P 位于杆的纵对称面Oxy 内,并与杆的轴线x 成一夹角?。将外力P 沿x 轴和y 轴方向分解,得到两个分力(图8—5b): ?cos P P x = ?sin P P y = 其中,分力x P 为轴向外力,在此力的单独作用下,杆将产生轴向拉伸,此时,任一横

工程力学-组合变形

10 组合变形 1、斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22 y z z y 1z y0 i i ++?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图10.1 解题范例

[解](a)AD杆时压缩、弯曲组合变形,BC杆是压缩、弯曲组合变形;AC杆不发生变形。 (b)AB杆是压弯组合变形,BC杆是弯曲变形。 (c)AB是压缩弯曲组合变形,BC是压弯组合变形。 (d)CD是弯曲变形,BD发生压缩变形,AB发生弯伸变形,BC发生拉弯组合变形。 10.2分析图10.2中各杆的受力和变形情况。 图10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形.

(d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中(AB、BC和CD) 各段将发生哪些变形? 图10.3 [解] AB段发生弯曲变形,BC段发生弯曲、扭转变形;CD段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图10.4 所示,杆AB为18号工字钢(截面面积30.6cm2,Wz=185cm3),其长度为l=2.6m。试求当荷载F=25kN作用在AB的中点处时,杆内的最大正应力。设工字钢的自重可略去不计。 B l/2 F 20kN 300 C D A l 图10.4 [解]取AB为研究对象,对A点取矩可得 NBCY F12.5kN = 则3 2 25 = = NBCX NAB F F

第八章组合变形构件的强度习题

第八章 组合变形构件得强度习题 一、填空题 1、两种或两种以上基本变形同时发生在一个杆上得变形,称为( )变形。 二、计算题 1、如图所示得手摇绞车,最大起重量Q =788N,卷筒直径D =36cm ,两轴承间得距离l =80cm ,轴得许用应力=80Mpa 。试按第三强度理论设计轴得直径d 。 2、图示手摇铰车得最大起重量P =1kN,材料为Q 235钢,[σ]=80 MPa 。试按第三强度理论选择铰车得轴得直径。 3、图示传动轴AB 由电动机带动,轴长L =1、2m ,在跨中安装一胶带轮,重G =5kN,半径R =0、6m ,胶带紧边张力F 1=6kN ,松边张力F 2=3kN 。轴直径d =0、1m,材料许用应力[σ]=50MPa 。试按第三强度理论校核轴得强度。 kN 8.1? kN 2.4? 4、如图所示,轴上安装有两个轮子,两轮上分别作用有F =3kN 及重物Q ,该轴处于平衡状态。若[σ]=80MPa 。试按第四强度理论选定轴得直径d 。

5、图示钢质拐轴, AB轴得长度l AB=150mm, BC轴长度l BC=140mm,承受集中载荷F得作用,许用应力[σ]=160Mpa,若AB轴得抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴得强度条件确定此结构得许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动得轴上,装有一直径D=1m得皮带轮,皮带紧边张力为2F=5KN,松边张力为F=2、5KN,轮重F P=2KN,已知材料得许用应力[σ]=80Mpa,试按第三强度理论设计轴得直径d。 7、如图所示,有一圆杆AB长为l,横截面直径为d,杆得一端固定,一端自由,在自由端B处固结一圆轮,轮得半径为R,并于轮缘处作用一集中得切向力P。试按第三强度理论建立该圆杆得强度条件。圆杆材料得许用应力为[σ]。

组合变形 习题及答案

组合变形 一、判断题 1.斜弯曲区别与平面弯曲的基本特征是斜弯曲问题中荷载是沿斜向作用的。( ) 2.斜弯曲时,横截面的中性轴是通过截面形心的一条直线。( ) 3.梁发生斜弯曲变形时,挠曲线不在外力作用面内。( ) 4.正方形杆受力如图1所示,A点的正应力为拉应力。( ) 图 1 5. 上图中,梁的最大拉应力发生在B点。( ) 6. 图2所示简支斜梁,在C处承受铅垂力F的作用,该梁的AC段发生压弯组合变形,CB段发生弯曲变形。( ) 图 2 7.拉(压)与弯曲组合变形中,若不计横截面上的剪力则各点的应力状态为单轴应力。( ) 8.工字形截面梁在图3所示荷载作用下,截面m--m上的正应力如图3(C)所示。( )

