弹性力学与有限元ANSYS建模教程模板

弹性力学与有限元ANSYS建模教程模板
弹性力学与有限元ANSYS建模教程模板

第二题:简支梁的计算(4)mm D 201=

图示一圆截面简支梁,跨度m L 1=,圆截面直径mm D 20=,作用在梁上的集中力N P 1000=,作用点距离支座A 的距离m a 2.0=,已知梁材料的弹性模量

211/102mm N E ?=,泊松比为3.0=μ,试分析该梁的挠度ω。

求解步骤: ⑴ 创建单元类型

选择Structusral Beam 类的2 node 188,点击OK ,创建单元类型。

(2)定义材料特性

Material Props→Material Models→Material Model Number1→Structural→Linear →Elastic→Isotropic

输入(泊松比)

=P

E

?

rxy

(弹性模量),3.0

10

211=

x

(3)创建关键点

MainMenu→Proprocessor→Modeling→Creat→Keypoints→In Active CS

在弹出对话框的NPT文本框中输入1,在“X、Y、Z”文本框中分别输入0,0,0。

单击Apply按钮,在NPT文本框中输入2。在“X、Y、Z”文本框中分别输入1,0,0。

单击OK按钮,关键点1、2创建如图所示:

(4)显示关键点号

Utility Menu→PlotCtrls→Numbering。

在弹出的对话框中,将关键点号打开,单击ok按钮。

(5)创建杆件截面

MainMenu→Preprocessor→Sections→Beam→Common Sections

弹出来一个对话框,在Sub-Type中选择圆形截面,m

,点击OK。

.0

R01

(6)创建直线

MainMenu→Preprocessor→Modeling→Create→Lines→ Lines→Straight Line。

弹出拾取窗口,拾取关键点1和2,单击OK按钮。

(7)划分单元

MainMenu→Preprocessor→Meshing→MeshTool。

弹出MeshTool对话框,单击“Size Controls”区域中的“Line”中的Set 按钮,弹出拾取框口,拾取直线,单击OK按钮,在NDIV文本框中输入50。

按Mesh按钮,弹出拾取窗口,拾取直线,单击OK。

(8)显示点、线、单元。

Utility→Plot→Multi-Plots

(9)施加荷载

①施加第一个载荷步的支座

MainMenu→Solution→DefineLoads→Apply→Structural→Displacement→On Keypoint。

对关键点1加载All DOF的约束,对关键点2加载UY、UZ的约束。

②施加荷载

MainMenu→Solution→DefineLoads→Apply→Structural→Force/Moment→On Nodes。

弹出拾取窗口,拾取节点10,单击OK按钮,选择Lab为FY,在V ALUE文本框中输入-1000,单击OK按钮。

(10)结果

①当前步荷载

Preprocessor→Solution→Solve→Current LS

②杆件挠度图

General Postproc →Results Viewer →DOF Solution →Y-Component of dispacement

上图为挠度图,中间蓝色部分挠度变形最大,001823.0max =ω。

③挠度列表结果

General Postproc→List Results→Nodal Solution→Y-Component of dispacement

NODE UY

1 0.0000

2 0.0000

3 -0.18154E-04

4 -0.68230E-04

5 -0.14541E-03

6 -0.24488E-03

7 -0.36182E-03

8 -0.49141E-03

9 -0.62883E-03

10 -0.76927E-03

11 -0.90791E-03

12 -0.10399E-02

13 -0.11607E-02

14 -0.12704E-02

15 -0.13692E-02

16 -0.14574E-02

17 -0.15354E-02

18 -0.16033E-02

19 -0.16615E-02

20 -0.17102E-02

21 -0.17499E-02

22 -0.17806E-02

23 -0.18028E-02

24 -0.18167E-02

25 -0.18225E-02

26 -0.18207E-02

27 -0.18114E-02

28 -0.17950E-02

29 -0.17717E-02

30 -0.17419E-02

31 -0.17057E-02

32 -0.16636E-02

33 -0.16157E-02

34 -0.15624E-02

35 -0.15040E-02

36 -0.14406E-02

37 -0.13728E-02

***** POST1 NODAL DEGREE OF FREEDOM LISTING *****

LOAD STEP= 1 SUBSTEP= 1 TIME= 1.0000 LOAD CASE= 0

THE FOLLOWING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM

NODE UY 38 -0.13006E-02 39 -0.12244E-02 40 -0.11445E-02 41 -0.10612E-02 42 -0.97474E-03 43 -0.88541E-03 44 -0.79352E-03 45 -0.69933E-03 46 -0.60314E-03 47 -0.50524E-03 48 -0.40591E-03 49 -0.30543E-03 50 -0.20410E-03 51 -0.10219E-03

MAXIMUM ABSOLUTE VALUES NODE 25

VALUE -0.18225E-02

如上述数据所示,节点25的竖向变形最大,其值为-0.18225E-02,即:

001823.0max =ω

第四题:桁架结构(10)1021==P P ,

计算下图所示桁架结构跨中位移及各杆件的受力。

求解步骤: ⑴ 创建单元类型

选择Structusral Link 类的3D finit stn 180,点击OK ,创建单元类型。

(2) 定义实常数

Preprocessor→Real Constants→Add

在弹出来的文本框中的Area输入2

.0m,点击OK。

25

(3)定义材料特性

Material Props→Material Models→Material Model Number1→Structural→Linear →Elastic→Isotropic

输入(泊松比)

E

(弹性模量),3.0

rxy

=P

?

