磷灰石裂变径迹方法原理与研究进展

磷灰石裂变径迹方法原理与研究进展
磷灰石裂变径迹方法原理与研究进展

磷灰石裂变径迹方法原理与研究进展

:忠炎

班级:矿物S162

学号:201671305

磷灰石裂变径迹方法原理与研究进展

一、磷灰石裂变径迹分析方法原理的提出

磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在20世纪70年代。磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在238U自发裂变辐射损伤效应,在实验基础上来观察辐射损伤特征,并利用数学地质模型模拟岩石所经历的低温热演化史。

Fleischer等(1975)将裂变径迹的定义为:238U自发核裂变会产生具有很高能量的带电重粒子,当高能量带电重粒子(238U)穿过绝缘固体材料时,会在固体材料如磷灰石中留下放射性的狭窄痕迹,称之裂变径迹(Fleischer al.,1975)。在上述过程中,Fleischer 等(1988)发现238U 将会分裂成两个大致相同的高能带电粒子向相反方向飞行,每个粒子带电大约在40~160MeV( Fleischer et al.,1988)。Gleadow 等(1986) Green (1988)和Donelick (1990)等均实验并最终证实这些核裂变产生的高能带电粒子能在固体材料上留下大约16~18μm的线性裂缝(Gleadow et al,1986;Green,1988;Donelick et al.,1990)。这些线性裂变径迹可以通过化学酸蚀处理可视化,进而可被光学显微镜观察。

相对低温下稳定的磷灰石裂变径迹在60°C以上会发生退火,而且会不断累计(Donelick et al.,1981)。这意味着磷灰石裂变径迹很少代表岩石的形成年龄,主要代表其低温演化的年龄(Gleadow et al.,1986)。磷灰石裂变径迹退火行为受温度影响的。Duddy等(1988)在其恒温退火的描述与温度随时间变化吻合的实验过程中,利用“等效时间原理”解释实验现象,印证了该原理。磷灰石的退火行为一旦发生就受温度及时间的因素影响,而且温度是主导因素(Duddy et al.,1988)。

二、磷灰石裂变径迹的退火行为

1.退火行为所受影响因素

1.1磷灰石的主要元素及238U的富集

根据Barbarabd等(2003)、Green等(1986)和Carlson等(1999)的研究,磷灰石的裂变径迹退火率与磷灰石中的主要元素如Cl,F,Mn,Fe等富集程度及238U的富集(含量10×10-6以上)等相关。磷灰石裂变径迹的退火速率可以根据刻蚀坑尺寸来计算,而刻蚀坑尺寸可以通过磷灰石的溶蚀体积来衡量(Barbarabd et al.,2003;Green et al.,1988;W.D.Carlson et al.,1999)。Gleadow和Duddy等认为磷灰石的成分组成对磷灰石的

退火行为起着主要的控制作用(Gleadow et al.,1981)。

1.2 α衰变

Carlson等学者(1999)提出物理因素,例如结构应力、α衰变亏损等也有可能会影响磷灰石裂变径迹的退火率(Carlson et al.,1999)。Ritter等(1986)利用核废料对磷灰石进行退火行为研究,发现α衰变可以促进退火行为(Ritter et al.,1986)。Weber 等(1997)进一步的研究证明,α衰变使得锆石由晶体形态向无序形态变化(Weber et al.,1997)。Rahn (2004)等在对锆石的裂变径迹研究中证明了α衰变亏损对锆石的裂变径迹退火率的影响(Rahn et al.,2004)。Hendriks 等(2005)在利用磷灰石裂变径迹方法研究克拉通盆地的沉积-剥蚀演化时提出,应该注意辐射加强效应引起的径迹退火,特别是由锕系元素(如238U)引起的α发射,辐射加强效应会导致磷灰石裂变径迹年龄变小(Hendriks et al.,2005)。但是由于一般情况下,辐射效应难以在磷灰石的退火行为中得到观察,退火模型中一般都不考虑α衰变的影响。

1.3压力及应力

Wendt等(2003)实验研究发现,压力及应力也可以影响裂变径迹的退火行为。其实验发现持续的增压会减慢退火速率,而在较大的应力下,退火甚至表现的与温度无关;并建议将压力、应力、温度等因素的影响纳入退火模型的建立(Wendt,2003)。

综合以上前人研究,退火行为除了受磷灰石所受温度和时间影响外,影响磷灰石裂变径迹退火的因素主要有磷灰石中主要元素(如Cl,F,Mn,Fe等)的富集程度,磷灰石所受物理因素如应力、压力及238U所造成的α发射等因素的影响。

2.退火行为的实验观察

在测定径迹密度、径迹长度等裂变径迹数时,目前存在着一定的困难。裂变径迹分为两种,包括自发裂变径迹和诱发裂变径迹。238U的裂变辐射损伤是真正在地质历史过程中导致自发裂变径迹的积累。而235U的裂变损伤是由中子诱发来测定矿物的U含量的。在磷灰石裂变径迹分析中,需要统计238U 自发产生的裂变径迹及中子诱发235U裂变造成诱发径迹。238U自发产生的裂变径迹在地质过程中产生。然而,在实验室诱发过程中,232Th及238U 等不可避免的也被诱发,影响诱发径迹的实验观察。Iunes等人(2002)提出一种测量中子对裂变径迹分析影响的方法,通过该方法可以测出磷灰石中的Th/U 值,从而校正诱发裂变径迹测量时对数据的影响(Iunes et al.,2002)。

2.1观察裂变径迹的局限

为了获得并解释磷灰石裂变径迹数据,通常会测定样品中被限定做分析的裂变径迹的长度分布用来描述其低温热演化史。被限定分析的裂变径迹将被完全刻蚀,径迹末端也可观察。为了测定长度分布,只有那些水平的裂变径迹其所在面平行于结晶C轴的会被测量,所以才带来了一些误差。这些得到的长度分布能被用来模拟样品的低温演化。

2.2 退火行为的各向异性

未退火或者轻微退火的裂变径迹显示比较小的各向异性,这很有可能是刻蚀的影响。在退火过程中,裂变径迹在与C轴高角度相交的方位会比低角度与C轴相交的方位更易退火G (图1)。

磷灰石的刻蚀是各向异性的,沿C轴方向裂变径迹会更易刻蚀,且会加宽Ketcham在总结前人研究基础上,提出用C轴投影法会为消除结晶角的影响提供一种可能性的思路,从而能够得到更多的裂变径迹长度数据,并能够更多的反映地质信息(Ketcham,2005)。

三、磷灰石裂变径迹的独特性

磷灰石裂变径迹作为一种有效的测年工具,具有其不可替代性:?磷灰石是一种广泛分布的常见副矿物,可以研究不同类型的地质体。?磷灰石的裂变径迹保留温度相对较低,这使其能很好的限定地质体的低温热年代学。

但是,目前该方法还存在一些不完善的地方:?目前的退火模型无法非常好的限定磷灰石裂变径迹退火行为的影响因素。?温度、压力、应力等因素在纳入退火模型准确模拟其影响还比较困难,这在上文已有阐述。?由于往往没有其他地质证据的对比和约束,磷灰石的裂变径迹信息难以验证。值得一提的是,有的学者做出了有益的尝试,如Resak等利用镜质体获得的地热数据来校正及对比磷灰石裂变径迹数据,更加有说服力地揭示了中波兰凹陷的地温演化史(Resak et al.,2010);Qiu等综合磷灰石锆石的(U-Th)/He年龄数据和磷灰石的裂变径迹数据及镜质体反射率数据,模拟了柴达木盆地的巴楚隆起的构造热演化。也使得该构造热演化史的结论更有说服力(Qiu et al.,2011)。

