推进式堵水开关静动态特性分析

推进式堵水开关静动态特性分析
推进式堵水开关静动态特性分析

2012年12月第40卷第23期

机床与液压

MACHINE TOOL &HYDRAULICS Dec.2012Vol.40No.23

DOI :10.3969/j.issn.1001-3881.2012.23.013

收稿日期:2011-11-16

基金项目:中原石油勘探局资助项目(2011202)

作者简介:张俊亮(1976—),男,工程师,中原油田博士后工作站在站博士后,从事井下工具的研究工作。Email :zhangdzu

@https://www.360docs.net/doc/ce13635889.html, 。

推进式堵水开关静动态特性分析

张俊亮,韩进,张强德,曹海燕,李丽云

(中原油田采油工程技术研究院,河南濮阳457001)

摘要:推进式堵水开关是一种井下智能堵水工具。开关在打开和关闭状态下,活塞轴向受力平衡,在打开和关闭瞬间,因地层和油套环空压差造成活塞受轴向冲击。分析了活塞开、关时的液压冲击力,并结合AMESim 软件对活塞受冲击状况进行仿真,结果表明:增加活塞环空长度、降低电机转速、增加螺杆轴向限位轴肩等可减小瞬态液动力对开关的活塞产生的轴向冲击。为堵水开关结构优化提供设计了依据。

关键词:堵水开关;静动态分析;冲击;仿真中图分类号:TE931文献标识码:A 文章编号:1001-3881(2012)23-051-3

Static and Dynamic Characteristics Analysis of Push Type Switch for Water Blocking

ZHANG Junliang ,HAN Jin ,ZHANG Qiangde ,CAO Haiyan ,LI Liyun

(Petroleum Engineering Institute of ZYOF ,Puyang Henan 457001,China )

Abstract :Push type switch for water blocking is a type of intelligent blocking tool used in oil well.In the state of open or close ,the piston of the switch bearing balanced axial force ,but on the moment of opening and closing ,for the differential space pressure of annular of oil and stratum ,there was the axial impact to the piston.The hydraulic impact was analyzed at opening or closing of the pis-ton ,and AMESim software was used to simulate the impact states.The results show that lengthening the piston annular ,lowering motor

speed and increasing axial limit shaft shoulder of screw rod ,the axial impact to the piston by moment hydra-dynamic force on opening and closing of the piston can be lightened.It provides design basis for optimal structure of the water blocking switch.

Keywords :Water blocking switch ;Static and dynamic analysis ;Impact ;Simulation

推进式堵水开关是用于高含水油井堵水作业的井下工具,与封隔器等配套使用,每个油层对应一个开关,主要功能是关闭高含水层,打开低含水层,以实现提高采收率的目的。推进式堵水开关克服以往机械式堵水开关受地层压差影响的弊端,在打开和关闭状态下实现轴向压力平衡,但在开-关或关-开瞬间,

因地层压力与套压不同而产生瞬态液动力

[1-2]

。瞬态液动力对开关的活塞产生轴向冲击,影响开关的打开或关闭,严重时可能破坏开关的机械结构。因此通过分析开关静动态特性,以确定合理机械结构,确保推进式堵水开关可靠工作。

1推进式堵水开关结构

推进式堵水开关结构如图1所示,主要由上接头、传感器、控制电路、驱动电机、驱动螺杆、外套筒、活塞、活塞套、下接头等组成,电机安装在活塞套上端部,驱动螺杆一端与电机轴配合,另一端通过螺纹与活塞连接。传感器接收井口环空压力脉冲信号,控制电路根据信号情况控制驱动电机正反转,电机通过驱动螺杆将转动变为活塞的上下移动。电机正转推动活塞下行至下限位置打开该地层,电机反转推动活塞上行至活塞上限位置关闭该地层。推进式堵水开关采用侧进液模式,活塞装有密封圈,阻止液体流入活塞底部或顶部空间,使液体仅在活塞环形空间内流动,图1为开关处于打开状态,进液口与出液口连通

图1推进式堵水开关结构图

测试系统静态特性校准实验报告

实验一测试系统静态特性校准 一.实验目的 1.1 掌握压力传感器的原理 1.2掌握压力测量系统的组成 1.3掌握压力传感器静态校准实验和静态校准数据处理的一般方法 二.实验设备 本实验系统由活塞式压力计,硅压阻式压力传感器,信号调理电路,5位半数字电压表,直流稳压电源和采样电阻组成。图1-1实验系统方框图如下: 实验设备型号及精度 三.实验原理 在实验中,活塞式压力计作为基准器,为压力传感器提供标准压力0~0.6%Mpa信号调理器为压力传感器提供恒电源,将压力传感器输出的电压信号放大并转换为电流信号。信号处理器输出为二线制,4~20mA信号电源在250 采样电阻上转换为1~5V电压信号,由5位半数字电压表读出。