211=

10

x

MainMenu→Proprocessor→Modeling→Creat→Nodes→In Active CS

在弹出对话框的NODE number文本框中输入1,在“X、Y、Z”文本框中分别输入0,0,0。

按照上述的方法,分别建好节点2、3、4、5、6、7、8。如下图所示:

MainMenu→Preprocessor→Modeling→Create→Elements→Auto Numbered→Thru Nodes。

弹出拾取窗口,拾取节点连线,单击OK按钮。

(6) 施加荷载

①施加第一个载荷步的支座

MainMenu→Solution→DefineLoads→Apply→Structural→Displacement→On Nodes。

对节点1加载All DOF的约束,对节点5加载UY的约束。

②施加荷载

MainMenu→Solution→DefineLoads→Apply→Structural→Force/Moment→On Nodes。

弹出拾取窗口,拾取节点3,单击OK按钮,选择Lab为FY,在V ALUE文本框中输入-1,单击OK按钮。

(7)结果

①施力前后桁架图

虚线是桁架施力前的图,实线是桁架施力后的变形图。

如上图所示,蓝色部分为Y 轴方向位移变形的最大量,9max 10103.0-?=ω。

如上图所示,由于桁架中心手里,所以桁架的轴力图对称,蓝色部分所代表的轴力最大,820377.0max F 。

第六题:钢板模型(16)mm B mm A mm r mm R 60,80,10301111====,。

带有三个圆孔的钢板模型,板厚20cm ,板的材料参数为:杨氏弹性模量E=200Gpa ,泊松比μ=0.25,大圆孔半径为R=30mm ,导角半径为50mm ,两个小圆孔半径为r=10mm 。导角半径为20mm 。圆孔间的距离如图所示,小圆孔的位移被完全约束,大圆孔下端作用有指向下方的集中力1000N 。

求解步骤: ⑴ 创建单元类型

选择Structusral Solid 类的Quad 8 node 183,点击OK ,创建单元类型。

(2) 定义实常数

Preprocessor →Real Constants →Add

在弹出来的文本框中的THK 中输入0.2m ,点击OK 。

(3)定义材料特性

Material Props →Material Models →Material Model Number1→Structural →Linear →Elastic →Isotropic

输入(弹性模量),3

.0rxy 10211=?=P E x (泊松比)25.0=μ。

(4)创建钢板模型

MainMenu→Proprocessor→Modeling→Creat。

经过多次的裁剪,最终得图如下所示:

(5)划分单元格

Preprocessor→Meshing→Size Controls→Manual Size→All areas。在弹出来的对话框中输入0.01,单击OK。

基于弹性力学理论和有限元法分析应力集中问题的讨论

基于弹性力学理论和有限元法分析应力集中问题的讨论 材料在外形急剧变化的部位,局部应力可以超出名义应力的数倍,对于脆性材料局部过早开始破坏,从而,削弱了构件的强度,降低了构件的承载能力。因此在工程實际中,为了确保构件的安全使用,必须科学合理的分析计算应力集中现象,以便找寻到更好的避免措施。本文首先基于弹性力学理论分析带孔无限宽板的应力分布情况,将对象的受力转化成数学表达,结论应证了应力集中的几个特性。 标签:应力集中系数;有限元分析;无限宽板;弹性力学;Inventor运用;ANSYS 1、应力集中 1.1弹性力学中概念,指物体形状、材料性质不均匀导致的局部应力急剧增高的现象。 1.2应力集中系数 最大局部应力与名义应力的比值称为理论应力集中系数ɑ。可以明确地反应应力集中的程度。 最大局部应力σmax可根据弹性力学理论、有限元法计算得到,也可由实验方法测得;名义应力σn是假设构件的应力集中因素(如孔、缺口、沟槽等)不存在,构件截面上的应力。 2、孔周应力在理想状态下的弹性力学理论分析 2.1定义受单向均匀拉伸荷载的无限宽平板,孔径2α圆孔,建立如图一理想模型。 由于结构的对称性,仅分析图一上半段1/4部分x轴正向的状态: 1)圆孔右顶点单元,即当θ=0,r=α时,代入式(2)解算得σy=3σ; 2)距孔0.2倍孔半径外,即当θ=0,r=1.2α时,代入式(2)解算得σy=2.071σ; 3)距孔1倍孔半径外,即当θ=0,r=2α时,代入式(2)解算得σy=1.221σ; 4)距孔1.5倍孔半径外,即当θ=0,r=2.5α时,代入式(2)解算得σy=1.122σ; 5)距孔2倍孔半径外,即当θ=0,r=3α时,代入式(2)解算得σy=1.074σ;