图 3 9. 矩形截面的截面核心形状是矩形。( ) 10.截面核心与截面的形状与尺寸及外力的大小有关。( ) 11.杆件受偏心压缩时,外力作用点离横截面的形心越近,其中性轴离横截面的形心越远。( ) 12.计算组合变形的基本原理是叠加原理。() 二、选择题 1.截面核心的形状与()有关。 A、外力的大小 B、构件的受力情况 C、构件的截面形状 D、截面的形心 2.圆截面梁受力如图4所示,此梁发生弯曲是() 图 4 A、斜弯曲 B、纯弯曲 C、弯扭组合 D、平面弯曲 三、计算题 1.矩形截面悬臂梁受力F1=F,F2=2F,截面宽为b,高h=2b,试计算梁内的最大拉应力,并在图中指明它的位置。

图 5 2.图6所示简支梁AB上受力F=20KN,跨度L=2.5m,横截面为矩形,其高h=100mm,宽b=60mm,若已知α=30°,材料的许用应力[σ]=80Mpa,试校核梁的强度。 3.如图7所示挡土墙,承受土压力F=30KN,墙高H=3m,厚0.75m,许用压应力[σ]ˉ=1 Mpa,许用拉应力[σ]﹢=0.1 Mpa,墙的单位体积重量为 ,试校核挡土墙的强度。 图 6 图 7 4.一圆直杆受偏心压力作用,其偏心矩e=20mm,杆的直径d=70mm,许用应力[σ]=120Mpa,试求此杆容许承受的偏心压力F之值。 5.如图8所示,短柱横截面为2a×2a的正方形,若在短柱中间开一槽,槽深为a,问最大应力将比不开槽时增大几倍?

第八章组合变形构建的强度习题答案.

第八章 组合变形构件的强度习题答案 一、填空题 1、组合 二、计算题 1、解:31 7888010157.610(N mm)4M =???=?? 336 78810141.8410(N mm)2T =??=?? 33 800.1r d σ= =≤ 解得 d ≥30mm 2 、解:(1) 轴的计算简图 画出铰车梁的内力图: 险截面在梁中间截面左侧,P T P M 18.02.0max == (2) 强度计算 第三强度理论:() ()[]σπσ≤+=+= 2 2 322318.02.032 P P d W T M Z r []()()()() mm m d 5.320325.010118.01012.010 8032 10118.01012.032 3 2 32 36 32 32 3==??+????=??+??≥πσπ 所以绞车的轴的最小直径为32.5mm 。 3、解:

m kN 8.1? m kN 2.4? (1)外力分析,将作用在胶带轮上的胶带拉力F 1、F 2向轴线简化,结果如图b . 传动轴受竖向主动力: kN 1436521=++=++=F F G F , 此力使轴在竖向平面内弯曲。 附加力偶为: ()()m kN 8.16.03621?=?-=-=R F F M e , 此外力偶使轴发生变形。 故此轴属于弯扭组合变形。 (2)内力分析 分别画出轴的扭矩图和弯矩图如图(c )、(d ) 危险截面上的弯矩m kN 2.4?=M ,扭矩m kN 8.1?=T (3)强度校核 ()() []σπσ≤=??+?= += MPa W T M Z r 6.4632 1.0108.110 2.43 2 32 32 23 故此轴满足强度要求。 4、解:1)外力分析 kN F Q Q F 625 .01==∴?=?Θ 2)内力分析,做内力图

(整理)题9组合变形

组合变形 1. 偏心压缩杆,截面的中性轴与外力作用点位于截面形心的两侧,则外力作用点到形心的距离e 和中性轴到形心的距离d 之间的关系有四种答案: (A) d e =; (B) d e >; (C) e 越小,d 越大; (D) e 越大,d 越大。 答:C 2. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为 1m ax σ、2m ax σ和3m ax σ,现有下列四种答案: (A)3max 2max 1max σσσ==; (B)3max 2max 1max σσσ=>; (C)3max 1max 2max σσσ=>; (D)3max 1max σσσ=