四.实验操作 4.1操作步骤 (1)用调整螺钉和水平仪将活塞压力计调至水平。 (2)核对砝码重量及个数,注意轻拿轻放。 (3)将活塞压力计的油杯针阀打开,逆时针转动手轮向手摇泵内抽油,抽满后,将油杯针阀关闭。严禁未开油杯针阀时,用手轮抽油,以防破坏传感器。 (4)加载砝码至满量程,转动手轮使测量杆标记对齐,再卸压。反复1-2次,以消除压力传感器内部的迟滞。 (5)卸压后,重复(3)并在油杯关闭前记录传感器的零点输出电压,记为正行程零点。 (6)按0.05Mpa的间隔,逐级给传感器加载至满量程,每加载一次,转动手轮使测量杆上的标记对齐,在电压表上读出每次加载的电压值。 (7)加压至满量程后,用手指轻轻按一下砝码中心点,施加一小扰动,稍后记录该电压值,记为反行程的满量程值。此后逐级卸载,并在电压表读出相应的电压值。 (8)卸载完毕,将油杯针阀打开,记录反行程零点,一次循环测量结束。 (9)稍停1~2分钟,开始第二次循环,从(5)开始操作,共进行5次循环。 4.2 注意事项 保持砝码干燥,轻拿轻放,防止摔碰。 轻旋手轮和针阀,防止用力过猛。 正、反行程中,要求保证压力的单调性,如遇压力不足或压力超值,应重新进行循环。 当活塞压力计测量系统的活塞升起是,请注意杆的标记线与两侧固定支架上的标记对齐,同时,用手轻轻旋动托盘,以保持约30转/分的旋转速度,用此消除静摩擦,此后方可进行读数。 严禁未开油杯针阀时,用手轮抽油,以防破坏传感器;或在电压表输出值不变的情况下,严禁连续转动手轮数圈。 五.数据处理 1、实验数据

典型系统动态性能和稳定性分析

典型系统动态性能和稳定性分析 一·实验目的 1学习和掌握动态性能指标的测试方法。 2研究典型系统参数对系统动态性能和稳定性的影响。 二·实验要求 1观测二阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 2观测三阶系统的阶跃响应测出其超调量和调节时间并研究其参数变化对动态性能和稳定性的影响。 三·实验步骤 1熟悉实验箱利用实验箱上的模拟电路单元参考本实验附录中的图2.1.1和图2.1.2设计并连接由一个积分环节和一个惯性环节组成的二阶闭环系统的模拟电路如用U9、U15、U11和U8连成。注意实验接线前必须对运放仔细调零。接线时要注意对运放锁零的要求。 2利用实验设备观测该二阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 3改变该二阶系统模拟电路的参数观测参数对系统动态性能的影响。 4利用实验箱上的模拟电路单元参考本实验附录中的图2.2.1和图2.2.2设计并连接由一个积分环节和两个惯性环节组成的三阶闭环系统的模拟电路如用U9、U15、U11、U10和U8连成。 5利用实验设备观测该三阶系统模拟电路的阶跃特性并测出其超调量和调节时间。 6改变该三阶系统模拟电路的参数观测参数对系统稳定性与动态指标的影响。 7分析实验结果完成实验报告。注意以上实验步骤中的2、3与5、6的具体操作方法请参阅“实验一”的实验步骤2实验步骤7的具体操作方法请参阅“实验一”的实验步骤3这里不再赘述。 附录 1典型二阶系统 典型二阶系统的方块结构图如图 2.1.1所示 其开环传递函数为 其闭环传递函数为其中 取二阶系统的模拟电路如图2.1.2所示该系统的阶跃响应如图2.1.3所示Rx接U4单元的220K电位器改变元件参数Rx大小研究不同参数特征下的时域响应。2.1.3a 2.1.3b 2.1.3c 分别对应二阶系统在过阻尼临界阻尼欠阻尼三种情况下的阶跃响应曲线