弹性力学及有限元法学习总结

弹性力学及有限元法学习总结 摘要:本文就弹性力学的研究对象与方法,弹性力学的基本假设,研究方法,有限元法的基本思想,数学基础,有限元分析的基本步骤进行阐述。 正文:弹性力学是固体力学的一个分支学科,是研究固体材料在外部作用下(外 部作用一般包括:荷载、温度变化以及固体边界约束改变),弹性变形及应力状态的一门学科。 弹性力学的研究对象: 材料力学--研究杆件(如梁、柱和轴)材料力学的拉压、弯曲、剪切、扭转和组合变形等问题。 结构力学--在材料力学基础上研究杆系结构结构力学(如桁架、刚架等)。弹性力学--研究各种形状的弹性体,如杆弹性力学件、平面体、空间体、板壳、薄壁结构等问题。 弹性力学研究方法: 在研究方法上,弹力和材力也有区别:弹力研究方法:在区域V内严格考虑静力学、几何学和物理学三方面条件,建立三套方程; 三套方程在边界s 上考虑受力或约束条件,建立边界条件并在边界条件下求解上边界条件; 边界条件述方程,得出较精确的解答。 弹性力学的基本假设: 1)连续性,假定物体是连续的。连续性因此,各物理量可用连续函数表示。 2)均匀性与各向同性假设假定固体材料是均匀的,并且在各个方向上物理特性相同,也即材料的物理性质在空间分布上是均匀的(或不变的)3)小变形假设假定固体材料在受到外部作用(荷载、温度等)后的位移(或变形)与物体的尺寸相比是很微小的,在研究物体受力后的平衡状态时,物体尺寸及位置的改变可忽略不计,物体位移及形变的二次项可略去不 计,由此得到的弹性力学微分方程将是线性的。 4)完全弹性假设假设固体材料是完全弹性的。 5)无初始应力假设假定外部作用(荷载、温度等)之前,物体处于无应力状态,由弹性力学所求得的应力仅仅是由外部作用(荷载、温度等)所 引起的。 有限元法的基本思想: 有限元是一种结构分析的方法,先把所有系统分解为他们的元件或单元,这些元件的行为已经被充分的了解,再把元件重新组装成原来的系统。及将连续的求解区域离散为一组由有限个单元组成并按一定方式相互连接在一起的单元组

弹性力学及有限元基础复习权威版(最新)

《弹性力学及有限元基础》复习思考题 ★1.对弹性体所做的基本假设? 答:连续性假设;均匀性假设;各向同性假设;弹性假设;小变形假设; ★2.用D'Alember 原理由平衡方程推导运动微分方程? 答:微元体的平衡微分方程的表达式为: 31 112111 2332 122221 23 132333 31 23000f x x x f x x x f x x x σσσσσσσσσ????+++=?????????+++=? ????????+++=? ???? 根据D'Alember 原理,将运动物体看成是静止的,将惯性力22()u t ρ?-?当作体力加到微元体上,由上式 可以直接写出弹性动力学问题的运动微分方程: 23111211 12123232 12222221 2321323333321 23()()() u f x x x t u f x x x t u f x x x t σσσρσσσρσσσρ?????+++=????????????+++=? ???????????+++=?????? ☆3.什么是应力张量? 我们说一点的应力状态是什么涵义? 答:应力张量是一点应力状态的完整描述,它有面元方向和分解方向两个方向性,共有九个分量,由于存在对称性,其独立分量只有六个。应力张量是与坐标选择无关的不变量,但其分量与坐标有关,当已知某坐标系中的九个分量时,其他坐标系中的分量均可由应力转换公式确定。 一点的应力状态是一个具有双重方向性的物理量,其中第一个是面元的方向,用其法矢量ν表示,第二个是作用在该面元上的应力矢量方向,一般用其三个分量来表示。 4.在引出 Cauchy 应力公式时, 我们假设四面体处于平衡状态, 如不处在平衡状态则如何? 答:如果不处在平衡状态,Cauchy 应力公式仍然满足,关系式的成立与是否平衡无关。 5.在什么情况下剪应力互等定律不成立? 答:无论在变形体的内部或者表面上,若存在体力偶时,剪应力互等定律不成立。 6.任意斜截面上的正应变和剪应变的意义是什么? 答:应变张量的三个对角分量x ε、y ε、z ε称为正应变,分别等于坐标轴方向三个线元的单位伸长率,伸长为正,缩短为负。应变张量的三个非对角分量xy ε、yz ε、zx ε称为剪应变,分别等于变形前沿该分量下标所示两坐标方向的、相互正交的线元在变形后的夹角减小量之半。 7.刚性位移,刚性转动,刚体位移,刚体转动有何区别? 答:(1)刚性位移:物体内任意两点间无相对位移;(2)刚性转动:应变张量为0,转动张量不为0;(3)刚体位移:运动分为变形运动和刚体运动,每点都发生相同的位移就叫作刚体位移;(4)刚体转动:用刚性

