铌微合金化钢组织—性能关系模型的研究

铌微合金化钢组织—性能关系模型的研究
铌微合金化钢组织—性能关系模型的研究

钛微合金化CM690三级船用锚链钢的开发

钛微合金化CM690三级船用锚链钢的开发* 刘丽霞1,孔凡杰2,王世俊1,周云1,彭军3 (1 安徽工业大学冶金与资源学院,安徽马鞍山 243002; 2 南京钢铁联合有限公司,江苏南京 210035; 3 北京科技大学冶金与生态学院,北京 100083) 摘要:为提高三级锚链钢的各项机械性能,改善钢的质量,将钛微合金化技术应用于CM690三级船用锚链钢的生产试验中。结果表明,在钛含量为0.020%~0.030%时,所生产的CM690三级船用锚链钢各项机械性能指标不仅达到了国家标准要求,而且其抗拉强度远高于国家标准要求。提高了钢的质量,同时开发出钛微合金化CM690三级船用锚链钢新钢种。 关键词:CM690;锚链钢;钛;微合金化;机械性能 中图分类号:TG142;TG335.6+2 文献标识码:A 文章编号:1004-4620(2007)06-0026-03 Development of Ti Microalloyed CM690 Grade Three Anchor Chain Steel for Ship LIU Li-xia1, KONG Fan-jie2, WANG Shi-jun1, ZHOU Yun1, PENG Jun3 (1 School of Metallurgy and Resource, Anhui University of Technology, Maanshan 243002, China; 2 Nanjing Iron and Steel Unite Co., Ltd., Nanjing 210035, China; 3 Metallurgy and Ecology School, University of Science and Technology Beijing, Beijing 100083, China) Abstract: In order to increase the mechanical properties of grade three anchor chain steel for ship and to improve the quality of steel, the technology of Ti micro-alloying was applied in producing grade three anchor chain steel. The industrial practice shown that all mechanical properties of produced anchor chain steel, especially the tensile strength, meet the requirement of national standards when the content of Ti is between 0.020%~0.030%. So producing high quality new type Ti micro-alloying

铌铁合金化技术

铌铁合金化技术 标准铌铁 巴西矿冶公司生产的标准铌铁主要用于炼钢。这种标准铌铁是用铝热还原法生产的。 表1 化学成分(重量%) 元素标准含量 Nb ≥63.0(典型含量66.5) P ≤0.20 S ≤0.10 C ≤0.20 Pb ≤0.12 Si ≤3.00 Al ≤2.00 Ta ≤0.20 Fe 其余 典型含铌量为66.5%的铌铁相当于金属间相的成分。因而是脆的,较易破碎成要求的块度。铌的标准块度为1-50毫米,围绕着标准块度的各种尺寸分布都是常用的。根据铌铁加入的炉子或钢包的容积大小和合金化技术而决定块度分布。巴西矿冶公司生产的铌铁块度小于规定下限的数量少于10%,而且无粉末成份。 表2 铌铁块度分布举例 钢包容量: 大型钢包(>300吨)20-80毫米* 最常用钢包5-50毫米* 小型钢包(<50吨)5-30毫米* 结晶器添加2-8毫米 喂芯丝添加<2毫米 *这些块度范围的用量占铌铁用量90%以上 表3方式最常用包装 铁桶:每桶净重250公斤;6桶装成一个托盘。 塑料袋:净重1000公斤;一个大袋装上托盘或不装托盘。

化学性质 正如图1所示,铌对氧的亲和力是相当小的。铌对氧的亲和力要比常用脱氧元素和其它微合金元素低,例如钛和钒,甚至低于锰。因此,当铌加入全镇静钢中,其回收率通常为95%或更高。 物理性能 铌铁的密度是8.1克/厘米3。铌铁的比重比钢水的比重稍大,铌铁加入钢水后,有利于铌的回收。 铌铁的熔点范围为1580-1630 C(固相线和液相线温度),比钢水的熔点高。与钢水也不发生热反应。因此,铌铁在钢水中不是熔化过程,而是一个溶解过程。这个溶解过程需要一定时间,对常用的块度需要几分钟时间即可溶解,见图2。 合金化技术 ——块状铌铁在出钢时加入钢包:考虑到铌对氧的亲和力和铌铁的价格,铌铁应在硅铁、铝和锰铁之后加入[2]。必须注意采用无渣出钢以防止块度小的铌铁进入钢渣。 ——在钢包精炼期间加入铌铁是常用方法。钢包吹氩有利于铌的均匀分布。这是冶炼铌含量低的钢种的常用方法,也是对铌含量进行微调的常用方法。 ——喂铌铁芯丝法是进行成分微调的有效方法。由于铌铁颗粒细小,其溶解速度很快。 结果 由于在某些钢中,添加很少量的铌对力学性能有显著的影响,常常需要规定一个较窄的铌含量的分布带。由于几乎100%的铌的回收率和采用钢包处理微调法,在现代化冶炼条件下,能达到铌的标准偏差小于0.0015%,见图3。 参考文献 (1)P.G.Sismanis and S.A.Argyropoulos,I&SM,July 1989, p.39-47. (2)J. Le.Clerc et al., in “Niobium” TMS of AIME; Warrendale(PA), 198 4, p.655-683. (3) A.Bergman and K.Olssen,Steel Times Int., June 1988, p.46.

铌元素对钢的影响.