Jonckheere (2003)指出了该方法目前的不完善之处:实际上,在地质时间尺度上,周围环境的温度影响对磷灰石的裂变径迹有修补作用;然而,我们是很难在相对高温的实验室条件下观察到这些修补作用。这就会导致裂变径迹数据不够准确。而且,现代的模拟程序限制了解决问题的围并且倾向于一些具体的模拟温度时间曲线的方法。并指出了裂变径迹退火模型的存在的缺陷:现行的模拟方法过于简单,而且裂变径迹的结果中的那些温度峰值或者复合峰值被磷灰石晶体径迹中的无损晶格和无定形的核之间的原子重排给重新修正了。事实上一些较大的晶体缺陷会对刻蚀过程有影响,把刻蚀径迹看成独立的晶体损伤过于简单Jonckheere (2003)。

在实验方法上,对磷灰石晶体的裂变径迹分析很大程度上决定于它的表面和径迹刻蚀特征。传统方法中这个过程是靠人工统计完成的。而M.Peternell等(2009)通过研究尝试用电脑量化磷灰石晶体的几何特征辅助人工的磷灰石裂变径迹的统计分析方法来代替传统方法。这是使裂变径迹统计方法迈向自动分析的有意义的尝试(Peternell et al.,2009)。

四、磷灰石裂变径迹的应用进展

1磷灰石裂变径迹在盆地分析中的应用

总的说来,磷灰石裂变径迹分析是研究沉积盆地古地温与烃类演化的一种很好的方法。它不仅能了解沉积盆地的最高古地温,而且可以了解不同地质时期古地温的变化,进而可以确定生油窗及成油期(滕殿波等,1996)。磷灰石裂变径迹分析适用于多种类型的地层,包括强氧化环境、有机质组分贫乏的红层。这种方法除提供热信息外,还可以研究沉积盆地的抬升速度、侵蚀厚度、物质来源、地层的形成年龄(善鹏,2003)。值得注意的是单颗粒磷灰石裂变径迹的年龄代表的是磷灰石进入径迹保留温度后所经历的时间,而在对一个样品的磷灰石裂变径迹进行统计研究时,必须谨慎使用地层形成年龄及简单的地质体冷却抬升来描述磷灰石裂变径迹年龄。例如朱文斌等(2004)对吐鲁番-哈密盆地中部连木沁剖面和南北山前带的9个样品进行磷灰石裂变径迹测年,得出了在晚白垩世120~100 Ma,吐哈盆地发生构造抬升,地层快速冷却剥露,岩层在新生代二次埋藏加热,至10~8Ma又再次露的构造热史的结论(朱文斌等,2004)。

磷灰石裂变径迹在盆地分析中显得越来越重要,如前所述,在结合了同位素分析,镜质体反射率分析等其他分析方法,磷灰石裂变径迹可以很好地模拟了盆地的低温构造热演化史。而且,这种结合其他分析方法的综合性分析是对更好的模拟盆地构造热史的必然要求。

裂变径迹(包括磷灰石,锆石等)也完全可以对老地层甚至是前寒武的地层、岩体或火山岩进行分析测试,进而了解其低温构造演化史,如Zhanget等(2009)对新疆阿克的前寒武的蓝片岩地层进行了裂变径迹分析,在基于区域地层及同位素年代学研究资料的基础上,将塔里木基底的温度构造演化史分为4个阶段并予以详细解释(Zhanget al.,2009)。

磷灰石裂变径迹分析应用于断裂作用研究是近年才兴起的研究新热点,断层的形成年龄与裂变径迹有着密切的关系(松峰等,2009)。当断裂活动时,温度较高,超过了磷灰石的径迹退火温度,由于断裂发生在较短的时间里,因此当断裂停止,温度快速下降后,磷灰石裂变径迹就记录了断裂的冷却年龄,可以近似的看作是断裂的活动时代。建辉(2009)对海原断裂带的大沟门、香山-天景山断裂带的红谷梁及小洪沟横跨断层采集了包括断层主滑动面上的断层泥、碎裂岩及断层围岩13个样品,进行了磷灰石裂变径迹分析,裂变径迹分析结果并没有获得断层摩擦生热的证据,表明这些断层在地震滑动过程中的摩擦增温非常有限,没有达到磷灰石裂变径迹热年代计年体系可加载热信息温度-时间要求。并指出只有

震级大、断层滑动距离和速率大、摩擦强度强的断层,或者位于一定深度有大量摩擦热生成的断层,才能使断层附近增温达到磷灰石裂变径迹退火温度(建辉,2009)。至于何种程度的断层活动才能被磷灰石裂变径迹记录下来目前还了解的不够充分。

在有关盆地沉积与盆缘隆升剥蚀之间耦合关系,基本上停留在定性的描述方面,对盆缘山体剥蚀量及其对原形盆地改造研究很少有报道。而盆山耦合关系和后期的发展演化对盆地沉积相带的展布及改造具有重要的控制作用(效忠等,2008)。盆缘的隆升多与造山带的隆升及其大陆动力背景有关,磷灰石裂变径迹作为一种能够了解地质体低温演化的很好的方法,能够使得关于盆山关系的工作得到进一步加强。

2 在青藏高原的隆升研究中的应用

目前,研究青藏高原隆升过程的研究手段总的来说主要有综合古地理研究和同位素分析、裂变径迹分析(柏道远等,2004),隆升机制的研究方法主要为数值模拟。钟大赉等(1996)在结合前人研究基础上利用磷灰石裂变径迹资料研究青藏高原隆升时提出青藏高原多阶段的隆升模式(钟大赉等,1996)。傅容珊等(2000)利用数值模拟提出青藏高原隆升的三阶段模式,即断离隆升—挤压隆升—对流隆升(傅容珊等,2000)。后经祖宁等人(2002)修正,更好的模拟了其隆升过程(祖宁等,2002)。

磷灰石裂变径迹分析正越来越多地应用于造山带的隆升研究。尤其是青藏高原的隆升。青藏高原持续强烈的隆升主要集中在新生代,其隆升过程﹑大陆动力机制一直是国外学者的研究热点。喜马拉雅的折返是青藏高原隆升研究的重要容。

Koons(1995)、Koons et al (2002)、Thiede et al(2005)、Patel et al(2007)等先后提出喜马拉雅的折返陆陆碰撞的热、构造改造和后期的剥蚀改造共同作用有关。因此陆陆碰撞的热﹑构造改造和后期的剥蚀改造二者之间的相互作用及二者对喜马拉雅的折返作用的研究非常重要,磷灰石裂变径迹方法有助于这一容的研究)。Johnson(1997)提出了基础构造数据如变形数据等结合磷灰石裂变径迹数据方法来了解造山带的低温演化史进而了解造山带折返动力机制的方法。也有学者结合同位素的分析数据,利用磷灰石裂变径迹,做了桐柏-大别造山带中超高压带的白垩和新生代的构造演化史的工作。

柏道远等(2004)提出了绝对隆升量对于研究青藏高原隆升及其大陆动力机制研究的重要意义,并进一步阐述了绝对隆升量与视隆升量之间的关系及计算方法(柏道远等,04)。如拜永山等(2008)利用采于祁漫塔格西沟地区不同高度的早二叠世的似斑状二长花岗岩侵入体的9个样品对其进行磷灰石裂变径迹测试分析(拜永山等,2008)。拜永山等根据“年