6. 三种受压杆件如图所示,杆1、杆2与杆3中的最大压应力(绝对值)分别为 1m ax σ、2m ax σ和3m ax σ (A)max3 2max 1max σσσ<<; (B)3max 2max max1σσσ=<; (C)2max max3max1σσσ<<; (D)2max 3max 1max σσσ<=。 答:C 7. 正方形等截面立柱,受纵向压力F 作用。当力F 作用点由A 移至B 时,柱内最大压应力的比值max max B A σσ有四种答案: (A) 1:2; (B) 2:5; (C) 4:7; (D) 5:2。 答:C 8. 图示矩形截面偏心受压杆,其变形有下列四种答案: (A) 轴向压缩和平面弯曲的组合; (B)轴向压缩、平面弯曲和扭转的组合; (C)缩和斜弯曲的组合; (D)轴向压缩、斜弯曲和扭转的组合。 答:C 9. 矩形截面梁的高度mm 100=h ,跨度m 1=l 。梁中点承受集中力F ,两端受力 kN 301=F ,三力均作用在纵向对称面内,mm 40=a 。若跨中横截面的最大正 应力与最小正应力之比为3 5 。试求F 解:偏心距 mm 102 =-=a h e 跨中截面轴力 1N F F =

材料力学习题弯曲变形

弯曲变形 基本概念题 一、选择题 1.梁的受力情况如图所示,该梁变形后的 挠曲线如图()所示(图中挠曲线的虚线部 分表示直线,实线部分表示曲线)。 2. 如图所示悬臂梁,若分别采用两种坐标 系,则由积分法求得的挠度和转角的正负号为 ()。 题2图题1图 A.两组结果的正负号完全一致 B.两组结果的正负号完全相反 C.挠度的正负号相反,转角正负号一致 D.挠度正负号一致,转角的正负号相反 3.已知挠曲线方程y = q0x(l3 - 3lx2 +2 x3)∕(48EI),如图所示,则两端点的约束可能为下列约束中的()。 题3图 4. 等截面梁如图所示,若用积分法求解梁的转角、挠度,则以下结论中( )是错误的。 A.该梁应分为AB、BC两段进行积分 B.挠度积分表达式中,会出现4个积分常数 -26-

题4图 题5图 C .积分常数由边界条件和连续条件来确定 D .边界条件和连续条件表达式为x = 0,y = 0;x = l ,0==右左y y ,0='y 5. 用积分法计算图所示梁的位移,边界条件和连续条件为( ) A .x = 0,y = 0;x = a + l ,y = 0;x = a ,右左y y =,右左 y y '=' B .x = 0,y = 0;x = a + l ,0='y ;x = a ,右左y y =,右左 y y '=' C .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左y y = D .x = 0,y = 0;x = a + l ,y = 0,0='y ;x = a ,右左 y y '=' 6. 材料相同的悬臂梁I 、Ⅱ,所受荷载及截面尺寸如图所示。关于它们的最大挠度有如 下结论,正确的是( )。 A . I 梁最大挠度是Ⅱ梁的 41倍 B .I 梁最大挠度是Ⅱ梁的2 1 倍 C . I 梁最大挠度与Ⅱ梁的相等 D .I 梁最大挠度是Ⅱ梁的2倍 题6图 题7图 7. 如图所示等截面梁,用叠加法求得外伸端C 截面的挠度为( )。 A . EI Pa 323 B . EI Pa 33 C .EI Pa 3 D .EI Pa 233 8. 已知简支梁,跨度为l ,EI 为常数,挠曲线方程为)24)2(323EI x lx l qx y +-=, -27-

组合变形的强度计算.