(1查下稀土(铌Nb对低碳钢的组织影响。如,Nb的加入,会减小母相的层错能,增大新相的应变能,使板条宽度减小,还有Nb是强碳化元素,使C原子偏聚在晶界,起钉扎 作用,等等一些影响。查好了发word给我,带上参考文献 文献搜索工具:1、万方、维普、知网 2、goole-学术搜索- (2查下低碳钢准解理断裂及解理断裂中裂纹传播路径及影响因素。附上文献 (一 Nb在钢中阻止再结晶的进行和阻碍再结晶晶粒长大的作用 显著,原因是Nb的碳氮化物在轧钢时可以“钉扎”晶界,“钉扎力”大于该温度下的再结晶驱动力。含Nb钢中有板状粗大析出物(富N的Nb(C,N和细小的球状析出物(富C的Nb(c, N,其中富c的Nb(C,N可有效地钉扎晶界,Nb还可以与碳、氮结合形成NbC—NbCo.孙NbN等相,在再结晶过程中,因NbC、NbN、Nb(CN对位错的钉扎和阻止亚晶界的迁移使再结晶时间大大延长,且随析出量的增加而增大。Nb的碳化物和氮化物在800~900℃都有一定的溶解,从而在随后的空冷过程中能析出更多细小弥散分布的Nb的碳氮化物,对晶粒长大具有强烈的阻碍作用∞J。另外,由于Nb的原子半径比铁大得多,固溶态Nb在晶界富集浓度高达1.O%以上(原子比,而晶内较低,所以Nb具有强烈的拖曳晶界移动能力,这种作用远高于固溶Ti。Nb的双重作用表现出提高了再结晶的温度、阻止晶粒长大的最终效果。 (二 1、铌能细化晶粒和降低钢的过热敏感性及回火脆性,提高强度,但塑性和韧性有所下降。在普通低合金钢中加铌,可提高抗大气腐蚀及高温下抗氢、氮、氨腐蚀能力。铌可改善焊接性能。在奥氏体不锈钢中加铌,可防止晶间腐蚀现象。

铌微合金化高强抗震钢筋的生产实践

山西冶金 SHANXI METALLURGY 总第177期 2019年第1期Total 177No.l, 2019 生产实践?应用技术 DOI:10.16525/https://www.360docs.net/doc/cd3132848.html,l4-1167/tf.2019.01.39 锭微合金化高强抗震钢筋的生产实践 摘要:介绍了陕西钢铁集团有限公司应用桃微合金化技术生产HRB400E 高强抗震钢筋餉生产情况。经检验, 该工艺生产的产話化学成分和力学性能完全满足国家最新标准要求,且具有一定的经济效益。 关键词:觇微合金化HRB400E 化学成分性能中图分类号:TF533.2 文献标识码:A 文章编号:1672-1152( 2019 )01 -0106-03 王培培1,2 (1.西安建筑科技大学, 陕西西安710055; 2.陕西钢铁集团有限公司,陕西西安710018) HRB400E 高强度抗震钢筋以其良好的力学性 能迅速的走入市场,已成为建筑钢筋的主流。微合金 化技术是目前世界各国发展高强度钢筋的主要工艺 路线,帆被认为是提高HRB400E 钢筋强度最合适的 微合金化元素之一山。但是,由于近期飢铁和帆氮合 金价格大幅上涨,越来越多的钢筋生产企业开始采 用規铁代替帆铁和锐氮合金微合金化。陕西钢铁集 团有限公司结合企业生产特点,在稳定钢材性能及 质量的前提下,进行锯微合金化生产试验,以达到降 低合金成本的目的。 1工艺方案 1.1成分设计 依据GB/T 1499.2—2017标准要求,对含锭微合 金化HRB400E 钢筋化学成分(见表1)和力学性能 (见表2)进行设计。 表1規微合金化HRB400E 钢筋成分设计 w(C ) w(Si)w( Mn)w(V(N))w(Nb(Fe))碳当量国标 W0.25W0.80W1.60 —— W0.54 内控0.20-0.250.40-0.601.20-1.400.040-0.050目标值 0.22 0.50 1.260.045 表2視微合金化HRB400E 钢筋力学性能设计 HRB400E 屈服强度,心/MPa 抗拉强度,RJMPa 断后伸长率, A/% 最大力总延伸率, AJ%国标M400M540M16M9.0内控M415 M550M16M9.0目标值 450 610 20 12 收稿日期:2018-12-17 作者简介:王培培(1985—),女,工程师,本科,西安建筑科技 大学,现从事钢铁冶金工作。 1.2工艺流程 混铁炉— 120 t 转炉T 吹就站—方坯连铸机T 轧钢厂。 1.3操作要点 1.3.1转炉操作要点 1) 保证所有合金烘烤质量,稳定出钢过程温降。 2) 出钢过程所有合金分批加入,总时间大于 2 min,規铁合金随最后一批合金加入。 3) 出钢时间大于4 min,必须保证钢包底吹正 常,且全程底吹搅拌,时间不小于8 min 0 4) 岀钢前保证出钢口完好,做好一次、二次挡 渣,减少出钢口、大炉口下渣。 1.3.2连铸控制要求 1) 连铸过程必须全保护浇铸,且使用自动加渣 装置.液面自动控制系统。 2) 中包温度(见表3)。 表3中包温度控制设计 乜 钢种 开浇炉次 正常炉次 中包温度过热度中包温度过热度 HRB400E 1 533-1 54825-401 523-1 538 15-30 3)拉速控制在2.7-3.1 m/min;二冷比水量在常 规HRB400E 比水量基础上适当降低。 1.3.3轧钢操作要求 1) 试验轧制规格为¢12 mm 、⑦16 mm @20 mm 。 2) 加热炉温度控制要求(见表4)。 表4加热炉温度控制 匕 项目 预热段加热段 均热段 原参数 850-9501 060-1 1501 120-1 150试验参数 9 000-1 000 1 100-1 200 1 160-1 200 3)轧制速度按照现场正常速度控制。