龄-地形高差法”对同一山体进行了上升速率的计算,计算得出了祁漫塔格造山带在中新世早中期的早期隆升速率为111m/Ma,晚期隆升速率为98m/Ma,总体隆升速率为100m/Ma。我认为其所谓隆升速率为视隆升速率,隆升速率的算法应采取柏道远等提出的径迹年龄-海拔高程法来计算。

国际热核聚变实验堆项目 《国际热核聚变实验反应堆计划》阅读答案

国际热核聚变实验堆项目《国际热核聚变实验反应堆计划》 阅读答案 【--营销计划】 国际热核聚变实验反应堆计划简称“国际热核计划”,俗称“人造太阳”计划,因为它的原理类似太阳发光发热,即在上亿摄氏度的超高温条件下,利用氢的同位素氘、氚的聚变反应释放出核能。氘和氚可以从海水中提取,核聚变反应不产生温室气体及核废料。由于原料取之不尽,以及不会危害环境,核聚变能源成为未来人类新能源的希望所在。 国际热核计划采用的是可控热核聚变能,它的研究分惯性约束和磁约束两种途径。惯性约束是利用超高强度的激光在极短时间内辐射靶板来产生聚变。磁约束是利用强磁场可以很好地约束带电粒子这个特性,构造一个特殊的磁容器,建成聚变反应堆,在其中将聚变材料加热至数亿摄氏度高温,实现聚变反应。20世纪下半叶,聚变能的研究取得了重大进展,磁约速研究大大领先于其他途径。科学家研究出一种类似于面包图形状的环形器,这种面包圈形状的装置被称作“托卡马克”。在这类装置上进行的物理实验取得了一个个令人鼓舞的进展,比如等离子体温度己达4.4亿摄氏度,脉冲聚变输出功率超过16兆瓦。这些成就表明:在这类装置上产生聚变能的可行性已被证实。

为了点燃“人造太阳”,科学家将在法国南部的卡达拉舍建造一台规模庞大的设备:一个直径28米、高30米、由1000多万个零部件组成的大型圆柱体设备。假如成功的话,核聚变能源将具备重要的、无与伦比的优势。核聚变反应释放的能量大得超出人们的想象。形象地说,就是三瓶矿泉水就可以为一个4口之家提供一年的动力。不过,一些批评者却认为,核聚变反应堆其实并没有那么保险,还是存在放射性氢原子泄漏、污染环境的可能性。他们还认为,核聚变反应堆可以被怀有恶意的人滥用,用于生产核武器。支持者的反驳理由是核聚变发电站没有温室气体排放问题,也不会生成长久的、也就是半衰期很长的核废料。 不管怎样,世界上许多国家的政府对核聚变发电寄予厚望,愿意在今后30到40年的时间内投入100亿欧元左右的资金,进行“人造太阳”计划。 xx年1 1月2 1日,参加热核计划的7方代表在法国总统府正式签署了联合实验协定及相关文件,全面启动了世界瞩目的人类开发新能源的宏伟计划。在前两年,人们已经开始砍伐松林,为实验堆开辟地盘。按计划,xx年,热核实验反应堆将点燃它的第一把核聚变之火。随后,实验堆将运行15到20年。 5.下列各项中不是“核聚变能源成为未来人类新能源的希望所在”的理由的一项是

地层剥蚀量的计算讲解

计算地层剥蚀量方法 恢复地层剥蚀厚度是研究盆地演化史和进行油气资源定量评价的重要基础工作,通过地层剥蚀量的计算、地层最大埋深的确定,可以帮助我们确定烃源岩生油期、生气期,进而准确评价油气资源潜力,优选勘探目标。 目前存在多种计算地层剥蚀量的方法,如:(1)地层对比法、(2)沉积速度法(Van Hinte,1978)、(3)声波测井曲线法(Magara,1976)、(4)镜质体反射率(R o)法(Dow,1977)、(5)地震地层学法(尹天放等,1992)、(6)最优化方法(郝石生等,1988)、(7)天然气平衡浓度法(李明诚等,1996)等。 一、构造横剖面法 该方法通过对构造发育特征的分析,推测地层的剥蚀量,基本原理如图1所示。该方法适用于构造发育特征比较明显、尤其是角度不整合地区,对平行不整合的剥蚀量计算受到一定的限制。

图1 构造横剖面法推算地层剥蚀量示意图 可以根据残余地层的展布特征及构造运动的特点推算出剥蚀厚度。以某三维地震剖面为例,通过该方法可估算出该地区印支运动对C-P顶面造成的剥蚀量 的剥蚀量最大可到1500m左右。 最大不超过1000m,J3~K沉积时期,J1 +2 二、沉积速率法 该方法是依据不整合面上下地层的沉积速率及绝对年龄计算地层剥蚀量,具体可分如图2所示的几种情形进行处理(Guidish等,1985): 图2 对不整合面的不同处理方法(Guidish等,1985)(a)将不整合面视为沉积间断,期间无剥蚀发生,界面上下沉积岩的绝对年龄的差值即为沉积间断的时间。

(b)发生了剥蚀,视剥蚀掉的地层的沉积速率等于其剥蚀速率,所以: H e=[(V上+V下)/2]×[(T下-T上)/2] (c)认为剥蚀掉的地层的沉积速率等于不整合面之下地层的沉积速率,而其剥蚀速率等于不整合面之上的地层的沉积速率,因此剥蚀开始的时间(T e)和剥蚀厚度(H e)即为: T e=(V上T上+V下T下)/(V上+V下) H e=V上(T e-T上) 该方法必须在知道不整合面上下地层的沉积速率及绝对年龄的情况下才能适用。 三、声波时差法 沉积物在沉积、埋藏过程中,孔隙度随埋深的增大呈指数减小,又因为在具有均匀分布的小孔隙的固结地层中,孔隙度与传播时间之间存在着正比例线性关系(Wyllie等,1956),因而在Magara K.(1976)总结了Athy(1930)、Rubey 和Hubbert(1959)等前人的研究成果,提出了泥页岩在正常压实情况下的声波时差-深度关系式(Magara K.,1976): Δt=Δt0e-CH 式中,Δt:泥页岩在深度H处的传播时间(μs/m) Δt0:外推至地表的传播时间(μs/m) C:正常压实趋势斜率(m-1) H:埋深(m) 如果地层为连续沉积,则泥页岩声波时差与深度满足上述关系式,在半对数坐标系中为线性相关;如果某一地区经历了抬升和剥蚀,那么泥页岩声波时差与深度的正常压实趋势线与未遭受剥蚀地区的相比,则向纵坐标偏移,即在所有的深度上都向压实程度增强方向偏移,根据这一偏移趋势大小,将其压实趋势线上延到未经历压实的Δt0处,则Δt0与剥蚀面处的高差即为剥蚀厚度。 这一原理与方法是建立在“泥岩沉积物的压实形变为塑性形变,不会发生回弹”这一前提的基础上,而且目前人们普遍认为其只适用于新沉积物厚度必须小于地层剥蚀厚度的情况下,否则原泥岩孔隙度将被改造而失去定量计算地层剥蚀