第8章 组合变形的强度计算 8.1 组合变形的概念 在前面几章中,研究了构件在发生轴向拉伸(压缩)、剪切、扭转、弯曲等基本变形时的强度和刚度问题。在工程实际中,有很多构件在荷载作用下往往发生两种或两种以上的基本变形。若有其中一种变形是主要的,其余变形所引起的应力(或变形)很小,则构件可按主要的基本变形进行计算。若几种变形所对应的应力(或变形)属于同一数量级,则构件的变形为组合变形。例如,如图8.1(a)所示吊钩的AB 段,在力P 作用下,将同时产生拉伸与弯曲两种基本变形;机械中的齿轮传动轴(如图8.1(b)所示)在外力作用下,将同时发生扭转变形及在水平平面和垂直平面内的弯曲变形;斜屋架上的工字钢檀条(如图8.2(a)所示),可以作为简支梁来计算(如图8.2(b)所示),因为q 的作用线并不通过工字截面的任一根形心主惯性轴(如图8.2(c)所示),则引起沿两个方向的平面弯曲,这种情况称为斜弯曲。 图8.1 吊钩及传动轴 屋架 屋面 檀条 q (a) (b)(c) (a) (b) (c) 图8.2 斜屋架上的工字钢檀条 求解组合变形问题的基本方法是叠加法,即首先将组合变形分解为几个基本变形,然

材料力学 180 后分别考虑构件在每一种基本变形情况下的应力和变形。最后利用叠加原理,综合考虑各基本变形的组合情况,以确定构件的危险截面、危险点的位置及危险点的应力状态,并据此进行强度计算。实验证明,只要构件的刚度足够大,材料又服从胡克定律,则由上述叠加法所得的计算结果是足够精确的。反之,对于小刚度、大变形的构件,必须要考虑各基本变形之间的相互影响,例如大挠度的压弯杆,叠加原理就不能适用。 下面分别讨论在工程中经常遇到的几种组合变形。 8.2 斜 弯 曲 前面已经讨论了梁在平面弯曲时的应力和变形计算。在平面弯曲问题中,外力作用在截面的形心主轴与梁的轴线组成的纵向对称面内,梁的轴线变形后将变为一条平面曲线,且仍在外力作用面内。在工程实际中,有时会遇到外力不作用在形心主轴所在的纵向对称面内,如上节提到的屋面檀条的受力情况(如图8.2所示)。在这种情况下,杆件可考虑为在两相互垂直的纵向对称面内同时发生平面弯曲。实验及理论研究指出,此时梁的挠曲线不再在外力作用平面内,这种弯曲称为斜弯曲。 现在以矩形截面悬臂梁为例(如图8.3(a)所示),分析斜弯曲时应力和变形的计算。这时梁在F 1和F 2作用下,分别在水平纵向对称面(Oxz 平面)和铅垂纵向对称面(Oxy 平面)内发生对称弯曲。在梁的任意横截面m —m 上,由F 1和F 2引起的弯矩值依次为 1y M F x =,2()z M F x a =- 在横截面m —m 上的某点(C y ,)z 处由弯矩M y 和M z 引起的正应力分别为 y y M z I σ'= ,z z M y I σ''=- 根据叠加原理,σ'和σ''的代数和即为C 点的正应力,即 y z y z M M z y I I σσ'''+=- (8-1) 式中,I y 和I z 分别为横截面对y 轴和z 轴的惯性矩;M y 和M z 分别是截面上位于水平 和铅垂对称平面内的弯矩,且其力矩矢量分别与y 轴和z 轴的正向一致(如图8.3(b)所示)。在具体计算中,也可以先不考虑弯矩M y 、M z 和坐标y 、z 的正负号,以其绝对值代入,然后根据梁在F 1和F 2分别作用下的变形情况,来判断式(8-1)右边两项的正负号。 (a) (b) 图8.3 斜弯曲

工程力学-组合变形

10 组合变形 1、 斜弯曲,弯扭,拉(压)弯,偏心拉伸(压缩)等组合变形的概念; 2、危险截面和危险点的确定,中性轴的确定; 如双向偏心拉伸, 中性轴方程为 p p o o 22y z z y 1z y 0i i + + ?= 3、危险点的应力计算,强度计算,变形计算、。 4、截面核心。 10.1、定性分析图10.1 示结构中各构件将发生哪些基本变形? 图 10.1 [解](a )AD 杆时压缩、弯曲组合变形,BC 杆是压缩、弯曲组合变形;AC 杆不发生变形。 (b )AB 杆是压弯组合变形,BC 杆是弯曲变形。 (c )AB 是压缩弯曲组合变形,BC 是压弯组合变形。 (d )CD 是弯曲变形,BD 发生压缩变形,AB 发生弯伸变形,BC 发生拉弯组合变形。 10.2 分析图10.2中各杆的受力和变形情况。 解题范例