某边坡动态变形特征分析

某边坡动态变形特征分析 摘要:以某边坡为工程背景,研究了该边坡近期的变形特征,将变形体的变形形式分为2种情形,排水固结沉陷型、滑移型,其中,排水固结沉陷型变形形式主要以不均匀变形为主;滑移型包括了沿老滑面滑移型和土体剪损滑移型。 关键词:边坡变形特征动态滑动面稳定性 1、引言 边坡变形特征分析是边坡工程的重要研究内容,以某边坡为工程背景,除边坡区外新城建设已具规模,边坡区的前沿望江大道和民德路一带城镇建设基本完成,按规划要求,边坡区内近期将安置十个单位及近万移民。然而近几年的道路建设已使该区多处出现了一定规模的变形,严重影响县城区移民迁建工作。其中最大一处民德小学变形体影响面积超过3万m2,使已建成道路破坏;近期东部因部分移民房屋基础开挖以引起部分坡体变形,在短短两个月的时间内,水平位移达l-6cm,变形体的影响宽度达60-70m,且处在进一步发展之中。因此,研究该边坡近期的变形特征,对于边坡区的防治与治理工作具有重要意义。 2、边坡近期变形分析 近期变形发生在1998年新城建设之后,到目前为止,先后形成了陈家院子、石院子、石院子后、民德小学、民德小学东等5处较大规模变形体,涉及总面积达10万多m2。体积50多万m3。 2,1排水固结沉陷型 排水固结沉陷型。此类变形以民德小学、陈家院子和石院子变形体为代表,其中民德小学变形体最典型。该变形体位于崩滑堆积平台中区前缘,其变形形式主要以不均匀变形为主,后期见前缘部分土坡体有明显的滑移变形,尤其公路路面明显外鼓变形。该变形体在民德小学一带差异变形较大,最大量可达50-70cm,导致这座近千学生的小学宿舍与教学楼严重开裂变形,从而不得不整体搬迁。后来随着东部挡墙基础的回填,地下水逐步回升,以及前沿坡角的减缓和保护等措施,才使得该变形体的变形有所减缓,目前已处于基本稳定状态。造成这种大范围变形的内在因素是由于民德小学一带表部粘土层分布较厚,由于地下水位高,自然条件下,大都处于饱和状态(如图1示),当下部碎块石层中的地下水快速疏干,上部弱透水的粘土层缓慢排水产生固结变形,由于该土层下部强度相对较高的块石层接触面起伏不平,导致上部土层不均匀的压缩变形。在地表具体表现为总体沉陷而局部水平拉裂变形。民德小学变形体的变形具有以下特征:(1)后缘大部分区域的变形与前缘开挖临空面没有直接的关系。变形体后缘距公路开挖面在100余米之外,大遍区域并无中层滑带产生,而底部滑带大都倾向山里,无滑动条件,说这一区域的后期变形只能是随地下水的疏干范围的扩大而扩大的。(2)民德小学早期NW-SE向拉裂变形与基岩面形态条件有关,因为区前

材料动态特性实验(南京理工大学)分析

南京理工大学 机械工程学院研究生研究型课程考试答卷 课程名称:材料动态特性实验 考试形式:□专题研究报告□论文√大作业□综合考试学生姓名:学号: 评阅人: 时间:年月日

材料动态特性实验 一.实验目的: 1、了解霍普金森杆的实验原理和实验步骤; 2、会用霍普金森杆测试材料动态力学性能。 二.实验原理: 分离式Hopkinson 压杆的工作原理如图1.1所示装置中有两段分离的弹性杆,分别为输入杆和输出杆,短试样夹在两杆之间。当压气枪发射一撞击杆(子弹),以一定速度撞击输入杆时,将产生一入射弹性应力脉冲,随着入射波传播通过试样,试样发生高速塑性变形,并相应地在输出杆中传播一透射弹性波,而在输入杆中则反射一反射弹性波。透射波由吸收杆捕获,并最后由阻尼器吸收。 图1.1 现在的Kolsky 杆装置示意图 根据压杆上电阻应变片所测得的入射波、反射波、透射波,以及一维应力波理论可得到如下的计算公式。 试样的平均应变率为: )00t r i l c εεεε--=( (1-1) 试样中的平均应变: dt l c t r i s ?--= )(00εεεε (1-2)

试样中的平均应力: )(20t r i A AE εεεσ++= (1-3) 式中t r i εεε,,分别表示测试记录的入射、反射和透射波,C 0 是弹性纵波波速,C=5189m/s,L 0为试样的初始长度,E 为压杆的弹性模量,A/A 0为压杆与试样的 截面比。 由应力均匀化条件可知: r i t εεε+= (1-4) 将公式(l 一4)代入(1一l)!(l 一2)!(l 一3)式可得 t s E A A εσ0= (1-5) ?-=dt l c r s εε002 (1-6) 一般采用公式(l 一5)、(1一6)来计算材料的动态应力一应变行为。 该试验技术作了如下几个假定: (1)一维假定 弹性波(尤其是对短波而言)在细长杆中传播时,由于横向惯性效应,波会发生弥散,即波的传播速度和波长有关。Pochhammer 最早研究过波在无限长杆内的色散效应,但当入射波的波长(可由子弹的长度来控制,即波长为子弹长度的2倍)比输入杆的直径大很多时,即满足必/兄<<1时,杆的横向振动效应,除波头外,可作为高阶小量忽略不计。子弹和输入杆都假定处于一维应力状态,可直接利用一维应力波理论进行计算。 (2)均匀化假定 压缩脉冲通过试样时,在试样内发生了多次波的反射。由于压缩脉冲的持续作用时间比短试样中波的传播时间要长得多,使得试样中的应力很快趋向均匀化,因此可以忽略试样内部波的传播效应。 (3)不计导杆与试样端部的摩擦效应 由于试样和导杆加工时表面的不光滑,以及导杆横向变形的不均匀,在试样与输入杆的接触面会产生摩擦,这使得试样处于复杂的应力状态,给试验数据的