ANSYS建模实例

第一部分自由网格划分 (1)确定单元类型 GUI:执行“Main Menu→Preprocessor→Element Type→Add/Edit/Delete”菜单命令。 执行上命令后,打开如下左图所示对话框。在左图中单击(Add)按钮,打开右图对话框,然后再左侧的窗口中选取“Solid”单元,右侧窗口中选取“10node 92”单元。 (2)建立几何模型 GUI:执行“Main Menu→Preprocessor→Create→Volumes→Block→By Dimensions”菜单命令,在弹出的对话框中输入“X1=0,X2=4,Y1=0,Y2=4,Z1=0,Z2=4”,得到立方体。 执行“Main Menu→Preprocessor→Create→Volumes→Cylinder→Solid Cylinder” 菜单命令,在弹出的对话框中输入“X=2,Y=2,Radius=0.5,Depth=6”,得到圆柱体。如下图:

(3)布尔加运算 GUI:执行“Main Menu→Preprocessor→Modeling→Operate→Booleans-Add→Volumes”菜单命令。执行命令后,将打开如图的对话框中单击(Pick All)按钮,将所有面积组合在一起。如上图。 (4)自由网格划分 GUI:执行“Main Menu→Preprocessor→Meshing→Mesh Tool”菜单命令,在弹出 的对话框中选择“Global→set”,接着在对话框中输入“SIZE=0,NDIV=10”,如图: 得到自由网格划分结果如下图:

第二部分映射网格划分 (1)确定单元类型 GUI:执行“Main Menu→Preprocessor→Element Type→Add/Edit/Delete”菜单命令。 执行上命令后,打开如下左图所示对话框。在左图中单击(Add)按钮,打开右图对话框,然后再左侧的窗口中选取“Magnetic-Edge”单元,右侧窗口中选取“3D Brick 117”单元。

弹性力学与有限元法分析及实例讲解

弹性力学与有限元法分析 弹性力学是固体力学的一个重要分支,是研究弹性固体在受外力作用、温度改变、边界约束或其他外界因素作用下而发生的应力、形变和位移状态的科学。有限单元法是力学、数学、物理学、计算方法、计算机技术等多种学科综合发展和结合的产物,是随着计算机技术的广泛应用而迅速发展起来的一种数值分析方法。有限元法的基本思想就是化整为零,分散分析,再集零为整。即用结构力学方法求解弹性力学问题,实质是将复杂的连续体划分为有限多个简单的单元体,单元体之间仅仅通过结点相连,实现化无限自由度问题为有限稀有度问题,将连续场函数的(偏)微分方程的求解问题转化为有限个参数的代数方程组的求解问题。 有限元方法经过近半个世纪的发展,目前已经成为各种工程问题特别是结构分析问题的标准分析方法,而有限元软件也已成为现代结构设计中不可缺少的工具。有限元软件是有限元理论通向实际工程应用的桥梁,它的应用极大地提高了力学学科解决自然科学和工程实际问题的能力,进一步促进了有限元方法的发展。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件,广泛用于机械制造、石油化工、航空航天、汽车交通、土木工程、造船、水利等一般工业及科学研究。 ANSYS软件的组成: (一)前处理模块 该模块为用户提供了一个强大的实体建模及网格划分工具,可以方便的构造有限元模型,软件提高了100种以上的单元类型,用来模拟工程中的各种结构和材料。包括: 1.实体建模:参数化建模,布尔运算及体素库,拖拉、旋转、拷贝、蒙皮、倒角等。 2.自动网格划分,自动进行单元形态、求解精度检查及修正。 3.在集合模型上加载:点加载、分布载荷、体载荷、函数载荷。 4.可扩展的标准梁截面形状库。 (二)分析计算模块 该模块包括结构分析(可进行线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。 (三)后处理模块 将计算结果以彩色等值线、梯度、矢量、粒子流、立体切片、透明及半透明等图形方式显示出来,也可以用图表、曲线形式显示或输出。 由于现在只是对ANSYS工程软件有初步的了解和掌握,所以本次作业仅以(1)结构静力学分析为例,运用ANSYS软件对汽车连杆进行受力分析;(2)

试题及其答案--弹性力学与有限元分析(DOC)

如下图所示三角形薄板,按三结点三角形单元划分后,对于与局部编码ijm 对应的整体编码,以下叙述正确的是( D )。 ① I 单元的整体编码为162 ② II 单元的整体编码为426 ③ II 单元的整体编码为246 ④ III 单元的整体编码为243 ⑤ IV 单元的整体编码为564 A. ①③ B. ②④ C. ①④ D. ③⑤ 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力 =1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。 其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部