图 10.2 [解] (a)力可分解成水平和竖直方向的分力,为压弯变形。 (b)所受外力偶矩作用,产生弯曲变形。 (c)该杆受竖向集中荷载,产生弯曲变形. (d)该杆受水平集中荷载,偏心受压,产生压缩和弯曲变形。 (e)AB段:受弯,弯曲变形,BC段:弯曲。 (f)AB段:受弯,弯曲变形,BC段:压弯组合。 (g)AB段:斜弯曲,BC段:弯纽扭合。 10.3分析图10.3 示构件中 (AB、BC和CD) 各段将发生哪些变形?

图10.3 [解] AB 段发生弯曲变形,BC 段发生弯曲、扭转变形;CD 段发生拉伸、双向弯曲变形。 10.4一悬臂滑车架如图 10.4 所示,杆AB 为18号工字钢(截面面积30.6cm 2 ,Wz=185cm 3 ),其长度为l =2.6m 。试求当荷载F=25kN 作用在AB 的中点处时,杆的最大正应力。 设工字钢的自重可略去不计。 l /2 F 20kN 300C D A l 图 10.4 [解] 取AB 为研究对象,对A 点取矩可得NBCY F 12.5kN = 则 32 25 = =NBCX NAB F F 分别作出AB 的轴力图和弯矩图: kN l l /2 32 25 Fl kN.m l B l /2 F 20kN 300 C D A F NBC F NBCY NBCX

组合变形构件的强度习题

一 、 填空题 1两种或两种以上基本变形同时发生在一个杆上的变形 ,称为( )变形 、计算题 1如图所示的手摇绞车,最大起重量Q=788N,卷筒直径D=36cm 两轴承间的距离l=80cm, 轴的许用应力 =80Mpa 。试按第三强度理论设计轴的直径 d o 2、图示手摇铰车的最大起重量 P=1kN ,材料为Q235钢,[q]=80 MPa 。试按第三强度理 论选择铰车的轴的直径。 400 -id n 3、图示传动轴AB 由电动机带动,轴长L=1.2m,在跨中安装一胶带轮,重 G=5kN,半径 R=0.6m,胶带紧边张力 F 1=6kN 松边张力 R=3kN 。轴直径 d=0.1m ,材料许用应力 [d =50MPa 。试按第三强度理论校核轴的强度。 4、如图所示,轴上安装有两个轮子,两轮上分别作用有 F=3kN 及重物Q ,该轴处于平 第八章 组合变形构件的强度习题 40-0

5 、图示钢质拐轴,AB轴的长度l AB=150mm, BC轴长度1BC=140mm,承受集中载荷F 的作用,许用应力[c)=160Mpa,若AB轴的抗弯截面系数W z=3000mm3,。试利用第三强度理论,按AB轴的强度条件确定此结构的许可载荷F。(注:写出解题过程) 6、如图所示,由电动机带动的轴上,装有一直径D =1m的皮带轮,皮带紧边张力为 2F=5KN松边张力为F=,轮重F P=2KN,已知材料的许用应力[q]=80Mpa,试按第三强度理论设计轴的直径d。 7、如图所示,有一圆杆AB长为I,横截面直径为d,杆的一端固定,一端自由,在自由端B处固结一圆轮,轮的半径为R,并于轮缘处作用一集中的切向力P。试按第三强度理论建立该圆杆的强度条件。圆杆材料的许用应力为[可。 衡状态。若[d=80MPa。试按第四强度理论选定轴的直径d