实验三 电容式传感器静、动态特性实验

实验三电容式传感器静、动态特性实验 一、实验目的: 1. 了解电容式传感器结构及其特点。 2. 了解电容传感器的动态性能的测量原理与方法。 二、需用器件与单元: 电容传感器、电容传感器实验模板、测微头、相敏检波、低通滤波模板、数显单元、直流稳压源、双踪示波器。 三、实验步骤: 1、按实验二的图2-1安装示意图将电容传感器接于电容传感器实验模板上。 2、将电容传感器连线插入电容传感器实验模板,实验线路见图3-1。 图3-1 电容传感器位移实验接线图 3、将电容传感器实验模板的输出端V01与数显表单元V i相接(插入主控箱V i孔),R w调节到中间位置。 4、接入±15V电源,旋动测微头推进电容传感器动

极板位置,每间隔0.2mm记下位移X与输出电压值,填入表3-1。 5、根据表3-1的数据计算电容传感器的系统灵敏度S和非线性误差δf。 6、传感器安装图同实验二图2-1,按图3-1接线。实验模板输出端V01 接滤波器输入端。滤波器输出端V,接示波器一个通道(示波器X轴为20ms/div、Y轴示输出大小而变)。调节传感器连接支架高度,使V01输出在零点附近。 7、主控箱低频振荡器输出端与振动源低频输入相接,振动频率选6~12Hz之间,幅度旋钮初始置0。 8、输入±15V电源到实验模板,调节低频振荡器的频率与幅度旋钮使振动台振动幅度适中,注意观察示波器上显示的波形。 9、保持低频振荡器幅度旋钮不变,改变振动频率,可以用数显表测频率(将低频振荡器输出端与数显Fin输入口相接,数显表波段开关选择频率档)。从示波器测出传感器输出的V01峰-峰值。保持低频振荡器频率不变,改变幅度旋钮,测出传感器输出的V01峰-峰值。 四、思考题: 1、试设计利用ε的变化测谷物湿度的传感器原理及结构?能否叙述一下在设计中应考虑哪些因素? 2、为了进一步提高电容传器灵敏度,本实验用的传感器可作何改进设计?如何设计成所谓容栅传感器? 3、根据实验所提供的电容传感器尺寸,计算其电容量

检测系统的静态特性和动态特性

检测系统的静态特性和动态特性 检测系统的基本特性一般分为两类:静态特性和动态特性。这是因为被测参量的变化大致可分为两种情况,一种是被测参量基本不变或变化很缓慢的情况,即所谓“准静态量”。此时,可用检测系统的一系列静态参数(静态特性)来对这类“准静态量”的测量结果进行表示、分析和处理。另一种是被测参量变化很快的情况,它必然要求检测系统的响应更为迅速,此时,应用检测系统的一系列动态参数(动态特性)来对这类“动态量”测量结果进行表示、分析和处理。 研究和分析检测系统的基本特性,主要有以下三个方面的用途。 第一,通过检测系统的已知基本特性,由测量结果推知被测参量的准确值;这也是检测系统对被测参量进行通常的测量过程。 第二,对多环节构成的较复杂的检测系统进行测量结果及(综合)不确定度的分析,即根据该检测系统各组成环节的已知基本特性,按照已知输入信号的流向,逐级推断和分析各环节输出信号及其不确定度。 第三,根据测量得到的(输出)结果和已知输入信号,推断和分析出检测系统的基本特性。这主要用于该检测系统

的设计、研制和改进、优化,以及对无法获得更好性能的同类检测系统和未完全达到所需测量精度的重要检测项目进行深入分析、研究。 通常把被测参量作为检测系统的输入(亦称为激励)信号,而把检测系统的输出信号称为响应。由此,我们就可以把整个检测系统看成一个信息通道来进行分析。理想的信息通道应能不失真地传输各种激励信号。通过对检测系统在各种激励信号下的响应的分析,可以推断、评价该检测系统的基本特性与主要技术指标。 一般情况下,检测系统的静态特性与动态特性是相互关联的,检测系统的静态特性也会影响到动态条件下的测量。但为叙述方便和使问题简化,便于分析讨论,通常把静态特性与动态特性分开讨论,把造成动态误差的非线性因素作为静态特性处理,而在列运动方程时,忽略非线性因素,简化为线性微分方程。这样可使许多非常复杂的非线性工程测量问题大大简化,虽然会因此而增加一定的误差,但是绝大多数情况下此项误差与测量结果中含有的其他误差相比都是可以忽略的。