反应堆原理

核反应堆是核电站的心脏,它的工作原理是这样的: 原子由原子核与核外电子组成。原子核由质子与中子组成。当铀235的原子核受到外来中子轰击时,一个原子核会吸收一个中子分裂成两个质量较小的原子核,同时放出2—3个中子。这裂变产生的中子又去轰击另外的铀235原子核,引起新的裂变。如此持续进行就是裂变的链式反应。链式反应产生大量热能。用循环水(或其他物质)带走热量才能避免反应堆因过热烧毁。导出的热量可以使水变成水蒸气,推动气轮机发电。由此可知,核反应堆最基本的组成是裂变原子核+热载体。但是只有这两项是不能工作的。因为,高速中子会大量飞散,这就需要使中子减速增加与原子核碰撞的机会;核反应堆要依人的意愿决定工作状态,这就要有控制设施;铀及裂变产物都有强放射性,会对人造成伤害,因此必须有可靠的防护措施。综上所述,核反应堆的合理结构应该是:核燃料+慢化剂+热载体+控制设施+防护装置。 还需要说明的是,铀矿石不能直接做核燃料。铀矿石要经过精选、碾碎、酸浸、浓缩等程序,制成有一定铀含量、一定几何形状的铀棒才能参与反应堆工作。 热堆的概念:中子打入铀-235的原于核以后,原子核就变得不稳定,会分裂成两个较小质量的新原子核,这是核的裂变反应,放出的能量叫裂变能;产生巨大能量的同时,还会放出2~3个中子和其它射线。这些中子再打入别的铀-235核,引起新的核裂变,新的裂变又产生新的中子和裂变能,如此不断持续下去,就形成了链式反应利用原子核反应原理建造的反应堆需将裂变时释放出的中子减速后,再引起新的核裂变,由于中子的运动速度与分子的热运动达到平衡状态,这种中子被称为热中子。堆内主要由热中子引起裂变的反应堆叫做热中子反应堆(简称热堆)。热中子反应堆,它是用慢化剂把快中子速度降低,使之成为热中子(或称慢中子),再利用热中子来进行链式反应的一种装置。由于热中子更容易引起铀-235等裂变,这样,用少量裂变物质就可获得链式裂变反应。慢化剂是一些含轻元素而又吸收中子少的物质,如重水、铍、石墨、水等。热中子堆一般都是把燃料元件有规则地排列在慢化剂中,组成堆芯。链式反应就是在堆芯中进行的。反应堆必须用冷却剂把裂变能带出堆芯。冷却剂也是吸收中子很少的物质。热中子堆最常用的冷却剂是轻水(普通水)、重水、二氧化碳和氦气。核电站的内部它通常由一回路系统和二回路系统组成。反应堆是核电站的核心。反应堆工作时放出的热能,由一回路系统的冷却剂带出,用以产生蒸汽。因此,整个一回路系统被称为“核供汽系统”,它相当于火电厂的锅炉系统。为了确保安全,整个一回路系统装在一个被称为安全壳的密闭厂房内,这样,无论在正常运行或发生事故时都不会影响安全。由蒸汽驱动汽轮发电机组进行发电的二回路系统,与火电厂的汽轮发电机系统基本相同。 轻水堆――压水堆电站自从核电站问世以来,在工业上成熟的发电堆主要有以下三种:轻水堆、重水堆和石墨汽冷堆。它们相应地被用到三种不同的核电站中,形成了现代核发电的主体。目前,热中子堆中的大多数是用轻水慢化和冷却的所谓轻水堆。轻水堆又分为压水堆和沸水堆。压水堆核电站压水堆核电站的一回路系统与二回路系统完全隔开,它是一个密闭的循环系统。该核电站的原理流程为:主泵将高压冷却剂送入反应堆,一般冷却剂保持在120~160个大气压。在高压情况下,冷却剂的温度即使300℃多也不会汽化。冷却剂把核燃料放出的热能带出反应堆,并进入蒸汽发生器,通过数以千计的传热管,把热量传给管外的二回路水,使水沸腾产生蒸汽;冷却剂流经蒸汽发生器后,再由主泵送入反应堆,这样来回循环,不断地把反应堆中的热量带出并转换产生蒸汽。从蒸汽发生器出来的高温高压蒸汽,推动汽轮发电机组发电。做过功的废汽在冷凝器中凝结成水,再由凝结给水泵送入加热器,重新加热后送回蒸汽发生器。这就是二回路循环系统。压水堆由压力容器和堆芯两部分组成。压力容器是一个密 封的、又厚又重的、高达数十米的圆筒形大钢壳,所用的钢材耐高温高压、耐腐蚀,用来推

物源分析方法及进展

物源分析研究方法 物源分析在确定沉积物物源位置和性质及沉积物搬运路径,甚至整个盆地的沉积作用和构造演化等方面意义重要。近年来已发展成为多方法、多技术的一门综合研究领域。电子探针、质谱分析、阴极发光等先进技术在物源分析中应用日益广泛;同时,各种沉积、构造、地震、测井等地质方法与化学、物理、数学等学科的应用及相互结合,使物源判定更具说服力。它在原盆地恢复、古地理再造、限定造山带的侧向位移量,确定地壳的特征,验证断块或造山带演化模型,绘制沉积体系图,进行井下地层对比以及在评价储层的品质等方面,都可起到重要作用。 物源分析已经成为连接沉积盆地与造山带的纽带,为学者提供了一个研究盆山相互作用的有效切入点。其研究内容不仅包括物源区的方位、侵蚀区与母岩区的位置、母岩的性质及组合特征,还包括沉积物的搬运距离、搬运路径;而且,根据物源分析资料还可以进一步了解物源区的气候条件和大地构造背景,进行沉积体系分析,重建古地理面貌。因此进行物源研究既是沉积地质学、构造地质学、岩石学的重要研究内容,也是古海洋学、石油地质学的重要课题。 随着现代分析手段的提高,物源分析方法日趋增多,并不断的相互补充和完善。目前应用较多的为:重矿物法、碎屑岩类分析法、沉积法、裂变径迹法、地球化学法和同位素法等。主要研究岩石、矿物成分及其组合特征、地层的发育状况(包括接触关系和沉积界面等)、岩相的侧向变化和纵向迭置、地球化学特征及其组合变化等,其依据在于不同的物源在沉积物的搬运和沉积过程中就会有不同的岩性、岩相和地球化学特征响应。 一、重矿物分析法 由于电子探针技术的应用及其分析水平、精度的不断提高,重矿物分析法应用广泛。重矿物因其耐磨蚀、稳定性强,能够较多的保留其母岩的特征,其在物源分析中占有重要地位。它包括单矿物分析法和重矿物组合分析法。 1、单矿物分析法 用于重矿物分析的单矿物颗粒主要有:辉石、角闪石、绿帘石、十字石、石榴石、尖晶石、硬绿泥石、电气石、锆石、磷灰石、金红石、钛铁矿、橄榄石等。用电子探针可分析上述矿物的含量、化学组分及其类型、光学性质等,针对每个重矿物的特性及其特定元素含量,用其典型的化学组分判定图或指数来判定其物源。如Morton用辉石矿物对南Uplands 地区奥陶系Portpa2t rik组进行物源判断,依据Let terier提出的Ca2Ti2Cr2Na2Al 组分图解,用Ti2(Ca + Na)来判定其物源是拉斑玄武岩或碱性玄武岩,用( Ti + Cr)2a 图解区分辉石源区为造山带还是非造山带环境,指出该区辉石源自钙碱性火山岩。另外,单颗粒重矿物含量比值亦具有一定的源区意义。独居石/锆石比值( MZi)可显示深埋砂岩物源区的情况;石榴石/锆石比值(GZi)用来判断层序中石榴石是否稳定;磷灰石/电气石比值(ATi)指示层序是否受到酸性地下水循环的影响。单颗粒重矿物含量的平面变化可用来判定物源方向,如磁铁矿等。 2、重矿物组合法 矿物之间具有严格的共生关系,所以重矿物组合是物源变化的极为敏感的指示剂。在同一沉积盆地中,同时期的沉积物的碎屑组分一致,而不同时期的沉积物所含的碎屑物质不同,据此,利用不同时期水平方向上重矿物种类和含量变化图,可推测物质来源的方向〔5。重矿物组合分析法对物源区用处颇大,尤其是在矿物种类较复杂、受控因素较多的地区特别有用。具体组合形式、分析方法根据不同地区特点不同而有差异。目前,主要引用一些数学分析方法,如聚类分析(R型或Q 型) 、因子分析、趋势面分析等方法来研究矿物组合特征、相似性等指数,从而提取反映物源的信息。重矿物方法对母岩性质具有一定的要求,对火山岩和变质岩作为母岩时,其中的重矿物所经历的搬运、沉积次数较少,受后期的影响小,保