第二章组合变形

第十一章组合变形 2.5 组合变形 一、教学目标 1、掌握组合变形的概念。 2、掌握斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的概念和区分、危险截面和危险点的确定、应力计算、强度计算、变形计算、中性轴的确定等。 3、正确区分斜弯曲和平面弯曲。 4、了解截面核心的概念、常见截面的截面核心计算。 二、教学内容 1、讲解组合变形的概念及组合变形的一般计算方法:叠加法。 2、举例介绍斜弯曲和平面弯曲的区别。 3、讲解斜弯曲的应力计算、中性轴位置的确定、危险点的确立、强度计算、变形计算。 4、讲解弯曲和扭转组合变形内力计算,确定危险截面和危险点,强度计算。 5、讲解拉伸(压缩)和弯曲组合变形的危险截面和危险点分析、强度计算。 6、讲解偏心拉伸(压缩)组合变形的危险截面和危险点分析、应力计算、强度计算。 7、简单介绍截面核心的概念和计算。 三、重点难点 重点:斜弯曲、弯扭、拉(压)弯、偏心拉伸(压缩)等组合变形形式的应力和强度计算。 难点: 1、解决组合变形问题最关键的一步是将组合变形分解为两种或两种以上的基本变形: 斜弯曲——分解为两个形心主惯性平面内的平面弯曲; 弯曲和扭转组合变形——分解为平面弯曲和扭转;

拉伸(压缩)和弯曲组合变形——分解为轴向拉伸(压缩)和平面弯曲(因剪力较小通常忽略不计); 偏心拉伸(压缩)组合变形——单向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和一个平面弯曲,双向偏心拉伸(压缩)时,分解为轴向拉伸(压缩)和两个形心主惯性平面内的平面弯曲。 2、组合变形的强度计算,可归纳为两类: ⑴危险点为单向应力状态:斜弯曲、拉(压)弯、偏心拉伸(压缩)组合变形的强度计算时只需求出危险点的最大正应力并与材料的许用正应力比较即可; ⑵危险点为复杂应力状态:弯扭组合变形的强度计算时,危险点处于复杂应力状态,必须考虑强度理论。 四、教学方式 采用启发式教学,通过提问,引导学生思考,让学生回答问题。 五、学时:2学时 六、讲课提纲 (一)斜弯曲 斜弯曲梁的变形计算 仍以矩形截面的悬臂梁为例:

《材料力学》第8章 组合变形及连接部分的计算 习题解

第八章 组合变形及连接部分的计算 习题解 [习题8-1] 14号工字钢悬臂梁受力情况如图所示。已知m l 8.0=,kN F 5.21=, kN F 0.12=,试求危险截面上的最大正应力。 解:危险截面在固定端,拉断的危险点在前上角点,压断的危险点在后下角,因钢材的拉压 性能相同,故只计算最大拉应力: 式中,z W ,y W 由14号工字钢,查型钢表得到3 102cm W z =,3 1.16cm W y =。故 MPa Pa m m N m m N 1.79101.79101.168.0100.11010228.0105.2363 63363max =?=???+?????=--σ [习题8-2] 受集度为 q 的均布荷载作用的矩形截面简支梁,其荷载作用面与梁的纵向对称面间的夹角为 030=α,如图所示。已知该梁材料的弹性模量 GPa E 10=;梁的尺寸为 m l 4=,mm h 160=,mm b 120=;许用应力MPa 12][=σ;许用挠度150/][l w =。试校核梁的强度和刚度。

解:(1)强度校核 )/(732.1866.0230cos 0m kN q q y =?== (正y 方向↓) )/(15.0230sin 0m kN q q z =?== (负z 方向←) )(464.34732.181 8122m kN l q M y zmaz ?=??== 出现在跨中截面 )(24181 8122m kN l q M z ymaz ?=??== 出现在跨中截面 )(51200016012061 61322mm bh W z =??== )(3840001201606 1 61322mm hb W y =??== 最大拉应力出现在左下角点上: y y z z W M W M max max max + = σ MPa mm mm N mm mm N 974.1138400010251200010464.33 636max =??+??=σ 因为 MPa 974.11max =σ,MPa 12][=σ,即:][max σσ< 所以 满足正应力强度条件,即不会拉断或压断,亦即强度上是安全的。 (2)刚度校核 =