氮含量对钒微合金钢组织性能的影响

氮含量对钒微合金钢组织性能的影响 张开华1雍岐龙2 (1. 攀枝花钢铁研究院,攀枝花617000;2.钢铁研究总院结构所,北京100081) 摘要为了研究钒的析出形式对微合金组织和性能的影响,检验了实验室轧制的不同氮含量的两种钒微合金钢的组织和性能,结果表明,在轧后水冷条件下,V钢的组织中仅有极少量的铁素体,而V-N钢有大量的晶界铁素体。在轧后空冷条件下,两种钢的组织均为铁素体+珠光体,V-N钢的铁素体晶粒比V钢细小,由于V-N钢中V(C,N)析出温度高,析出粒子粗大,对强度贡献较小,V-N钢的屈服强度和抗拉强度比V钢低,延伸率比V钢高。 关键词钒微合金钢组织性能氮含量 The Effect of Nitrogen on Micro-structure and Mechanical Properties of V-bearing Micro-alloying Steel Zhang Kaihua1 Yong Qilong2 (1.Panzhihua Iron and Steel Research Institute, Panzhihua, 617000; 2.Central Iron and Steel Research Institute ,Beijing,100081) Abstract The microstructure and mechanical properties of V-bearing micro-alloying steel of different nitrogen content have been studied at laboratory. The results show that the ferrite exists scarcely in V steel, and the grain boundary ferrite exists in V-N steel with water-cooling after rolling. With air-cooling after rolling, the temperature of V(C,N) presentation in V-N steel is higher that in V steel, the ferrite grain size of V-N steel is finer than that of V steel, the yield strength and tensile strength of V steel is higher than that of V-N steel, the elongation is lower than that of V-N steel. Key words vanadium, micro-alloying steel, structure, mechanical properties, nitrogen 1 引言 高强度微合金钢中,加入微合金元素的目的是产生晶粒细化和沉淀强化,提高钢材的性能。钒作为重要的微合金元素,其主要作用是强烈的沉淀强化作用以及易于控制。 在钒微合金化钢中,氮被认为是一种廉价的有效的微合金化元素,钒在钢中作用的大小与钢中的氮含量有很大的关系,有研究表明,在长棒材生产中,每增加0.001%的氮可提高强度约10MPa[1],在现在,钒氮合金主要应用于以下几个方面:(1)高强度焊接钢筋等长棒材,在这类钢的生产中,一般终轧温度比较高(1000℃以上),冷却速度比较快,钒高温时析出很少甚至基本不析出,氮的加入增加了V(C,N)在铁素体低温析出的驱动力,随钢中氮含量的增加,V(C,N)析出相数量增加、颗粒尺寸和间距明显减小[2]。氮还改变了钒在相间的分布,低氮钢中近60%的钒固溶于基体,有约35%的钒以V(C,N)形式析出;而高氮钢中则完全相反,70%的钒以V(C,N)形式析出,仅剩20%的钒固溶于基体中[3]。(2)非调质钢,氮在非调质钢中的主要作用是:1)促进钒的析出,提高沉淀强化效果;2)细化晶粒;3)提高TiN的稳定性。(3)CSP高强度带钢,因为钒氮钢可以避免Nb钢铸坯裂纹问题,同时也可以通过析出强化提高强度。四是采用V-N微合金化技术与第三代TMCP工艺结合生产的高强度钢板,利用VN形成晶内铁素体(IGF)的技术来细化组织的方法,并与再结晶控轧工艺(RCR)相结合,细化铁素体晶粒。综上所述,钒氮合金的应用主要是:(1)利用钒的低温析出的沉淀强化。(2)利用钒的高温析出,促进晶内铁素体形核。

微合金元素在钢中的作用(精)

为了合金化而加入的合金元素, 最常用的有硅、锰、铬、镍、钼、钨、钒,钛,铌、硼、铝等。现分别说明它们在钢中的作用。 1、硅在钢中的作用 : (1提高钢中固溶体的强度和冷加工硬化程度使钢的韧性和塑性降低。 (2 硅能显著地提高钢的弹性极限、屈服极限和屈强比 , 这是一般弹簧钢。 (3耐腐蚀性。硅的质量分数为 15%-20%的高硅铸铁,是很好的耐酸材料。含有硅的钢在氧化气氛中加热时,表面也将形成一层 SiO 2薄膜,从而提高钢在高温时的抗氧化性。 缺点:(4使钢的焊接性能恶化。 2、锰在钢中的作用 (1锰提高钢的淬透性。 (2锰对提高低碳和中碳珠光体钢的强度有显著的作用。 (3锰对钢的高温瞬时强度有所提高。 锰钢的主要缺点是,①含锰较高时,有较明显的回火脆性现象; ②锰有促进晶粒长大的作用, 因此锰钢对过热较敏感 t 在热处理工艺上必须注意。这种缺点可用加入细化晶粒元素如钼、钒、钛等来克服:⑧当锰的质量分数超过 1%时,会使钢的焊接性能变坏,④锰会使钢的耐锈蚀性能降低。 3、铬在钢中的作用 (1铬可提高钢的强度和硬度。 (2铬可提高钢的高温机械性能。 (3使钢具有良好的抗腐蚀性和抗氧化性

(4阻止石墨化 (5提高淬透性。 缺点:①铬是显著提高钢的脆性转变温度②铬能促进钢的回火脆性。4、镍在钢中的作用 (1可提高钢的强度而不显著降低其韧性。 (2镍可降低钢的脆性转变温度,即可提高钢的低温韧性。 (3改善钢的加工性和可焊性。 (4镍可以提高钢的抗腐蚀能力,不仅能耐酸,而且能抗碱和大气的腐蚀。 5、钼在钢中的作用 (1钼对铁素体有固溶强化作用。 (2提高钢热强性 (3抗氢侵蚀的作用。 (4提高钢的淬透性。 缺点:钼的主要不良作用是它能使低合金钼钢发生石墨化的倾向。 6、钨在钢中的作用 (1 提高强度 (2提高钢的高温强度。 (3提高钢的抗氢性能。 (4是使钢具有热硬性。因此钨是高速工具钢中的主要合金元素。