磷灰石裂变径迹方法原理与研究进展

磷灰石裂变径迹方法原理与研究进展 姓名:李忠炎 班级:矿物S162 学号:201671305

磷灰石裂变径迹方法原理与研究进展 一、磷灰石裂变径迹分析方法原理的提出 磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在20世纪70年代。磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在238U自发裂变辐射损伤效应,在实验基础上来观察辐射损伤特征,并利用数学地质模型模拟岩石所经历的低温热演化史。 Fleischer等(1975)将裂变径迹的定义为:238U自发核裂变会产生具有很高能量的带电重粒子,当高能量带电重粒子(238U)穿过绝缘固体材料时,会在固体材料如磷灰石中留下放射性的狭窄痕迹,称之裂变径迹(Fleischer al.,1975)。在上述过程中,Fleischer 等(1988)发现238U 将会分裂成两个大致相同的高能带电粒子向相反方向飞行,每个粒子带电大约在40~160MeV(Fleischer et al.,1988)。Gleadow 等(1986) Green (1988)和Donelick (1990)等均实验并最终证实这些核裂变产生的高能带电粒子能在固体材料上留下大约16~18μm的线性裂缝(Gleadow et al,1986;Green,1988;Donelick et al.,1990)。这些线性裂变径迹可以通过化学酸蚀处理可视化,进而可被光学显微镜观察。 相对低温下稳定的磷灰石裂变径迹在60°C以上会发生退火,而且会不断累计(Donelick et al.,1981)。这意味着磷灰石裂变径迹很少代表岩石的形成年龄,主要代表其低温演化的年龄(Gleadow et al.,1986)。磷灰石裂变径迹退火行为受温度影响的。Duddy等(1988)在其恒温退火的描述与温度随时间变化吻合的实验过程中,利用“等效时间原理”解释实验现象,印证了该原理。磷灰石的退火行为一旦发生就受温度及时间的因素影响,而且温度是主导因素(Duddy et al.,1988)。 二、磷灰石裂变径迹的退火行为 1.退火行为所受影响因素 1.1磷灰石的主要元素及238U的富集 根据Barbarabd等(2003)、Green等(1986)和Carlson等(1999)的研究,磷灰石的裂变径迹退火率与磷灰石中的主要元素如Cl,F,Mn,Fe等富集程度及238U的富集(含量10×10-6以上)等相关。磷灰石裂变径迹的退火速率可以根据刻蚀坑尺寸来计算,而刻蚀坑尺寸可以通过磷灰石的溶蚀体积来衡量(Barbarabd et al.,2003;Greenet al.,1988;W.D.Carlson et al.,1999)。Gleadow和Duddy等认为磷灰石的成分组成对磷灰石的

人教版高中物理选修2-3 《核裂变和裂变反应堆》教案参考

重核裂变链式反应 1942年,意大利科学家恩瑞克费米领导了世界上第一座原子核反应堆的建设和试验工作。 同时研究使链式反应变为连续、缓慢、可控的何反应,使核能平缓地释放出来。 1942年12月2日,在美国芝加哥体育场的看台下,世界上第一座用石墨作减速剂的原子核反应堆竣工落成 一.核能:原子核发生变化时释放的能量 一个核子要摆脱其它核子的核力吸引,需要巨大的能量。 1.结合能:核子结合成原子核时要放出一定的能量;原子核分解成核子时,要吸收同样多的能量 γ光子照射氘核: 光子的能量等于或大于2.22MeV 中子和质子结合: 放出的光子的能量为2.22MeV 平衡下列核反应方程: 在核反应堆中,石墨起 的作用,镉棒起 的作用。 关于太阳辐射能的主要由来,下列说法中正确的是( ) A .来自太阳中重元素裂变反应释放的核能 B .来自太阳中轻元素聚变反应释放的核能 C .来自太阳中碳元素氧化释放的化学能 D .来自太阳本身贮存的大量内能 2.平均结合能:一个原子核结合能,除以这个原子核的核子数,得到的结果叫做每个核子的平均结合能。 平均结合能是核子结合成原子核时(把原子分解成核子时)每个核子平均放出(吸收)的能量。 平均结合能越大,原子核就越难拆开。 平均结合能的大小反映核的稳定程度:质量数较小的轻核和质量数较大的重核,平均结合能较大;中等质量的原子核,平均结合能大。即将中等质量数的原子核打散成核子要提供给每个核子的能量大。 二.重核裂变:重核受到其它粒子(如中子)轰击时裂变成两块质量较轻的核,同时还能放出中子。 1.重核的裂变是在1939年12月,德国的哈恩和他的助手斯特拉斯曼,用中子轰击铀核时发现。 2.铀核(92)裂变的产物多种多样,裂变为氙(Xe54)和锶(Sr38)、钡(Ba56)和氪(Kr36)、锑(Sb51)和铌(Nb41),同时放出2~3个中子。还能分裂成三部分或四部分(少见) 3.裂变的原因:中子打进铀核,形成处于激发态的复核。复核中核子剧烈运动,核变成不规则形状,核子间的距离增大,核力减小,不能克服库伦斥力,裂变。 4.重核裂变是获得原子核能的一个重要途径。 n Xe Sr U 101365490382359210++→+n H H 101121+→+γγ +→+H H n 211110

东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据

东昆仑五龙沟金矿床成矿热历史的裂变径迹热年代学证据东昆仑五龙沟金矿床成矿热Ξ 历史的裂变径迹热年代学证据 袁万明王世成王兰芬 ()中国科学院高能物理研究所核分析研究室 ,北京 () 摘要本文将取自五龙沟地区 3 个金矿体区的锆石和磷灰石进行裂变径迹热年代学分析 , 实测锆石裂变径迹年龄为 197 . 4,235 . 0 Ma ,实测磷灰石年龄为 200 . 5 Ma ,磷灰石校正年龄为 244 Ma ,这与已有的 Rb2Sr 和 K2Ar 同位素年龄范围 207 . 1,252 . 9 Ma 基本一致 ,代表了相应温 度时的成矿时代。热历史模拟结果显示 ,矿区主要经历了 2 次升温和降温过程 ,不仅体现了成 矿作用的长期性 ,而且体现了成矿作用多期次的特征 ,各矿体矿石中锆石的裂变径迹年龄相差 较大亦是佐证 ,并且符合多期次成矿的地质特征。 关键词裂变径迹热年代学热历史成矿时代金矿床东昆仑 五龙沟地区属于青藏高原北部的东昆仑山 ,区内金矿产丰富 ,现已发现多个矿床 ,矿点星布 ,其类型较多 ,并尤以热液型金矿床最为重要。本文应用裂变径迹热年代学方法研究五 1 , 2 龙沟金矿的成矿热历史,对查明金成矿的时代 ,研究矿床成因、区域成矿规律以及找矿 预测有着重要意义。