第十一章组合变形

知识点11:组合变形 一、组合变形 1.杆件同时发生两种或两种以上的基本变形时,称为组合变形。 2.计算组合变形问题,是以杆件发生“小变形”为前提,在此条件下,不同基本变形所引起的应力和变形,各自独立,互不影响,可以应用叠加原理。即先根据各内力分量分别计算杆件在每一种基本变形下的应力和变形,再把计算结果叠加,得到杆件在原载荷作用下的应力和变形。 二、 斜弯曲 1.当梁所受到的横向力不在梁的主惯性平面内时,梁将发生斜弯曲。斜弯曲是梁在其两个主惯性平面内弯曲的组合变形。 2.对于圆形、正方形等截面梁,其截面对两个主惯性轴的惯性矩相等,不会发生斜弯曲。 3.当梁的载荷不通过截面的弯曲中心时,除斜弯曲外,梁还发生扭转变形。 4.图11-1所示矩形截面悬臂梁受横向力F作用,把力F沿y 轴和z 轴分解,梁将在xy 和xz 两个主惯性平面内弯曲。 图11-1 xy 平面内的弯曲应力: y I M z z = 'σ xz 平面内的弯曲应力: z I M y y = ''σ 组合变形(斜弯曲)的应力: z I M y I M y y z z +=''+'=σσσ 5.斜弯曲的中性轴方程

0=+z I M y I M y y z z 中性轴通过截面形心,但和载荷作用平面不垂直。距中性轴最远的点处正应力最大。 6.斜弯曲时梁的弯曲平面和载荷作用平面不在同一平面,但弯曲平面和中性轴相垂直。 三、拉伸(压缩)与弯曲的组合 1.杆件受拉伸(压缩)与弯曲组合时,弯曲变形的中性轴位置将偏移。 2. 杆在拉伸(压缩)与弯曲的组合变形时,分别计算拉伸(压缩)正应力和弯曲正应力,叠加后进行强度计算。 3.拉伸(压缩)时,横截面的正应力: A N N =σ 弯曲时,横截面的最大拉压正应力: W M M ± =σ 拉伸(压缩)与弯曲的组合,横截面的最大拉压正应力: W M A N ±=σ 4.杆件受偏心拉伸(压缩)时,其截面上存在称为截面核心的区域,当偏心轴向力作用在截面核心内时,截面上只产生拉应力(或压应力)。截面核心在工程上有很大的意义。 四、圆杆的弯曲与扭转组合变形 1.当圆杆发生两面弯曲与扭转的组合变形时,不能求出两个平面弯曲的最大正应力后,进行叠加得到圆杆的最大正应力,而应先求出两平面弯曲的合成弯矩,再求其最大弯曲正应力。 2. 图11-2为受弯曲与扭转组合变形构件危险点的应力状态,图中 弯曲正应力: W M = σ 扭转切应力: P W Mz =τ

组合变形

第九章 组合变形 授课学时:8学时 主要内容:拉弯、斜弯曲和弯扭组合变形的强度和变形的校核和计算。 §9–1 概 述 1.定义 在复杂外载荷作用下,构件的变形会包含几种简单变形,当几种变形所对应的应力属同一量级时,不能忽略之,这类构件的变形称为组合变形。 2.组合变形形式 两个平面弯曲的组合;拉伸或压缩与弯曲的组合;扭转与弯曲。 3.组合变形的研究方法 —— 叠加原理 对于线弹性状态的构件,将其组合变形分解为基本变形,考虑在每一种基本变形下的应力和变形,然后进行叠加。 4.解题步骤 外力分析:外力向形心简化并沿主惯性轴分解 内力分析:求出每个外力分量对应的内力方程和内力图,确定危险面。 应力分析:画危险面应力分布图,叠加,建立危险点的强度条件。 §9–2拉(压)弯组合 例 起重机的最大吊重kN P 12=,[]2/100m kN =σ。试为横梁AB 选择适用的工字钢。 解: (1)受力分析 由 0=∑A M 得 kN T y 18=,kN T T y x 245 .12 == (2)作AB 的弯矩图和剪力图,确定C (3)确定工字钢型号 按弯曲强度确定工字钢的抗弯截面系数 []36 3 12010 1001012cm M W =??=≥σ 查表取3 141cm W =的16号工字钢,其横截面积为21.26cm 。 在C 左侧的下边缘压应力最大,需要进行校核。 + =