微合金钢

微合金钢 微合金化是一个笼统的概念,通常指在原有主加合金元素的基础上再添加微量的Nb、V、Ti 等碳氮物形成元素,或对力学性能有影响、或对耐蚀性、耐热性起有利作用、添加量随微合金化的钢类及品种的不同而异,相对于主加合金元素是微量范围的,如非调质结构钢中一般加入量在0.02—0.06%,在耐热钢和不锈钢中加入量在0.5%左右,而在高温合金中加入量高达1—3%。 微合金化钢的基本属性:(1)添加的碳氮化物形成元素,在钢的加热和冷却过程中通过溶解一析出行为对钢的力学性能发挥作用。 (2)这些元素加进量很少,钢的强化机制主要是细晶强化和沉淀强化。 (3)钢的控轧控冷工艺对微合金化钢有重要意义,也是微合金化钢叫作新型低合金高强度钢的依据。钢的微合金化和控轧控冷技术相辅相承,是微合金化钢设计和生产的重要条件。 因此说,微合金化钢是指化学成分规范上明确列进需加进一种或几种碳氮化物形成元素的钢。如GB/T 1591—94中Q295一Q460的钢,对其中Nb、V、Ti的含量通常有以下规定: (1)Nb,0.015%~0.06%; (2)V,0.02%~0.15%(0.20%); (3)Ti,0.02%~0.20%。 同时规定Nb+V+Ti≤0.15%。微合金化的高强度低合金钢。 它是在普通软钢和普通高强度低合金钢基体化学成分中添加了微量合金元素(主要是强烈的碳化物形成元素,如Nb、V、Ti、Al等)的钢,合金元素的添加量不多于0.20%。添加微量合金元素后,使钢的一种或几种性能得到明显的变化。 典型的微合金钢有15MnVN和06MnNb。微合金钢中含有一种或几种微合金元素,其含量大约在0.01%~0.20%之间。 微合金钢由于屈服强度高、韧性好、焊接性和耐大气腐蚀性好,可用于大型桥梁建筑,制造各类车辆的冲压构件、安全构件、抗疲劳零件及焊接件,它也是锅炉、高压容器、输油和输气管线,以及工业和民用建筑的理想材料。 关于微合金钢中Nb的析出对变形诱导铁素体相变的影响有两种不同观点:一是认为在变形过程Nb通过动态析出消耗形变储能而抑制变形诱导铁素体相变; 微合金钢就是这些“高技术钢材”中用量最大的一种。 处理办法:微处理可有效地提高16Mn原规格钢板、20MnSi大规格螺纹钢筋的屈服强度约10—20Mpa,改善A、B级一般强度板和X42—X46级管线钢的低温韧性,还可使16Mnq、15MnVNq 桥梁钢板的时效敏感比降低或消除。据不完全统计,1998年我国微合金化钢的产量为346万吨,占年全低合金高强度钢总产量55.1%。微处理钢(主要是Nb处理和Ti处理,还包括稀土处理钢在内)产量大致也在300万吨左右。 近20年来,世界钢铁工业最富活力和创造性进展,莫过于低合金高强度钢生产装备和工艺技术前所未有的变革,几乎使低合金高强度钢的所有品种领域更新了一代,甚至两代。微合金化钢属于低合金高强度钢范畴,或者说是新型的低合金高强度钢。 我国80年代以来的钢材生产及近年的钢材品种结构调整同样表明了: ①低合金高强度钢的新发展,借助了钢铁生产工艺技术的一切进步和最新成就。 ②低合金高强度钢的产量大,使用面广,适应了方方面面特殊性能要求,支持了各行各业产品的升级,增加了我国的机电产品和成套装备生产的竞争力。 ③微合金化带动了我国富有合金资源的生产和综合利用,微合金化钢生产促进了钢铁企业结构调整和流程优化。 所以,形成了一个崭新的观点,发展微合金化钢就是抓住了基础原材料工业发展的关键,通