1 五龙沟地区金成矿背景 区域上发育 3 条近于 N W 向深大断裂带 ,长度大于 25 km ,宽度 10,100 余米 ,处于岩体与地层接触带附近 ,构成控制矿田的构造。深大断裂带旁侧次级断裂发育 ,形成一系列较密集的 N W —N N W 向断裂破碎带 ,一般长 3,5 km 以上 ,宽 5,40 m 。受区域构造活动的影响 ,研究区内断裂构造十分发育 ,破碎强烈 ;地层出露较少 ,主要为新元古代丘吉东沟群和古元古代金水口群变质岩 ,并以后者为主 ;岩浆活动十分强烈 ,岩浆岩出露面积占研究区面 ( ) 积 95 %以上 ,以中酸性岩为主。主要岩浆事件有 3 次 ,即新元古代青白口纪前兴凯期、泥 () () 盆纪华力西期和三叠纪印支期。岩石成因类型有 I 型、S 型和 A 型 ,其中较晚形成的红 3 Ο 石岭钾长花岗岩 Rb2Sr 同位素年龄为 228 . 25 Ma, K2Ar 同位素年龄为 207 . 1 ?31 Ma 。区内金矿化强而广 ,金矿规模较大 ,品位较富 ,沿构造带集中分布 ,主要属构造破碎带蚀变岩型。围岩蚀变主要是硅化和绢云母化 ,它们与黄铁矿的复合矿化与金成矿直接关联。现已划分出的含金破碎蚀变带有 13 条 ,其中 ?带位于岩金沟 N WW 向脆韧性剪切带中 , ?带分 布于岩金沟与水闸2红旗沟 2 个剪切带所夹持的 N W 向断层带内。矿体一般赋存于断裂破 Ξ 中国博士后科学基金和中国科学院核分析技术开放研究实验室资助项目第一作者 :袁万明 ,男 ,1956 年生 ,副教授 ,从事裂变径迹与地质应用以及岩石学研究 ,邮编 :100080 Ο 青海省地球物理勘查技术研究院 ,1995 ,内部资料 碎带的中部偏下部位 ,沿走向和倾向方向矿化分段富集比较明显 ,常见尖灭再现、膨大狭缩和分枝复合现象。矿体规模一般较大 ,产状与断层产状一致 ,其

核聚变反应堆的原理很简单

核聚变反应堆的原理很简单,只不过对于人类当前的技术水准,实现起来具有相当大的难度。 物质由分子构成,分子由原子构成,原子中的原子核又由质子和中子构成,原子核外包覆与质子数量相等的电子。质子带正电,中子不带电。电子受原子核中正电的吸引,在"轨道"上围绕原子核旋转。不同元素的电子、质子数量也不同,如氢和氢同位素只有1个质子和1个电子,铀是天然元素中最重的原子,有92个质子和92个电子。 核聚变是指由质量轻的原子(主要是指氢的同位素氘和氚)在超高温条件下,发生原子核互相聚合作用,生成较重的原子核(氦),并释放出巨大的能量。1千克氘全部聚变释放的能量相当11000吨煤炭。其实,利用轻核聚变原理,人类早已实现了氘氚核聚变---氢弹爆炸,但氢弹是不可控制的爆炸性核聚变,瞬间能量释放只能给人类带来灾难。如果能让核聚变反应按照人们的需要,长期持续释放,才能使核聚变发电,实现核聚变能的和平利用。 如果要实现核聚变发电,那么在核聚变反应堆中,第一步需要将作为反应体的氘-氚混合气体加热到等离子态,也就是温度足够高到使得电子能脱离原子核的束缚,让原子核能自由运动,这时才可能使裸露的原子核发生直接接触,这就需要达到大约10万摄氏度的高温。 第二步,由于所有原子核都带正电,按照"同性相斥"原理,两个原子核要聚到一起,必须克服强大的静电斥力。两个原子核之间靠得越近,静电产生的斥力就越大,只有当它们之间互相接近的距离达到大约万亿分之三毫米时,核力(强作用力)才会伸出强有力的手,把它们拉到一起,从而放出巨大的能量。 质量轻的原子核间静电斥力最小,也最容易发生聚变反应,所以核聚变物质一般选择氢的同位素氘和氚。氢是宇宙中最轻的元素,在自然界中存在的同位素有:氕、氘(重氢)、氚(超重氢)。在氢的同位素中,氘和氚之间的聚变最容易,氘和氘之间的聚变就困难些,氕和氕之间的聚变就更困难了。因此人们在考虑聚变时,先考虑氘、氚之间的聚变,后考虑氘、氘之间的聚变。重核元素如铁原子也能发生聚变反应,释放的能量也更多;但是以人类目前的科技水平,尚不足满足其聚变条件。 为了克服带正电子原子核之间的斥力,原子核需要以极快的速度运行,要使原子核达到这种运行状态,就需要继续加温,直至上亿摄氏度,使得布朗运动达到一个疯狂的水平,温度越高,原子核运动越快。以至于它们没有时间相互躲避。然后就简单了,氚的原子核和氘的原子核以极大的速度,赤裸裸地发生碰撞,结合成1个氦原子核,并放出1个中子和17。6兆电子伏特能量。 反应堆经过一段时间运行,内部反应体已经不需要外来能源的加热,核聚变的温度足够使得原子核继续发生聚变。这个过程只要将氦原子核和中子及时排除出反应堆,并及时将新的氚和氘的混合气输入到反应堆内,核聚变就能持续下去;核聚变产生的能量一小部分留在反应体内,维持链式反应,剩余大部分的能量可以通过热交换装置输出到反应堆外,驱动汽轮机发电。这就和传统核电站类似了。 核聚变消耗的燃料是世界上十分常见的元素--氘(也就是重氢)。氘在海水中的含量还是比较高的,只需要通过精馏法取得重水,然后再电解重水就能得到氘。新的问题出现了,仅仅有氘还是不够的,尽管氘-氘反应也是氢核聚变的主要形式,但我们人类现有条件下,

裂变反应堆的工作原理

裂变反应堆的工作原理 为了深入讨论与核能有关的技术和发展趋势,我们必须对核电站所基于的原理--核反应堆中子物理、反应堆热工水力学、反应堆控制和反应堆安全等方面的基本知识,有一个初步的了解。 一、反应堆中子物理 (-)中子与原子核的相互作用 在反应堆的心脏____堆芯中,大量的中子在飞行,不断与各种原子核发生碰撞。碰撞的结果,或是中子被散射、改变了自己的速度和飞行方向;或中子被原子核吸收。如果中子是被铀-235这类核燃料吸收,就可能使其裂变。下面我们较详细地进行介绍。 1.散射反应 中子与原子核发生散射反应时,中子改变了飞行方向和飞行速度。能量比较高的中子经过与原子核的多次散射反应,其能量会逐步减少,这种过程称为中子的慢化。散射反应有两种不同的机制。一种称为弹性散射。在弹性散射前后,中子——原子核体系的能量和动量都是守恒的。任何能量的中子都可以与原子核发生弹性散射。另一种称为非弹性散射。中子与原子核发生非弹性散射,实际上包括两个过程。首先是中子被原子核吸收,形成一个复合核。但这个复合核不是处于稳定的基态,而是处于激发态。很快它就会又放出一个中子,并且放出γ射线,回到稳定的基态。非弹性散射的反应式如下: n X X n X A Z A Z A Z 10 **110)()(+→→++ γ+↓→X A Z 并非所有能量的中子都能与原子核发生非弹性散射。中子能量必须超过一个阈值,非弹性散射才能发生。对于铀-238原子核,中子能量要高于45千电子伏,才能与之发生非弹性散射。非弹性散射的结果也是使中子的能量降低。在热中子反应堆中,中子慢化主要依靠弹性散射。在快中子反应堆内,虽然没有慢化剂,但中子通过与铀-238的非弹性散射,能量也会有所降低。 2.俘获反应 亦称为(n ,γ)反应。它是最常见的核反应。中子被原子核吸收后,形成一种新核素(是原核素的同位素),并放出γ射线。它的一般反应式如下: γ+→→+++)()(1*110X X n X A Z A Z A Z 反应堆内重要的俘获反应有: 这就是在反应堆中将铀-238转化为核燃料钚-239的过程。类似的反应还有: 这就是将自然界中蕴藏量丰富的钍元素转化为核燃料铀-233的过程。 3.裂变反应 核裂变是堆内最重要的核反应。铀-233、铀-235、钚-239和钚-241等核素在各种能量的中子作用下均能发生裂变,并且在低能中子作用下发生裂变的概率更大,通常被称为易裂变核素。而钍-232、铀-238等只有在中子能量高于某一值时才能发生裂变,通常称之为可裂变同位素。目前热中子反应堆内主要采用铀-235作核燃料。铀裂变时一般产生1 0 1