系统动态特性分析

系统动态特性分析。 (1)时域响应解析算法――部分分式展开法。 用拉氏变换法求系统的单位阶跃响应,可直接得出输出c(t)随时间t 变化的规律,对于高阶系统,输出的拉氏变换象函数为: s den num s s G s C 11)()(?=? = (21) 对函数c(s)进行部分分式展开,我们可以用num,[den,0]来表示c(s)的分子和分母。 例 15 给定系统的传递函数: 24 50351024 247)(23423+++++++=s s s s s s s s G 用以下命令对 s s G ) (进行部分分式展开。 >> num=[1,7,24,24] den=[1,10,35,50,24] [r,p,k]=residue(num,[den,0]) 输出结果为 r= p= k= -1.0000 -4.0000 [ ] 2.0000 -3.0000 -1.0000 -2.0000 -1.0000 -1.0000 1.0000 0 输出函数c(s)为: 01 11213241)(+++-+-+++-= s s s s s s C 拉氏变换得: 12)(234+--+-=----t t t t e e e e t c (2)单位阶跃响应的求法: 控制系统工具箱中给出了一个函数step()来直接求取线性系统的阶跃响应,如果已知传递函数为: den num s G = )( 则该函数可有以下几种调用格式: step(num,den) (22) step(num,den,t) (23) 或 step(G) (24) step(G,t) (25) 该函数将绘制出系统在单位阶跃输入条件下的动态响应图,同时给出稳态值。对于式23和25,t 为图像显示的时间长度,是用户指定的时间向量。式22和24的显示时间由系统根据输出曲线的形状自行设定。

测试装置动态特性仿真实验报告

测试装置动态特性仿真实验 班级:7391 学号:2009301828 姓名:张志鹏 一、实验目的 1、加深对一阶测量装置和二阶测量装置的幅频特性与相频特性的理解; 2、加深理解时间常数变化对一阶系统动态特性影响; 3、加深理解频率比和阻尼比变化对二阶系统动态特性影响; 4、使学生了解允许的测量误差与最优阻尼比的关系。 二、实验原理 1、 一阶测量装置动态特性 一阶测量装置是它的输入和输出关系可用一阶微分方程描述。一阶测量装置的频率响应函数为: 式中:S S 为测量装置的静态灵敏度;τ为测量装置的时间常数。 一阶测量装置的幅频特性和相频特性分别为: 可知,在规定S S =1的条件下,A (ω)就是测量装置的动态灵敏度。 当给定一个一阶测量装置,若时间常数τ确定,如果规定一个允许的幅值误差ε,则允许测量的信号最高频率ωH 也相应地确定。 为了恰当的选择一阶测量装置,必须首先对被测信号的幅值变化范围和频率成分有个初步了解。有根据地选择测量装置的时间常数τ,以保证A (ω)≥1-ε 能够满足。 2、二阶测量装置动态特性 二阶测量装置的幅频特性与相频特性如下: 幅频特性202220)/(4))/(1(/1)(ωωξωωω--=A 相频特性2200))/(1/()/(2()(ωωωωξφ--=arctg w Α(ω)是ξ和ω/0ω的函数,即具有不同的阻尼比ξ的测试装置当输入信??????ωτ+ωτ-ωτ+=ωτ+=ω22s s )(1j ) (11S j 11S )j (H ()()2 11 A ωτ+=ω()ωτ -=ωφarctan