V(C,N)在含钒微合金钢奥氏体中的析出规律

2016年8月第40卷第8期 Vol.40No.8Au g .2016 DOI :10.11973/j x g ccl201608006 收稿日期:2015-05-25;修订日期:2016-06-06 基金项目:江苏省自然科学基金资助项目(BK2010354) ;江苏省科技支撑计划(工业)项目(BE2014007-4);江苏省高校自然科学指导性计划项目(09KJD430005) 作者简介:王安东(1975-) ,男,江苏海安人,副教授,博士.V (C ,N ) 在含钒微合金钢奥氏体中的析出规律王安东,王骏宇,田林茂 (江苏大学材料科学与工程学院,镇江212013) 摘 要:在变形温度600~950?二应变速率1s -1的条件下对碳质量分数分别为0.26%, 0.33%,0.42%的含钒微合金钢进行了应力松弛试验,得到了其应力松弛曲线和V (C ,N ) 的析出动力学(PTT )曲线,结合显微组织分析了V (C ,N )析出规律.结果表明:V (C ,N )的析出会阻碍试验钢中奥氏体再结晶,减缓应力的下降;奥氏体中V (C ,N )的PTT 曲线呈S 形,在900?时V (C ,N ) 析出最快;试验钢中碳含量的增加加快了V (C ,N ) 的析出速率,但不影响其最快析出温度,含碳量最高的试验钢具有最短的开始析出时间,为7.5s . 关键词:含钒微合金钢;V (C ,N ) ;析出;析出动力学曲线;碳含量中图分类号:TG142.1 文献标志码:A 文章编号:1000-3738(2016)08-0023-04 Preci p itation Law of V (C ,N )in Austenite of Vanadium Microallo y ed Steel WANG An-don g ,WANG Jun-y u ,TIAN Lin-mao (School of Materials Science and En g ineerin g ,Jian g su Universit y ,Zhen j ian g 212013,China ) Abstract :The stress relaxation ex p eriments under the conditions of deformation tem p erature of 600-950? and strain rate of 1s -1were conducted on the vanadium microallo y ed steels with different carbon content of 0.26wt%,0.33wt%and 0.42wt%,and then the stress relaxation curves of the steels and the p reci p itation kinetics (PTT )curves of V (C ,N )were obtained.Combinin g with the microstructure ,the p reci p itation law of V (C ,N )was anal y zed.The results show that the p reci p itation of V (C ,N )inhibited the recr y stallization of austenite in the tested steels ,resultin g in the decrease of stress.The PTT curves of V (C ,N )p reci p itates in austenite showed a S-like sha p e.The p reci p itation rate of V (C ,N )was the fastest at 900?.The increase of carbon content in the tested steels accelerated V (C ,N )p reci p itation rate ,but had no effect on the tem p erature with the fastest p reci p itation rate.The tested steel with the hi g hest carbon content had the shortest p reci p itation start time of 7.5s. Ke y words :vanadium microallo y ed steel ;V (C ,N ) ;p reci p itation ;p reci p itation kinetics curve ;carbon content 0 引 言 中碳含钒微合金钢以其较低的成本和较好的综合性能,在汽车零件制造和石油工业等行业得到了广泛的应用.中碳含钒微合金钢中V (C ,N )的析出能显著提高该钢的强度,因此掌握V (C ,N )的析出规律对实际生产中工艺参数的制定与优化有着重要 的指导作用.目前,研究碳氮化物在钢中析出的试 验方法很多,其中利用应力松弛方法测得其析出动力学曲线因具有灵敏度高二省时二操作简单等优点而 被广泛使用[ 1] .该方法最早被用来研究铌与钛的碳氮化物析出曲线,近年来也逐渐被应用于研究钒的 碳氮化物的析出[ 2-4] .目前有关中碳含钒微合金钢低温(800?以下) 下析出动力学曲线的研究还较少,因此,作者通过热模拟试验机对不同碳含量含钒微合金钢在600~ 950?进行了等温应力松弛试验, 测得了其应力松驰曲线和沉淀相析出动力学(PTT ) 曲线,分析了V (C ,N )的析出规律和碳含量对析出规律的影响.1 试样制备与试验方法 试验材料为钢铁研究总院冶炼的含钒微合金 3 2

微合金元素在钢中作用

微合金元素在钢中溶解析出及影响因素? 在奥氏体中,氮化物通常比碳化物更加稳定。微合金化元素不同,其碳化物和氮化物的溶解度绝对值有很大差异:V、Ti的碳化物与氮化物的溶解度差值较大,而Nb的碳化物与氮化物的溶解度比较接近,尽管NbN的溶解度仍然低于NbC的溶解度。ALN的溶解度与NbN 接近,说明其溶解度比VC还要大。多数微合金碳化物和氮化物在奥氏体中的溶解度比较接近,虽然多数微合金元素的碳化物或氮化物在钢水中的溶解度还不确定,数据显示,TiN在钢水中的溶解度要比在同温度奥氏体中高10~100倍;因此TiN在1600℃钢水中的溶解度与其它微合金化元素在1200℃奥氏体中的溶解度接近。热力学计算表明,Nb的碳化物和氮化物在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。实验和热力学计算均证实,VC在铁素体中的溶解度要比同温度的奥氏体中的溶解度低1个数量级。 碳化物和氮化物的溶解度差导致碳氮化物中富集低溶解度化合物(氮化物)。在通常的复合微合金化钢中,碳化物和氮化物的溶解度差按铌、钒、钛的次序增大。合金碳氮化物中富集的氮化物的分数比例按钛、钒、铌的次序递减。合金碳氮化物中碳化物和氮化物的分数比例取决于钢中C和N的含量,在大多数钢中,远高于氮含量的碳含量在一定程度上抵销了碳化物和氮化物在溶解度上的差异。合金碳氮化物中碳化物和氮化物的分数比例还受合金元素含量的影响,合金元素含量升高降低氮化物的分数比例,尤其是在合金元素含量超过氮在钢中化学计量比的情况下。提高温度会增加氮化物的分数比例。钢中未溶解合金碳氮化物的数量高于从不互相溶解的析出模型所预期的值,更为重要的是,合金碳氮化物能够在独立碳化物或氮化物的溶解度曲线以上温度存在。 1、应变诱导析出:未变形材料中除了在晶界和相界上形核外,沉淀相在晶粒内主要是以均匀形核机制生成;而在变形材料中,沉淀相主要在位错和各种晶体缺陷上非均匀形核。由于在位错上形核的激活能低,因此形核率很高,可得到很高的沉淀相粒子密度和很小的沉淀相尺寸。变形使析出过程的孕育时间大大缩短。 2、钢的成分偏聚:由于钢液在凝固过程中发生溶质元素的偏聚,在枝晶间隙区的浓度要明显高于钢的平均含量,即使经过高温的固溶处理,在微米尺度上溶质元素在钢中仍然是不均匀分布的 3、Ostwald 熟化:Ostwald熟化过程在析出相体积分数不变的条件下,通过颗粒的粗化使基体和析出相的界面能明显降低。在熟化过程中,第二相颗粒被一定厚度的基体所分离,为了确保相互分离的大颗粒长大而小颗粒缩小乃至消失以降低系统的总界面能,颗粒通过基体一定存在一种非接触式的感知。 微合金元素在钢对钢中组织元素及相转变的影响? 当钒单独加入时,并不抑制铁素体的形成;相反,它加速珠光体的形成。然而,当钒和铌同时存在时,易于形成贝氏体组织,而钒在贝氏体内沉淀析出。正是这种钒与铌的差别,导致了在热轧交货的小型材中多倾向于加钒。这些轧态小型材冷却快,如果有铌存在的话,则形成导致脆性的贝氏体组织,而含钒钢中则不会形成这种脆性组织。钒能促进珠光体的形成,还能细化铁素体板条,因此钒能用来增加重轨的强度和汽车用锻件的强度。碳化钒也能在珠光体的铁素体板条内析出沉淀,从而进一步提高了材料的硬度和强度。钒像大多数溶质合金一样能抑制贝氏体的形成。因此,如果它是溶解而不是以碳化钒和氮化钒的形式沉淀析出,则可用来增加淬透性。当钢中钒的质量分数低于0.03%时,固溶态的钒才可以占绝大多数,才能有效地提高淬透性。与锰提高铌、钒的溶解度一样,钼也提高它们在钢中的溶解度。而添加了元素钼后,可固溶的钒含量明显增加,可达0.06%左右。 微合金对钢铁强度韧性热塑性的影响及强韧化机理? 钒通过在铁素体中的沉淀析出,来增加钢的强度,它可使钢的强度增加150MPa以上。碳氮化物在轧制过程和轧制以后形成,而且在正火过程中,当钢被加热时,它们将溶解,并