(绝密试题)弹性力学与有限元分析试题及其答案

2012年度弹性力学与有限元分析复习题及其答案 (绝密试题) 一、填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。 4、物体受外力以后,其内部将发生内力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa , 则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、应力边界条件和混合边界条件。 13、按应力求解平面问题时常采用逆解法和半逆解法。 14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。其具体步骤分为单元分析和整体分析两部分。 15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。 16、每个单元的应变一般总是包含着两部分:一部分是与该单元中各点的位置坐标有关的,是各点不相同的,即所谓变量应变;另一部分是与位置坐标无关的,是各点相同的,即所谓常量应变。 17、为了能从有限单元法得出正确的解答,位移模式必须能反映单元的刚体位移和常量应变,还应当尽可能反映相邻单元的位移连续性。 18、为了使得单元内部的位移保持连续,必须把位移模式取为坐标的单值连续函数,为

弹性力学及有限元试题

弹性力学及有限元试题 (一) 问答题(20分) 1、什么是圣维南原理?举例说明怎样把它应用于工程问题 的简化中。 2、什么叫做一点的应力状态?如何表示一点的应力状态(要 求具体说明或表达)。 3、何谓逆解法和半逆解法?它们的理论依据是什么? 4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。 5、要保证有限元方法解答的收敛性,位移模式必须满足那些条 件? (二) (10分) 1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。 2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。 (三)已知,其他应力分量为零,求位移场。(10分) (四)设有矩形截面的悬臂粱,在 自由端受有集中荷载F;体力可以不

计。试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。 (五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。 提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ). (六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。设μ=0,试取位移分量的表达式为 用瑞利—里茨法求解(15分)。

(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。 (八)用刚度集成法求下图所示结构的整体刚度矩阵K。(10分) 要求:单元刚度矩阵元素用e k形式表示;单元刚度矩阵用e K形式表 ij 示,其中e为单元号。

ansys有限元建模与分析实例-详细步骤

《有限元法及其应用》课程作业ANSYS应用分析 学号: 姓名: 专业:建筑与土木工程

角托架的有限元建模与分析 一 、模型介绍 本模型是关于一个角托架的简单加载,线性静态结构分析问题,托架的具体形状和尺寸如图所示。托架左上方的销孔被焊接完全固定,其右下角的销孔受到锥形压力载荷,角托架材料为Q235A 优质钢。角托架材料参数为:弹性模量366E e psi =;泊松比0.27ν= 托架图(厚度:0.5) 二、问题分析 因为角托架在Z 方向尺寸相对于其在X,Y 方向的尺寸来说很小,并且压力荷载仅作用在X,Y 平面上,因此可以认为这个分析为平面应力状态。 三、模型建立 3.1 指定工作文件名和分析标题 (1)选择菜单栏Utility Menu → 命令.系统将弹出Jobname(修改文件名)对话框,输入bracket (2)定义分析标题 GUI :Utility Menu>Preprocess>Element Type>Add/Edit/Delete 执行命令后,弹出对话框,输入stress in a bracket 作为ANSYS 图形显示时的标题。 3.2设置计算类型 Main Menu: Preferences … →select Structural → OK 3.3定义单元类型 PLANE82 GUI :Main Menu →Preprocessor →Element Type →Add/Edit/Delete 命令,系统将弹出Element Types 对话框。单击Add 按钮,在对话框左边的下拉列表中单击Structural Solid →Quad 8node 82,选择8节点平面单元PLANE82。单击ok ,Element Types 对话框,单击Option ,在Element behavior 后面窗口中选取Plane strs w/thk 后单击ok 完成定义单元类型。 3.4定义单元实常数 GUI :Main Menu: Preprocessor →Real Constants →Add/Edit/Delete ,弹出定义实常数对话框,单击Add ,弹出要定义实常数单元对话框,选中PLANE82单元后,单击OK →定义单元厚度对话框,在THK 中输入0.5.

《弹性力学及有限元》教学大纲

《弹性力学及有限元》教学大纲 大纲说明 课程代码:5125004 总学时:40学时(讲课32学时,上机8学时) 总学分:2.5学分 课程类别:必修 适用专业:土木工程专业(本科) 预修要求:高等数学、理论力学、材料力学 课程的性质、目的、任务: 本课程是土木工程专业限选修的一门专业基础课。本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上进一步掌握弹性力学的基本概念、原理和方法,了解弹性力学问题的求解思路、方法和解答,为学习相关专业课程打下初步的弹性力学基础。在此基础上,使学生掌握有限单元法的基本概念、理论、方法,了解和应用ANSYS大型结构分析程序求解简单的弹性力学问题。 课程教学的基本要求: 本课程教学环节主要包括:课堂讲授、习题课、作业、答疑、上机计算、考试。采用课堂授课方式,重点章节安排习题课。课后布置一定量的习题,以便掌握弹性力学与有限单元法的基本概念、原理和方法,用弹性力学的求解方法及大型结构分析有限单元程序求解简单的弹性力学问题。考试采用开卷方式。 大纲的使用说明: 本大纲适用于土木工程本科专业40课时的《弹性力学及有限元》课程. 大纲正文 第一章绪论学时:6学时(讲课6学时) 本章讲授要点:了解弹性力学的研究内容,理解体力、面力、应力、应变和位移等基本概念,熟悉体力、面力、应力、应变、位移等力学量的记号和符号的有关规定,理解弹性力学的基本假定;了解有限单元法的发展,掌握泛函、变分和泛函极值等基本概念;了解加权残值、里兹与伽辽金等方法。 重点:弹性力学中的应力、应变和位移等基本概念;泛函、变分、驻值等基本概念;加权残值、里兹与伽辽金等方法。 难点:应力、应变;泛函、变分、驻值;加权残值法、里兹法与伽辽金法。 第一节弹性力学的内容 第二节弹性力学中的几个基本概念 第三节弹性力学中的基本假定 第四节有限单元法的发展简介 第五节变分原理.泛函.变分.驻值 第六节加权残值法、里兹法与伽辽金法