MPa MPa W M A N 1003.94101411012104.26102463 4 3max max <=??+??=+=--σ 固所选工字钢为合适。 §9–3斜弯曲 1.斜弯曲概念:梁的横向力不与横截面对称轴或形心主惯性轴重合,这时杆件将在形心主惯性平面内发生弯曲,变形后的轴线与外力不在同一纵向平面内, 2.解题方法 1)分解:将外载沿横截面的两个形心主轴分解,于是得到两个正交的平面弯曲。 2)叠加:对两个平面弯曲进行研究;然后将计算结果叠加起来。 例 矩形截面悬臂梁,求根部的最大应力和梁端部的位移。 解: (1)将外载荷沿横截面的形心主轴分解 ?cos P P y =,?sin P P z = (2)外载荷在固定端两平面内的弯矩 ?cos Pl l P M y z -=-=?sin Pl l P M z y -=-= (3)应力 由弯矩z M 引起任意点C 处应力 y I Pl I y M z z z ?-== ? σcos ' 由弯矩y M 任意点C 处应力 z I Pl I y M y y y ?- == ? σsin ' ' (4)最大正应力—在C 处的应力叠加为 ??? ? ???+?-=+=z I Pl y I Pl y z ??σσσsin cos ' '' (5)变形计算 由y P 引起的垂直位移 z z y y EI Pl EI l P f 3cos 333 ? = =

组合变形的强度计算

第8章 组合变形的强度计算 习 题 (1) 矩形截面木制简支梁AB ,在跨度中点C 处承受一与垂直方向成 15=?的集中力 kN 10=F 的作用,如图8.19所示,已知木材的弹性模量MPa 10014?=.E 。试确定: ① 截面上中性轴的位置。② 危险截面上的最大正应力。 ③ C 点总挠度的大小和方向。 图8.19 习题(1)图 (2) 矩形截面木材悬臂梁受力如图8.20所示,N 8001=F ,N 16002=F 。材料许用应力[]10MPa σ=,弹性模量MPa 10014?=.E ,设梁截面的宽度b 与高度h 之比为1∶2。 ① 试选择梁的截面尺寸。 ② 求自由端总挠度的大小和方向。 (3) 如图8.21所示一楼梯木斜梁的长度为m 4=l ,截面为m 10m 20..?的矩形,受均布荷载作用,2kN/m q =。试作梁的轴力图和弯矩图,并求横截面上的最大拉应力和最大压应力。 图8.20 习题(2)图 图8.21 习题(3)图 (4) 图8.22所示一悬臂滑车架,杆AB 为18号工字钢,其长度为m 62.l =。试求当荷载 kN 25=F 作用在AB 的中点D 处时,杆内的最大正应力。设工字钢的自重可略去 不计。 (5) 有一悬臂梁AB ,长为1l ,在末端承托一杆BC ,BC 长为2l ,C 点为铰接,B 端搁在AB 梁上(B 处为光滑接触),在BC 中点受有垂直荷载P (如图8.23所示)。试求AB 及BC 两杆截面中的最大与最小正应力值及其作用点位置。

图8.22 习题(4)图 图8.23 习题(5)图 (6) 简支梁的受力及横截面尺寸如图8.24所示。钢材的许用应力[]160MPa σ=,试确定梁危险截面中性轴的方向,并校核此梁的强度。 图8.24 习题(6)图 (7) 如图8.25所示两种高为m 7=H 的混凝土堤坝的横截面。若取混凝土容重为 3kN/m 20=γ,为使堤坝的底面上不出现拉应力,试求坝所必需的宽度1a 和2a 。 图8.25 习题(7)图 (8) 图8.26所示钻床的立柱为铸铁制成,kN 15=F ,许用应力t []35MPa σ=。试确定立柱所需直径d 。 (9) 砖砌烟囱高m 30=h ,底截面m —m 的外径m 31=d ,内径m 22=d ,自重

相关文档
最新文档