铌微合金化HRB400生产工艺与性能

铌微合金化HRB400生产工艺与性能 20世纪80年代,国内发展了Nb微合金化技术,Nb微合金化技术要求严格的控轧控冷制度,集中应用在扁平材尖端产品,如管线钢、压力容器和工程机械用钢等产品。为降低生产成本,国内冶金企业近年来相继开始用20MnSiNb代替20MnSiV生产HRB400热轧钢筋,其生产工艺流程为:高炉铁水转炉冶炼→吹氩处理→连铸→棒材连轧。棒材连轧生产线由18架轧机组成,粗、中、精轧机各6机架,平、立交替布置,结构紧凑。 含Nb钢具有矫直横裂敏感性,裂纹在振痕处产生,沿厚度方向向内部扩展。研究认为含Nb 钢的横裂敏感性与矫直温度下Nb(CN)的析出有关。20MnSiNb钢高温塑性低谷区为700~950℃。因此应避免在此温度区间矫直,由此确定其矫直温度大于950℃。 对20MnSi和20MnSiNb钢进行不同温度(-40、-20、0和20℃)冲击试验,20MnSiNb的冲击性能显著高于20MnSi,这是由于20MnSiNb的晶粒较20MnSi晶粒细,钢筋晶粒越细,受外力的作用时钢筋存在更多的晶粒内变形,晶粒越细晶界越多,晶界阻碍裂纹的传播,使钢筋断裂前可以承受较大的塑性变形,吸收的功较多,从而提高钢筋的冲击吸收功。对20MnSiNb 钢筋焊接后进行拉伸试验,力学性能符合GB1499.2-2007要求,并全部断在母材,表明20MnSiNb钢的焊接性能好,满足使用要求。 20MnSiNb钢可采用与20MnSi基本相同的工艺进行生产,力学性能符合GB1499.2-2007规定,焊接性能满足施工现场焊接工艺要求。20MnSiNb钢正常金相组织为铁素体+珠光体+少量贝氏体,铁素体晶粒度为9.5级,较20MnSi晶粒度提高1级。Nb的主要强化机制是细晶强化、组织强化和Nb(CN)析出强化。20MnSiNb钢250℃×1h时效处理前后其力学性能基本相同,该条件下20MnSiNb钢没有时效倾向;600℃×1h时效处理后,20MnSiNb钢的抗拉强度和屈服强度分别提高50和60MPa。(榕霖)