号频率相同时,应具有不同的幅值响应,反之,当不同的频率的简谐信号送入同一测试装置时它们的幅值响应也不相同,同理具有不同的阻尼比ξ的测试装置当输入信号频率相同时,应有不同的相位差。 (1).当ω=0时,Α(ω)=1;(2).当ω→∞,A (ω)=0;(3).当ξ≥0.707时随着输入信号频率的加大,Α(ω)单调的下降, ξ<0.707时Α(ω)的特性曲线上出现峰值点;(4)如果ξ=0,))/(1/(1))/(1(/1)(202 20ωωωωω-=-=A ,显然,其峰值点出现在ω=0ω处。其值为“∞”,当ξ从0向0.707变化过程中随着的加大其峰值点逐渐左移,并不断减小。 对以上二阶环节的幅频特性的结论论证如下: (1).当ω=0时A(ω)=1 (2).当ω→∞时,A(ω)=0 (3).要想得到A(ω)的峰值就要使202220)/(4))/(1(/1)(A ωωξ-ωω-=ω 中的202220)/(4))/(1(ωωξωω--取最小值。 令:t=20)/(ωω t t t f 224)1()(ξ+-= 对其求导可得t=1-22ξ时,f(t)取最小值.由于t=20)/(ωω≥0,所以1-22ξ≥0, 2ξ必须小于1/2时,f(t)才有最小值,即ξ>2/2时,A(ω)不出现峰值点;当ξ<2/2时4244)(ξξ-=t f ,f(t)对ξ求导得)21(82ξξ-,可以看出f(t): ξ属于[0, 2/2]时单调递增,于是得A(ω)的峰值点A 为4244/1)(/1ξξ-=t f ; 在ξ属于[0,2/2]递减。 (4).当ξ=0时 A=∞,t=20)/(ωω,ω/0ω=1,即ξ=0时A(ω)的峰值为∞,且必出现在ω/0ω=1时,当ξ=2/2时,t=0→ω=0,A(ω)=1. 还可以看出,在ξ属于[0,2/2]增大时t=1-22ξ就减小,即f(t)的峰值左平移。 (二)阻尼比的优化 在测量系统中,无论是一阶还是二阶系统的幅频特性都不能满足将信号中的所有频率都成比例的放大。于是希望测量装置的幅频特性在一段尽可能宽的范围内最接近于1。根据给定的测量误差,来选择最优的阻尼比。

螺栓联接静、动态特性实验报告

螺栓联接静、动态特性实验报告 专业班级 ___________ 姓名 ___________ 日期 2011-09-28 指导教师 ___________ 成绩 ___________ 一、实验条件: 1、试验台型号及主要技术参数 螺栓联接实验台型号: 主要技术参数: ①、螺栓材料为40Cr、弹性模量E=206000 N/mm2,螺栓杆外直径D1= 16mm,螺栓杆内直径D2=8mm,变形计算长度L=160mm。 ②、八角环材料为40Cr,弹性模量E=206000 N/mm2。L=105mm。 ③、挺杆材料为40Cr、弹性模量E=206000 N/mm2,挺杆直径D=14mm,变形 计算长度L=88mm。 2、测试仪器的型号及规格 ①、应变仪型号:CQYDJ-4 ②、电阻应变片:R=120Ω,灵敏系数K=2.2 二、实验数据及计算结果 1、螺栓联接实验台试验项目: 空心螺杆 2、螺栓组静态特性实验 实测值理论值 螺栓拉力螺栓扭矩八角环挺杆螺栓拉力螺栓扭矩八角环挺杆预紧形变值(μm) 33 109 33 109 预紧应变值(με) 136 235 154 7 206.25 预紧力(N) 4224.7 578 4113.7 111 6407 712.9 6407 0 预紧刚度(N/mm) 128021.6 38758.8 194150.4 58779.5 预紧标定值(με/N) 0.0321916 0.1287668 0.0374359 0.0630631 0.0212267 0.3282367 0.0240362 0 加载形变值(μm) 42 93 42 93 加载应变值(με) 158 272 119 54 262.5 加载力(N) 4908.1 668.1 4051.9 856.2 8154.4 825.1 5466.5 2687.9 加载刚度(N/mm) 128021.2 38758.7 194151.5 58779.8 加载标定值(με/N) 0.0321917 0.1287650 0.0293689 0.0630694 0.0192534 0.329657 0.0217689 0.02009

实验 典型环节的动态特性实验报告

实验一典型环节的动态特性 一.实验目的 1.通过观察典型环节在单位阶跃信号作用下的相应曲线,熟悉它们的动态特性。 2.了解各典型环节中参数变化对其动态特性的影响。 二.实验内容 1.比例环节 G(S)= K 所选的几个不同参数值分别为K1= 33 ; K2= 34 ; K3= 35 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 2.积分环节

G(S)= S T i 1 所选的几个不同参数值分别为T i1= 33 ; T i2= 33 ; T i3= 35 : 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 3.一阶惯性环节 G(S)= S T K c 1 令K不变(取K= 33 ),改变T c取值:T c1= 12 ;T c2= 14 ;T c3= 16 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 4. 实际微分环节 G(S)= S T S T K D D D 1 令K D 不变(取K D = 33 ),改变T D 取值:T D 1= 10 ;T D 2= 12 ;T D 3= 14 ;

对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): 5.纯迟延环节 G(S)= S eτ- 所选的几个不同参数值分别为τ1= 2 ;τ2= 5 ;τ3= 8 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