几个ansys经典实例(长见识)

平面问题斜支座的处理 如图5-7所示,为一个带斜支座的平面应力结构,其中位置2及3处为固定约束,位置4处为一个45o的斜支座,试用一个4节点矩形单元分析该结构的位移场。 (a)平面结构(b)有限元分析模型 图5-7 带斜支座的平面结构 基于ANSYS平台,分别采用约束方程以及局部坐标系的斜支座约束这两种方式来进行处理。 (7) 模型加约束 左边施加X,Y方向的位移约束 ANSYS Main Menu: Solution →Define Loads →Apply →-Structural→Displacement On Nodes →选取2,3号节点→OK →Lab2: All DOF(施加X,Y方向的位移约束) →OK 以下提供两种方法处理斜支座问题,使用时选择一种方法。 ?采用约束方程来处理斜支座 ANSYS Main Menu:Preprocessor →Coupling/ Ceqn →Constraint Eqn :Const :0, NODE1:4, Lab1: UX,C1:1,NODE2:4,Lab2:UY,C2:1→OK 或者?采用斜支座的局部坐标来施加位移约束 ANSYS Utility Menu:WorkPlane →Local Coordinate System →Create local system →At specified LOC + →单击图形中的任意一点→OK →XC、YC、ZC分别设定为2,0,0,THXY:45 →OK ANSYS Main Menu:Preprocessor →modeling →Move / Modify →Rotate Node CS →To active CS → 选择4号节点 ANSYS Main Menu:Solution →Define Loads →Apply →Structural →Displacement On Nodes →选取4号节点→OK →选择Lab2:UY(施加Y方向的位移约束) →OK 命令流; !---方法1 begin----以下的一条命令为采用约束方程的方式对斜支座进行处理 CE,1,0,4,UX,1,4,UY,-1 !建立约束方程(No.1): 0=node4_UX*1+node_UY*(-1) !---方法1 end --- !--- 方法2 begin --以下三条命令为定义局部坐标系,进行旋转,施加位移约束 !local,11,0,2,0,0,45 !在4号节点建立局部坐标系 !nrotat, 4 !将4号节点坐标系旋转为与局部坐标系相同 !D,4,UY !在局部坐标下添加位移约束 !--- 方法2 end

弹性力学与有限元分析试题及参考答案

弹性力学与有限元分析试题及参考答案 四、分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ????? ??=??+??=??+??0 0x y y x xy y yx x τστσ;(2)在区域内的相容方程()02222=+??? ? ????+??y x y x σσ;(3)在边界上的应力边界条件()()()() ???? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,22 23xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ???? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ?? ?=--=--+-0 230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230 333222231xy C C y C Q x C C 由x ,y 的任意性,得

弹性力学与有限元分析试题答案

最新弹性力学与有限元分析复习题及其答案 一、 填空题 1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、 形变和位移。 2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相 适应。 3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规 定相适应。 4、物体受外力以后,其部将发生力,它的集度称为应力。与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切 应力。应力及其分量的量纲是L -1MT -2。 5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。 6、平面问题分为平面应力问题和平面应变问题。 7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力 =1σ150MPa ,=2σ0MPa ,=1α6135' 。 8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力 =1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。 9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应 力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。 10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三 套方程。 11、表示应力分量与体力分量之间关系的方程为平衡微分方程。 12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。分为位移边界条件、 应力边界条件和混合边界条件。

命令流ansys经典实例

ansys钢筋混凝土建模实例 finish /clear /prep7 et,1,solid65,,,,,,,1 et,2,link8 et,3,185 et,4,solid45 !************************定义材料属性***************************** !混凝土材料属性 mp,ex,1,1.596e10 mp,prxy,1,0.2 mp,dens,1,2400 fc=1.68e7 !c30混凝土轴心抗压强度设计值 ft=1.86e6 tb,concr,1 tbdata,,0.5,0.95,ft,-1 tb,miso,1,,11 tbpt,,0.0002,fc*0.19 tbpt,,0.0004,fc*0.36 tbpt,,0.0006,fc*0.51 tbpt,,0.0008,fc*0.64 tbpt,,0.0010,fc*0.75 tbpt,,0.0012,fc*0.84 tbpt,,0.0014,fc*0.91 tbpt,,0.0016,fc*0.96 tbpt,,0.0018,fc*0.99 tbpt,,0.002,fc tbpt,,0.0033,fc !57到68 v,6,7,56,54,10,11,60,58 vgen,4,57,57,1,0,0.38,0 vgen,2,57,60,1,0.25,0,0 vgen,2,57,60,1,-0.25,0,0 !69到80 v,189,190,234,233,191,192,238,237 vgen,4,69,69,1,0,0.38,0