CSP线铌微合金化直缝焊石油套管用钢J55的开发

CSP线铌微合金化直缝焊石油套管用钢J55的开发 司永涛1, 屈文胜1, 董瑞峰1, 闫波1, 张晓燕1, 刘清友2 (1.包钢薄板坯连铸连轧厂,包头 014010; 2. 北京钢铁研究总院,北京 100081) 摘 要:介绍了包钢CSP厂采用Nb微合金化技术开发直缝焊石油套管用热轧钢带J55的过程。开发钢带的力学性能以及冷弯、焊接、螺纹加工等性能均满足API 5CT的标准要求和用户协议要求,已经商业化生产4200吨,用户使用情况良好。 关键词:CSP;Nb微合金化;J55 Development of Nb-microalloyed J55 Hot Rolled Strip Used for ERW Casing For Petroleum in Baotou CSP Plant SI Yong-tao1, QU Wen-sheng1, DONG Rui-feng1, YAN Bo1, ZHANG Xiao-yan1, LIU Qing-you2 (1. Baotou Iron & Steel (Group) Co., Ltd., Baotou 014010, China; 2. Central Iron and Steel Research Institute, Beijing 100081,China.) Abstract: This paper introduce how to develop hot rolled strip used for J55 ERW casing for petroleum by using the technology of Nb micro alloying in BaoTou CSP plant. The strips have good mechanical properties, cold bending, welding ability and threads machining etc. The Integration properties of casing meet the requirements of API 5CT standard and costumer technology agreement completely. 4200 t strips have been produced commercially, and the costumers used very well. Key words: CSP;Nb micro-alloyed;J55 J55(API 5CT)是一种中等强度石油套管钢级,历来采用无缝管。自上世纪60年代开始,国外采用热轧卷板制造直缝电阻焊套管(简称ERW)代替无缝管,获得成功[1]。从1987年至今,在中国许多常规流程热轧带钢生产线上被商业化生产。目前,在短流程生产线(如:CSP)上开发生产J55的工作也越来越受到重视。 包钢于2005年5月成功研制了J55钢级直缝焊石油套管用热轧钢带。本文介绍在包钢CSP线开发J55的工业试验过程及商业化生产产品的力学性能、使用性能和用户使用情况等。 1 试制过程 1.1 J55钢化学成分 直缝电阻焊石油套管(简称ERW)用热轧钢带—J55,是参照美国石油协会API Spec 5CT标准以及用户技术协议进行研制开发的。表1 为API 5CT、用户协议和包钢内控成分范围。 表1 成分设计范围 (wt%) Table 1 chemical composition of strips (wt%) 标 准 C ≤ Si ≤ Mn ≤ P ≤ S ≤ Nb ≤ V ≤ Ti ≤ API 5CT -- -- 0.03 0.03 -- -- 协 议 0.2 0.3 1.60.02 0.01 0.06 0.060.03 内 控 0.080.3 1.60.02 0.01 0.06 0.060.01 1.2 试验及商业化生产工序 按照表1中内控成分范围,冶炼浇铸钢坯,经 司永涛,高级工程师,siyongtao@https://www.360docs.net/doc/cd3132848.html,

钒钛铌等微合金元素在低合金钢

鞍钢钒、钛、铌微合金钢的应用与开发 林滋泉 敖列哥 郝 森 鞍山钢铁集团公司 1 前言 七十年代以来,随着国家资源的开发和科学研究水平的提高,钒、钛、铌、氮等合金元素做为开发低合钢的有效元素得到了广泛的应用。我国微合金元素储量丰富,氧化钒的储量达到2500万吨,占世界第三位;氧化钛的储量为6.289亿吨,几乎占世界总储量的45.58%;氧化铌储量为388万吨。因此我国具有发展微合金化钢的巨大资源优势。随着冶金生产设备和工艺技术的更新与变革,微合金元素的使用已使低合金高强度钢领域的品种发生了深刻的变化,微合金元素的开发与应用充实了低合金钢的物理冶金内容和强韧化原理[1]。其中钒的应用已十分广泛,在我国已形成多种牌号的钒钢及钒微合金化钢,我国纳入国家标准的钢种号中,含钒钢牌号有139种,占所有钢种的57%,据 统计我国钢铁业每年用钒量超过2000吨[2]。尽管如此,我国低、微合金钢的生产还没有摆脱数量型发展模式,从低、微合金钢产品结构上看,20MnSi、U71Mn 重轨等条形材及部分16Mn 钢板占了主要部分。若按国际通行计算方法计算,我国真正的低、微合金钢产量比例极低,特别是平材的比例更低,表1给出了1995年中国低、微合金占总钢产量的份额[3]。它表明了中国的低、微合金钢产量、品种结构与世界先进国家差距甚远。在全球经济一体化的今天,在世界钢铁生产能力趋于饱合的背景下,大力发展低、微合金钢,调整产品结构无疑是我国钢铁发展的必由之路。含钒钢及钒、钛、铌微合金钢的开发应用前景非常广阔。 表1 1995年中国低、微合金钢产量份额 年产量(万吨) 低、微合金钢产量 (万吨) 占钢产量比例 (%) 低、微合金钢板产量 (万吨) 占钢产量(%) 9400.0 365.82 3.89 46.0 0.489 2 鞍钢含钒微合金化钢的开发应用 2.1 钒、钛、铌在钢中的微合金化作用 合金元素钒在钢中的有利作用主要是以其碳、氧化物形式存在于基体和晶界上,起到沉淀强化和抑制晶粒长大的作用。钒在铁素体中的溶解度比在奥氏体中的溶解度小的很多,随着相变的进行,在一定的热力学和动力学条件下,钒的碳、氮化物在相界析出,通过在两相区加速冷却,可以细化晶粒,控制其碳、氮化物的析出,其沉淀物的大小和分布,决定了其沉淀强化的效果。由于钒和氮有很强的亲和力,在添加一定量的钒的同时,增加一定量的氮,使其强化效果更为有效。图1表明了鞍钢开发的15MnVN 钢板不同温度条件下力学性能和析出相参数的关系,说明了在不同析出温度条件下,VC 析出量的变化对钢板力学性能指标的影响。一般通过钒在铁素体中的沉淀析出,可使钢的强度增加 100MPa 以上。 图1 950℃水冷后不同加火温度下析出相与 力学性能的关系 除了钒以外,钛元素也在低、微合金钢开发中起了重要作用,在低合金高强度钢中加入微量钛即

微合金钢

发展中国家微合金钢的潜力 Geoffrey Tither Niobium Products Company Inc. Pittsburgh, PA 1.简介 在发展中国家,并不总是适合投资大型、现代化的厚板或热轧/冷轧机组,尤其在未经细致的市场调研的情形下,其实是不明智的。这是因为成本投入巨大,并在许多方面,由于考虑剧烈的竞争-衰退周期,能实现的盈利很少。 一个更明智的方法是开发的产品能在小型工厂更经济的生产,从而只需较少的投资。诸如紧固件、冷镦部件、拉拔线材、汽车锻件及工业、农业机械用锻件等是发展中国家在微合金钢开发和应用方面有待开拓的领域。这是由于微合金钢比普通合金钢成本低,并且在许多方面,微合金钢可减免制造工序,从而实现比单单合金节省更显著的节约。 本文讨论微合金化的基本概念,但主要侧重于微合金钢的商用场合。 2.微合金钢设计 微合金钢可定义为单独或者复合添加少量Nb、V、Ti和Al的低碳至中碳钢。对机械性能的影响是基于这些微合金元素形成碳化物、氮化物或碳氮化物,这些化合物在再加热及后续过程中全部或部分溶解。溶解和析出的动力学决定着通过微合金化所能获得效果。溶解程度依赖于加热温度、保温时间、加热和冷却速率、碳氮化物的溶度积。各种微合金碳化物、氮化物的溶度积如图1所示。 图1 微合金碳化物、氮化物的溶度积