6. 典型二阶环节 G(S)= 2 2 2n n n S S K ωξωω++ 令K 不变(取K = 33 ) ① 令ωn = 1 ,ξ取不同值:ξ1=0;ξ2= 0.2 ,ξ3= 0.4 (0<ξ<1);ξ4=1;ξ5= 3 (ξ≥1); 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值): ②令ξ=0,ωn 取不同值:ωn 1= 1 ;ωn 2= 2 ; 对应的单位阶跃响应曲线(在输出曲线上标明对应的有关参数值):

控制实验报告二典型系统动态性能和稳定性分析

控制实验报告二典型系统动态性能和稳定性分 析

实验报告2 报告名称:典型系统动态性能和稳定性分析 一、实验目的 1、学习和掌握动态性能指标的测试方法。 2、研究典型系统参数对系统动态性能和稳定性的影响。 二、实验内容 1、观测二阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 2、观测三阶系统的阶跃响应,测出其超调量和调节时间,并研究其参数变化对动态性能和稳定性的影响。 三、实验过程及分析 1、典型二阶系统 结构图以及电路连接图如下所示:

对电路连接图分析可以得到相关参数的表达式: ;;; 根据所连接的电路图的元件参数可以得到其闭环传递函数为 ;其中; 因此,调整R x的阻值,能够调节闭环传递函数中的阻尼系数,调节系统性能。 当时,为过阻尼系统,系统对阶跃响应不超调,响应速度慢,因此有如下的实验曲线。 当时,为临界阻尼系统,系统对阶跃响应恰好不超调,在不发生超调的情况下有最快的响应速度,因此有如下的实验曲线。对比上下两张图片,可以发现系统最后的稳态误差都比较明显,应该与实验仪器的精密度有关。同时我们还观察了这个系统对斜坡输入的响应,其特点是输出曲线转折处之后有轻微的上凸的部分,最后输出十分接近输入。

当时,为欠阻尼系统,系统对阶跃超调,响应速度很快,因此有如下的实验曲线。 2、典型三阶系统 结构图以及电路连接图如下所示:

根据所连接的电路图可以知道其开环传递函数为: 其中,R x的单位为kΩ。系统特征方程为,根据劳斯判据可以知道:系统稳定的条件为012,调节R x可以调节K,从而调节系统的性能。具体实验图像如下: 四、软件仿真 1、典型2阶系统 取,程序为:G=tf(50,[1,50*sqrt(2),50]); step(G) 调节时间为5s左右。 取,程序为:G=tf(50,[1,10*sqrt(2),50]); step(G) 调节时间为0.6s左右。 取,程序为:G=tf(50,[1,2*sqrt(2),50]); step(G)

伯德图在随动系统的动态性能分析中的应用

邢台学院物理系 《自动控制理论》 课程设计报告书 设计题目:伯德图在随动系统的动态性能分析中的应用专业:自动化 班级: 学生姓名: 学号: 指导教师: 2013年04月07 日

邢台学院物理系课程设计任务书 专业:自动化班级: 2013 年 04 月 07 日

摘要 随动系统是指系统的输出以一定的精度和速度跟踪输入的自动控制系统,并 且输入量是随机的,不可预知的,主要解决有一定精度的位置跟随问题,如数控机床的刀具给进和工作台的定位控制,工业机器人的工作动作,导弹制导、火炮瞄准等。在现代计算机集成制造系统(CIMC)、柔性制造系统(FMS)等领域,位置随动系统得到越来越广泛的应用。 一般来说,随动控制系统要求有好的跟随性能。位置随动系统是非常典型的随动系统,是个位置闭环反馈系统,系统中具有位置给定,位置检测和位置反馈环节,这种系统的各种参数都是连续变化的模拟量,其位置检测可用电位器,自整角机,旋转变压器,感应同步器等。位置随动系统中的给只给定量是经常变动的,是一个随即量,并要求输出量准确跟随给定量的变化,输出响应具有快速性,灵活性和准确性。 本次课程设计以位置随动系统为例,伯德图在随动系统的动态性能分析中的 应用 关键词:随动系统相角裕度幅值裕度超调量调节时间

目录 1 位置随动系统结构和工作原理................................ 1.1 位置随动系统结构组成...................................... 1.2 位置随动系统工作原理...................................... 2 系统的分析与设计.......................................... 2.1 位置随动系统方块图........................................ 2.2 系统数学模型的建立........................................ 2.3 系统参数选择.............................................. 3 用伯德图分析系统性能...................................... 4 总结体会.................................................. 参考文献.....................................................