vgen,3,69,72,1,0,0,0.25 !121到136 vgen,2,105,120,1,0,0,0.107 !193到208 k,1178,0.81,0,0.107 k,1179,0.823,0,0.107 k,1180,0.81,0,0.417 k,1181,0.81,0.16,0.107 k,1182,0.823,0.16,0.107 k,1183,0.81,0.16,0.417 k,1184,0.81,0.38,0.107 k,1185,0.823,0.38,0.107 k,1186,0.81,0.38,0.417 v,1178,1179,187,1180,1181,1182,189,1183 v,1181,1182,189,1183,1184,1185,191,1186 vgen,4,193,194,1,0,0.38,0 vgen,2,193,200,1,0.107,0,0 !209到232 k,1271,-0.02,0,-0.013 k,1272,-0.02,0,0 k,1273,-0.02,0.16,-0.013 k,1274,-0.02,0.16,0 k,1275,-0.02,0.38,-0.013 k,1276,-0.02,0.38,0 v,677,1,1272,1271,679,5,1274,1273 v,679,5,1274,1273,681,9,1276,1275 vgen,4,209,210,1,0,0.38,0 vgen,3,209,216,1,0.25,0,0 !233到256 vgen,2,209,232,1,0,0,0.107 vgen,2,257,280,1,0.107,0,0 k,5001,-0.1,1.3,0 k,5002,-0.02,1.3,0 k,5003,-0.02,1.3,0.094

弹性力学基础及有限单元法

第一章 1、弹性力学的任务是什么 弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。 2、弹性力学的基本假设是什么?为什么要采用这些假设? (1)假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的.可以用坐标的连续函数表示。实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。根据这个假设所得的结果与实验结果是符合的。 (2)假设物体是匀质的和各向同性的——物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。木材不是各向同性的。 (3)假设物体是完全弹性的—一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。同时还假定材料服从胡克定律,即应力与形变成正比。 (4)假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。 (5)假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。物体中初应力的性质及数值与物体形成的历史有关。若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。 上面基本假设中.假设(4)是属于几何假设,其他假设是属于物理假设。 3、举例说明各向同性的物体和各向异性的物体。 钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。木材是各异性的。 4、弹性力学和材料力学相比,其研究方法和对象有什么区别? P3 弹性力学具体的研究对象主要为梁、校、坝体、无限弹性体等实体结构以及板、壳等受 力体。 在材料力学课程中,基本上只研究所谓杆状构件,也就是长度远大干高度和觅度的构 件。这种构件在拉压、剪切、弯曲、扭转作用下的应力和位移,是材料力学的主要研究内 容。

ANSYS静力学研究分析APDL建模实例-应力集中

ANSYS静力学分析APDL建模实例-应力集中

————————————————————————————————作者:————————————————————————————————日期:

计算分析模型如图所示, 习题文件名: scf 材料参数:E=205GPa, v = 0.3 力载:4500N 注意单位的一致性:使用N, mm, MPa单位制 建模教程 在ANSYS工作文件夹内新建“stress concentration factor”目录,以存放模型文件。 注意定期保存文件,注意不可误操作,一旦误操作,不可撤销。 1.1 进入ANSYS 开始→程序→ANSYS 14.5→Mechanical APDL Product Launcher14.5→然后在弹出的启动界面输入相应的working directory及文件名scf 如通过Mechanical APDL 14.5进入,则进入预设的working directory working directory必须设置在电脑最后一个分区(因为教学用电脑只有最后一个分区不受系统保护) 至此ANSYS静力学分析模块启动,ANSYS在“stress concentration factor”目录下自动创建了.log、.err等必要的文件。 2.2设置计算类型 ANSYS Main Menu: Preferences →select Structural → OK 2.3选择单元类型 ANSYS Main Menu: Preprocessor →Element Type→Add/Edit/Delete →Add →select Solid Quad 4 node 182 →OK (back to Element Types window)→ Options… →select K3: Plane Strs w/thk →OK→Close (the Element Type window)