喜马拉雅山脉新生代差异隆升的裂变径迹热年代学证据_刘超

第14卷第6期2007年11月 地学前缘(中国地质大学(北京);北京大学) Earth Science Frontiers (Chin a University of Geosciences,Beijing;Peking University)Vol.14No.6Nov.2007 收稿日期:2007-06-20;修回日期:2007-07-17 基金项目:中国地质调查局重大基础研究项目/青藏高原新生代地质作用过程与第四纪环境演变综合研究0(1212010610103)作者简介:刘 超(1983)),男,硕士研究生,构造地质学专业,从事构造年代学学习和研究。 * 通信作者:w gcan@cug 1edu 1cn 喜马拉雅山脉新生代差异隆升的裂变径迹热年代学证据 刘 超 1,2 , 王国灿 1,2* , 王 岸 1,2 , 王 鹏 1,2 任春玲 3 11地质过程与矿产资源国家重点实验室,湖北武汉43007421中国地质大学(武汉)地球科学学院,湖北武汉43007431中国石油华北油田勘探开发研究院,河北任丘062552 Liu Chao 1,2, Wang Guocan * 1,2 , W ang An 1,2, Wang Peng 1,2 Ren Chunling 3 11S tate K ey L abor atory of G eological Pr oce sse s and M iner al Re souce s,China Univ ersity of G eosc ienc e ,W uhan 430074,China 21F aculty of Ear th S cie nce ,Ch ina Univ e rsity of Ge oscience ,Wu han 430074,China 31Oil E xp lor ation and De ve lop ment I nstitute ,CN PC H u abei Oil f ield Comp any ,R enqiu 062552,China Liu Chao,Wang Guocan,Wang An,et al 1Fission -track evidence of Cenozoic diff erent uplift processes of Himalayan Mountains.Earth Science Frontiers ,2007,14(6):273-281 Abstract:Coo ling ag es of the H imala yan M ount ains,south of Y arlung Zangbo R iver ,r eco rded by fission -tracks sho w remarkably spatial and tempo ral differ ences.In the no rth -south dir ect ion,fissio n -track ages of T ethys H imalay an belt sugg est that cooling occurr ed mainly befor e 8M a,partially betw een 5.0-2.6M a,but in the H ig her H imalayan belt coo ling mainly since 5M a,mo st ly since 3M a.In the east -w est direction,spatia l differences ar e embodied in t he H igher H imalayan belt.F ission -tr ack thermochro no lo gy show ed that co oling and denudation occur red betw een 8.0-3.0M a in t he Easter n Himalay as of centra l and eastern Bhutan,and cooling o ccur red between 7.0-1.4M a in w estern Bhutan.In the central H imalayas (Nepal )cooling occurr ed betw een 5.0-0.2M a,and coo ling ag es distr ibute bet ween 3.0- 1.0M a in the w ester n H imalayas.T he yo ungest fission track ages sho w an increasing trend fr om middle to bo th eastern and w ester n sides,reflect ing a denudatio n rate hav ing beco me larg er f rom centr e to war ds the east and west of the H igher H imalayan belt be -tween Easter n and Western H imalay an Sy nt axes in t he v ery recently g eolog ical t ime.A systematic inv est iga -tion of published fissio n -t rack ages sug gests that t he denudat ion of the H imalayas occurred since the M iocene,exhibit ing tw o uplifting stages:at 18-11M a and fr om 9M a onwa rds.T he investigation also sho ws that the mechanism of the H imalayan uplift may hav e chang ed fro m an ea rlier compressional uplift to a later ex tensio na l uplift in the M io cene,caused by tectonic fo rces and co upled w ith t he effects o f lo cal climate in the Late M io -cene. Key words:fission -tr ack;Himalayan mountains;coo ling ages;denudation;Cenozoic 摘 要:裂变径迹年龄资料记录的雅鲁藏布江以南的喜马拉雅山脉的冷却年龄具有明显的时空差异性。在南北方向上,特提斯喜马拉雅的冷却年龄主要在8M a 以前,局部为510~216M a,而高喜马拉雅的冷却年龄集中在5M a 以后,大多数在3M a 以来;在东西方向上体现在喜马拉雅东西构造结之间的高喜马拉雅带上,东

压水堆核电站工作原理简介

压水堆核电站工作原理简介 核反应堆是核电动力装置的核心设备,是产生核能的源泉。在压水反应堆中,能量主要来源于热中子与铀-235核发生的链式裂变反应。 裂变反应是指一个重核分裂成两个较小质量核的反应。在这种反应中,核俘获一个中子并形成一个复合核。复合核经过很短时间(10-14s)的极不稳定激化核阶段,然后开裂成两个主要碎片,同时平均放出约2.5个中子和一定的能量。一些核素,如铀-233、铀-235、钚-239和钚-241等具有这种性质,它们是核反应堆的主要燃料成分。铀-235的裂变反应如图1.3-1所示。 对于铀-235与热中子的裂变反应来说,目前已发现的裂变碎片有80多种,这说明是以40种以上的不同途径分裂。 在裂变反应中,俘获1个中子会产生2~3个中子,只要其中有1个能碰上裂变核,并引起裂变就可以使裂变继续进行下去,称之为链式反应。 由于反应前后存在质量亏损,根据爱因斯坦相对论所确定的质量和能量之间的关系,质量的亏损相当于系统的能量变化,即ΔE=Δmc2。对铀-235来说,每次裂变释放出的能量大约为200Mev(1兆电子伏=1.6×10-13焦耳)。这些能量除了极少数(约2%)随裂变产物泄露出反应堆外,其余(约98%)全部在燃料元件内转化成热能,由此完成核能向热能的转化。 水作为冷却剂,用于在反应堆中吸收核裂变产生的热能。高温高压的一回路水由反应堆冷却剂泵送到反应堆,由下至上流动,吸收堆内裂变反应放出的热量后流出反应堆,流进蒸汽发生器,通过蒸汽发生器的传热管将热量传递给管外的二回路主给水,使二回路水变成蒸汽,而一回路水流出蒸汽发生器后再由反应堆冷却剂泵重新送到反应堆。如此循环往复,形成一个封闭的吸热和放热的循环过程,构成一个密闭的循环回路,称为一回路冷却剂系统。 蒸汽发生器产生的饱和蒸汽由主蒸汽管道首先送到汽轮机的高压阀组以调节进入高压缸的蒸汽量,从高压阀组出来的蒸汽通过四根环形蒸汽管道进入高压缸膨胀做功,将蒸汽的热能转变为汽轮机转子旋转的机械能。在膨胀过程中,从高压缸前后流道不同的级后抽取部分蒸汽分别送入高压加热系统和辅助蒸汽系统。高压缸的排气一部分送往4号低压加热器用于加热凝结水,大部分通过四根管道排往位于低压缸两侧的四台汽水分离再热器,在这里进行汽水分离,并由新蒸汽对其进行再热。从汽水分离再热器出来的过热蒸汽经四根管道送入四台低压缸内膨胀做功,从四台低压缸前后流道抽取部分蒸汽分别送往3号、2号和1号低