低碳高韧高强度低合金钢(HSLA)的实质是通过相变获得细小铁素体晶粒。晶粒细化是唯一同时改善韧性的强化机制。 而对于中碳钢,珠光体团尺寸和珠光体片厚度决定韧性,前者受奥氏体晶粒尺寸影响,后者受碳含量影响,碳含量越低,渗碳体片越薄,韧性越好。另一方面,珠光体片间距决定珠光体钢的强度,片间距受珠光体转变温度控制。相变温度越低,片间距越小,强度越高。 再加热过程中各种微合金元素对晶粒粗化的影响如图2所示(2)。如图所示,高温状态阻止晶粒粗化的效果,Nb比V、Al更为有效,而Ti,通常以TiN微粒弥散分布,是最有效的。为使TiN有效阻止晶粒粗化,必须使Ti:N满足化学计量比,以保证TiN颗粒尺寸处于100-500nm。偏离化学计量比将致使TiN逐渐失效,事实上将减慢凝固冷却,因此,铸锭浇铸通道变得不合适。 图2 各种微合金钢奥氏体晶粒粗化特性 上述阻止晶粒粗化的效果,例如对于正火钢,特别是含量较低时(0.02-0.04%),添加Nb作为晶粒细化剂十分有效,见图3(3)。 图3 Nb、V、Ti对正火型HSLA钢晶粒尺寸的影响 在正火处理或随后的热变形冷却过程中,对于Nb和V,两种主要效应可能依赖于冷却前仍处于固溶态的微合金元素含量和随后的冷却速率。例如,固溶态的Nb有显著的硬化效

(完整版)钛(Ti)

Ti 是最活泼的微合金元素,与O、S、C、N 都有很强的亲和力。 Ti 可以在较高温度析出,1 250℃高温时仍能够析出Ti 的碳氮化物颗粒,而在较低温度时其析出较少,故Ti 一般用于高温析出来阻止奥氏体晶粒的长大,常与V、Nb 等复合添加。 Ti 较难溶于钢中,大部分是以第二相粒子的形式存在,Ti 的细小弥散的碳氮化物析出相能够有效地阻止奥氏体晶粒的长大,具有中等的细化晶粒作用,而沉淀析出强化作用较大. TiN 的固溶度比Nb 和V 都要低很多,因此生产冶炼的钢中N 的含量会很大程度上影响钢中可固溶的Ti 的含量,从而对后续的TiC 的析出产生影响;图1.5(B)为一般冶炼条件下的N 含量数值下(含N0.007wt%)温度对微合金元素的影响。由图可以看出,即使在1300℃以上的高温仍几乎不溶,因此在传统轧制流程的加热过程中,TiN 仍以析出物形式存在,并可以起到钉扎奥氏体晶界而阻 碍奥氏体晶粒长大的作用。而NbN 和和VN 在1200℃以上固溶量可以达到0.085wt%以上,在1150℃时固溶量大概在0.055%左右,考虑一般常用钢中的Nb和V的添加量并不会太高,因此可以认为在该温度条件下NbN 和VN 基本上全部固溶。当然,降低加热温度可以保持一定量的未溶NbN和VN以抑制加热过程中奥氏体晶粒的长大,但是加热温度过低同时会影响钢中NbC 和VC 的溶解,对于后续的析出强化过程不利。所以在利用微合金元素的氮化物颗粒以抑制奥氏体晶粒长大方面,Ti 比Nb 和V 更具有优势。但是这并不是说为了得到更多的TiN 以阻止加热过程中奥氏体晶粒的长大,N 的含量越

高越好,N 含量增多会使TiN的高温析出物增多,但是同样会使TiN 的颗粒增大,这对于抑制奥氏体晶粒长大不利。 Zener 由晶粒长大的驱动力和第二项粒子对晶粒长大的钉扎作用的平衡关系得到了反映第二相粒子阻止高温奥氏体长大的关系式: 由上式可以看出,TiN 颗粒析出体积分数增加并伴随着其尺寸增大的同时,对阻碍加热过程中奥氏体晶粒长大并不会有很好的效果。此外TiN 析出物的增多会减少后续的TiC析出可利用的Ti 含量,对后续析出过程不利。在铁素体中,Nb、V和Ti 基本上都是以析出形式存在,几乎没有固溶。 钛在钢中与合金元素氧、氮、硫、碳的亲和力大小依次递减,并依次生成Ti2O3 或TiO2、TiN、Ti4C2S2、Ti(CN)和TiC。钛的氧化物一般在冶炼过程中形成,颗粒较大,在钢中以夹杂物形式存在。而钛的氮、碳和硫化物的颗粒相对较小,可以起到细化晶粒和析出强化的作用。而且由于Ti 对S 的亲和性比Mn 高,在钢中形成Ti 的硫化物,产生固硫的作用。Ti 的硫化物呈球形,为刚性颗粒,降低析出或夹杂的危害,而MnS 呈为可变形夹杂,在变形过程中会在变形方向上严重拉长,不利材料性能。

相关文档
最新文档