ANSYS模态分析实例和详细过程

均匀直杆的子空间法模态分析 1.模态分析的定义及其应用 模态分析用于确定设计结构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。同时,也可以作为其它动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析,其中模态分析也是进行谱分析或模态叠加法谐响应分析或瞬态动力学分析所必需的前期分析过程。 ANSYS的模态分析可以对有预应力的结构进行模态分析和循环对称结构模态分析。前者有旋转的涡轮叶片等的模态分析,后者则允许在建立一部分循环对称结构的模型来完成对整个结构的模态分析。 ANSYS提供的模态提取方法有:子空间法(subspace)、分块法(block lancets),缩减法(reduced/householder)、动态提取法(power dynamics)、非对称法(unsymmetric),阻尼法(damped), QR阻尼法(QR damped)等,大多数分析都可使用子空间法、分块法、缩减法。 ANSYS的模态分析是线形分析,任何非线性特性,例如塑性、接触单元等,即使被定义了也将被忽略。 2.模态分析操作过程 一个典型的模态分析过程主要包括建模、模态求解、扩展模态以及观察结果四个步骤。 (1).建模 模态分析的建模过程与其他分析类型的建模过程是类似的,主要包括定义单元类型、单元实常数、材料性质、建立几何模型以及划分有限元网格等基本步骤。 (2).施加载荷和求解 包括指定分析类型、指定分析选项、施加约束、设置载荷选项,并进行固有频率的求解等。 指定分析类型,Main Menu- Solution-Analysis Type-New Analysis,选择Modal。 指定分析选项,Main Menu-Solution-Analysis Type-Analysis Options,选择MODOPT(模态提取方法〕,设置模态提取数量MXPAND. 定义主自由度,仅缩减法使用。 施加约束,Main Menu-Solution-Define Loads-Apply-Structural-Displacement。 求解,Main Menu-Solution-Solve-Current LS。 (3).扩展模态 如果要在POSTI中观察结果,必须先扩展模态,即将振型写入结果文件。过程包括重新进入求解器、激话扩展处理及其选项、指定载荷步选项、扩展处理等。 激活扩展处理及其选项,Main Menu-Solution-Load Step Opts-Expansionpass-Single Expand-Expand modes。 指定载荷步选项。 扩展处理,Main Menu-solution-Solve-Current LS。 注意:扩展模态可以如前述办法单独进行,也可以在施加载荷和求解阶段同时进行。本例即采用了后面的方法 (4).查看结果 模态分析的结果包括结构的频率、振型、相对应力和力等

弹性力学与有限元分析复习题(含答案)

分析计算题 1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的 应力分量是否可能在弹性体中存在。 (1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。 解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程 ?? ? ? ???=??+??=??+??00x y y x xy y yx x τστσ;(2)在区域内的相容方程()02 222=+??? ? ????+??y x y x σσ;(3)在边界上的应力 边界条件()()()() ?? ?? ?=+=+s f l m s f m l y s xy y x s yx x τστσ;(4)对于多连体的位移单值条件。 (1)此组应力分量满足相容方程。为了满足平衡微分方程,必须A =-F ,D =-E 。此 外还应满足应力边界条件。 (2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。上两式是矛盾的,因此,此组应力分量不可能存在。 2、已知应力分量312x C Qxy x +-=σ,222 3xy C y -=σ,y x C y C xy 2 332--=τ,体力不计,Q 为常数。试利用平衡微分方程求系数C 1,C 2,C 3。 解:将所给应力分量代入平衡微分方程 ?? ? ? ?? ?=??+??=??+??00x y y x xy y yx x τστσ 得 ? ? ?=--=--+-0230 33322322212xy C xy C x C y C x C Qy 即 ()()()?? ?=+=+--0 230333222231xy C C y C Q x C C 由x ,y 的任意性,得

弹性力学及有限元课程大纲

《弹性力学及有限元》课程大纲课程代码EM316 课程名称中文名:弹性力学及有限元 英文名:Elasticity and Finite Element Method 课程类别专业基础课修读类别必修 学分 2 学时32 开课学期第5学期 开课单位船舶海洋与建筑工程学院土木工程系 适用专业土木工程专业 先修课程《高等数学》、《理论力学》、《材料力学》、《结构力学》 教材及主要参考书教材: 徐芝纶. 弹性力学简明教程(第四版),北京:高等教育出版社,2013年6月。ISBN: 9787040373875 参考书: 1. 王润富.弹性力学简明教程学习指导. 北京:高等教育出版社, 2004. ISBN: 7040130815 2. 吴家龙. 弹性力学(新一版). 北京:高等教育出版社,2001. ISBN: 7560812457. 3. S.Timoshenko &J. N. Goodier. Theory of Elasticity.(Third edition) McGraw-hill Book Co.,1970. ISBN-13: 978-0070647206 4. 丁科,陈月顺. 有限单元法. 北京大学出版社,2006. ISBN: 9787301104354 一课程简介 弹性力学及有限元是土木工程专业必修的一门专业基础课。课程主要研究弹性体受外力作用或温度改变等原因而产生的应力、位移和变形。本课程的教学目的,是使学生在理论力学和材料力学等课程的基础上,进一步掌握弹性力学与有限元的基本概念、基本原理和基本方法,提高分析与计算的能力。使学生掌握有限单元法及其工程适用性,为学生从事与土木工程相关的专业技术工作、科学研究工作等打下坚实的基础。 二本课程所支撑的毕业要求 本课程支撑的毕业要求及比重如下: 序号毕业要求指标点毕业要求指标点具体内容支撑比重 1 毕业要求1.3 具有必备的土木工程专业基础知识及 在复杂土木工程问题中应用能力 65% 2 毕业要求5.2 具有至少应用一种土木工程方面的大 型分析软件能力,并了解工程适用性。 35%

相关文档
最新文档