磷灰石裂变径迹方法原理与研究进展

磷灰石裂变径迹方法原理与研究进展 :忠炎 班级:矿物S162 学号:201671305

磷灰石裂变径迹方法原理与研究进展 一、磷灰石裂变径迹分析方法原理的提出 磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在20世纪70年代。磷灰石裂变径迹分析是一种揭示岩石低温热年代学的有力工具,它建立在238U自发裂变辐射损伤效应,在实验基础上来观察辐射损伤特征,并利用数学地质模型模拟岩石所经历的低温热演化史。 Fleischer等(1975)将裂变径迹的定义为:238U自发核裂变会产生具有很高能量的带电重粒子,当高能量带电重粒子(238U)穿过绝缘固体材料时,会在固体材料如磷灰石中留下放射性的狭窄痕迹,称之裂变径迹(Fleischer al.,1975)。在上述过程中,Fleischer 等(1988)发现238U 将会分裂成两个大致相同的高能带电粒子向相反方向飞行,每个粒子带电大约在40~160MeV( Fleischer et al.,1988)。Gleadow 等(1986) Green (1988)和Donelick (1990)等均实验并最终证实这些核裂变产生的高能带电粒子能在固体材料上留下大约16~18μm的线性裂缝(Gleadow et al,1986;Green,1988;Donelick et al.,1990)。这些线性裂变径迹可以通过化学酸蚀处理可视化,进而可被光学显微镜观察。 相对低温下稳定的磷灰石裂变径迹在60°C以上会发生退火,而且会不断累计(Donelick et al.,1981)。这意味着磷灰石裂变径迹很少代表岩石的形成年龄,主要代表其低温演化的年龄(Gleadow et al.,1986)。磷灰石裂变径迹退火行为受温度影响的。Duddy等(1988)在其恒温退火的描述与温度随时间变化吻合的实验过程中,利用“等效时间原理”解释实验现象,印证了该原理。磷灰石的退火行为一旦发生就受温度及时间的因素影响,而且温度是主导因素(Duddy et al.,1988)。

聚变能和受控核聚变研究简史_江海燕

聚变能和受控核聚变研究简史 江海燕 (合肥工业大学理学院安徽230009) 储德林 (解放军炮兵学院基础部物理教研室合肥230031) 一、聚变能)))未来人类的理想能源 能源、信息和材料作为社会进步的三大支柱,是现代社会赖以生存和发展的基本条件。我国人口众多,能源需求旺盛,随着国民经济的发展,能源问题日益紧迫。至本世纪中叶,要使我国成为中等发达国家,则需要建立约每年38~45亿吨标准煤、电力装机容量15亿千瓦或者更大些的能源体系。在我国能源构成中,化石燃料所占份额极大,水力资源有限,其他如太阳能、风能、潮汐能、生物能等,只起到重要补充作用。众所周知,化石燃料所造成的环境污染,化工原料的浪费以及运输能力的消耗等都不容忽视;太阳能、生物能虽然符合环保标准,但限于目前技术水平,尚不能提供大规模商业用电;其他能源受到天气状况,地理位置等条件制约,均无法彻底解决能源问题。 科学家早就认识到,要解决人类的能源问题,必须依靠大规模发展核能。目前核能主要有两种形式:裂变能和聚变能。同样,裂变能也存在资源匮乏以及环境污染等问题,其发展也只能是核能利用的中间阶段。聚变能燃料取自海水中蕴藏量极高的氢同位素氘(每立方米海水中含有30克氘),1克氘完全燃烧可产生相当于8吨煤的能量。因此聚变能源是取之不尽、用之不竭的符合国际环保标准的清洁能源,是人类解决未来能源问题的根本途径之一。 核聚变的理论依据是,两个轻核在一定条件下聚合生成一个较重核,同时伴有质量亏损,根据爱因斯坦的质能方程,聚变过程将会释放出巨大的能量。反应条件是将一定密度的等离子体加热到足够高的温度,并且保持足够长的时间,使聚变反应得以进行。由于核聚变等离子体温度极高(达上亿度),任何实物容器都无法承受如此高的温度,因此必须采用特殊的方法将高温等离子体约束住。像太阳及其他恒星是靠巨大的引力约束住1000万~1500万摄氏度的等离子体来维持聚变反应,而地球上根本没有这么大的引力,只有通过把低密度的等离子体加热到更高的温度(1亿度以上),来引起聚变反应。通过人工方法约束等离子体主要有两种途径,即惯性约束和磁约束。 惯性约束是利用高功率密度的激光束或其他粒子束将内含氘氚燃料的微丸在极短的时间内压缩聚爆达到极高的密度,同时将氘氚离子加热到热核聚变反应温度,并在向心聚爆形成的等离子体飞散以前(即利用等离子体向内运动的惯性)产生足够的聚变反应,获得能量增益。磁约束是在一定的真空容器中,将氘氚燃料用特殊的加热方法加热到聚变反应温区(即1亿度以上)以点燃氘氚反应,利用特殊设计的/磁笼子0将这种高温等离子体稳定地约束在该真空容器内,使聚变反应能够稳定进行。围绕这种/磁笼子0的设计和建造,人类已经走过了半个多世纪艰苦的历程。 二、受控核聚变研究历程 上世纪30年代,在英国剑桥的卡文迪什实验室进行了人类历史上第一次核聚变实验,结果可想而知,著名的物理学家卢瑟福于1933年宣布:从原子中寻找能源无异于痴心妄想!然而随着第二次世界大战的结束和曼哈顿计划(原子弹爆炸)的成功实施,人们对原子物理和核聚变的兴趣与日俱增。1952年11月1日在西太平洋埃尼威托克岛秘密爆炸了一颗氢弹,爆炸中释放的巨大能量宣告人类终于成功地实现了核聚变。欣喜之余,科学家们设想能否将爆炸中瞬间释放的巨大能量缓慢地释放出来,以用于和平利用核能的目的呢?事实上,科学家们一直在为受控核聚变努力着。1951年阿根廷的科学家们声称实现了受控核聚变,尽管后来证明这个结论是错误的,但也为其他科学家提供了有益的经验。 这个时候,世界上许多国家都在秘密开展受控核聚变的相关研究。美国的物理学家斯必泽在普林斯顿大学等离子体物理实验室建造了磁约束装置仿星器;物理学家詹姆士#塔克在洛斯阿拉莫斯国家实验室建造了磁场箍缩装置;爱德华#泰勒在劳伦斯利弗莫尔实验室把氢弹研究扩展到惯性约束研究。在英国,聚变研究的大量工作是在大学里开展的,其中最主要的有位于哈维尔皇家学院的汤姆逊研究组和位于牛津大学的桑尼曼研究组,汤姆逊还发明了一项聚变堆专利。1952年物理学家库辛和沃尔建造了小型等离子体环形箍缩装置,后来又建造了规模较大的实验装置ZE TA,ZE TA是一种稳定的环形箍缩装置,于1954年开始使用,到1958年停止。ZETA # 17 # 16卷5期(总95期)

相关文档
最新文档