煤层气生产动态特征分析

煤层气生产动态特征分析 发表时间:2018-06-25T14:58:12.400Z 来源:《基层建设》2018年第12期作者:王国华崔德广[导读] 摘要:由于煤层地质条件的差异以及储层的非均质性影响,同一区块的煤层气井生产情况也会各有差异。 新疆维吾尔自治区煤田地质局一五六煤田地质勘探队乌鲁木齐 830009 摘要:由于煤层地质条件的差异以及储层的非均质性影响,同一区块的煤层气井生产情况也会各有差异。从区域上分析煤层气井的生产特征及规律,有利于了解本区煤层气井高产主控的因素,指导后期开发部署及工艺方案的优化。 关键词:产气量;正相关性;流体势;临储比;层系组合 The analysis of coalbed methane production dynamic characteristics (No.156 Coalfield Geological Exploration Team of Xinjiang Coalfield Geology Bureau , Urumqi 830009) Abstract: Because of the different Geological conditions of coal seam and the heterogeneous influence of reservoir, the production of coal seam and gas well in the same area will be different. It is helpful to understand the factors of high yield and main control of coal seam gas well from regional analysis, and guide the development and deployment of coal seam gas well and the optimization of process plan. 阜康白杨河矿区煤炭资源丰富,煤变质程度中等,煤层气含量高,同时,煤储层物性较好,有利于煤层气的赋存和开发。 示范区主要含煤地层为八道湾组下段(J1b 1)和八道湾组中段(J1b 2)。开发的3套主力煤层39#、41#、42#全部位于八道湾组下段。由于煤层地质条件的差异以及储层的非均质性影响,同一区块的煤层气井生产情况也会各有差异。从区域上分析煤层气井的生产特征及规律,有利于了解本区煤层气井高产主控的因素,指导后期开发部署及工艺方案的优化。 一、示范区生产特征 为分析示范区的生产特征与产气分布规律,将从本区的产气、产水规律,以及与煤层构造、煤层厚度、流体势、层系组合等方面关系入手,深入研究本示范区煤层气井的高产主控因素。 1、产气量与构造的关系 从示范区煤层气井2015年10月31日的产气现状与构造关系叠合图可以看出(见图1),示范区西部部署的两排煤层气井,构造深部位井的产气效果要好于浅部位的井;示范区东部部署了三排煤层气井,构造中部的井产气效果最好,深部位井的产气效果次之,而浅部井的产气效果最差。总体来看,目前示范区全区浅部位井的产气效果都不理想,可能与浅部的井离火烧区较近,瓦斯风化带较深,浅部井的含气性较差等因素有关。 图1 示范区煤层气井产气现状与构造关系图 2、产气量与煤层厚度的关系 从示范区煤层气井产气现状与3套主力煤层厚度的叠合关系图可以看出(见图2),示范区煤层气井产气量与39#、42#煤层厚度大体上呈正相关性,即煤层厚度大的区域产气量高,而与41#煤层厚度的相关性不明显。 a.示范区煤层气井产气量与39#煤层厚度关系图 b.示范区煤层气井产气量与41#煤层厚度关系图 c.示范区煤层气井产气量与42#煤层厚度关系图

螺栓联接的静动态特性

实验一 受轴向载荷螺栓联接的静态特性 螺栓联接是广泛应用于各种机械设备中的一种重要联接形式,受预紧力和轴向工作载荷的螺栓联接中,最常见的应用实例是气缸盖与气缸体的联接,如图1-1所示。螺栓受到的总拉力F 0除了与预紧力F '和工作载荷F 有关外,还受到螺栓刚度C 1和C 2被联接件刚度等因素的影响。图6-2为一螺栓和被联接件的受力与变形示意图。 图1-1 气缸盖与气缸体的联接 图1-2 螺栓和被联接件受力、变形情况 (a)螺母未拧紧 (b)螺母已拧紧 (c)螺栓承受工作载荷 图1-2(a)所示为螺栓刚好拧好到与被联接件相接触的的状态,此时螺栓和被联接件均未受力,因此无变形发生。 图1-2(b)所示为螺母已拧紧,但联接未受工作载荷的状态,此时螺栓受预紧力F '的拉伸作用,其伸长量为1δ;而被联接件则在力F '的作用下被压缩,其压缩量为2δ。 图1-2(c)所示为联接承受工作载荷F 时的情况,此时螺栓所受的拉力由F '增大至F 0 (螺栓的总拉力),螺栓的伸长量由1δ增大至11δδ?+;与此同时,被联接件则因螺栓伸长而被 放松,其压缩变形减少了2δ?,减小到2δ''(222δδδ?-='',2δ''为剩余变形量);被联接 件的压力由F '减少至F ''(剩余预紧力)。根据联结的变形协调条件,压缩变形的减少量2δ?应等于螺栓拉伸变形的增加量1δ?,即21δδ?=?。 一、 实验目的 本实验通过计算和测量螺栓受力情况及静动态特性参数达到以下目的: 1. 了解螺栓联接在拧紧过程中各部分的受力情况; 2. 计算螺栓相对刚度并绘制螺栓连接的受力变形图; 3. 验证受轴向工作载荷时,预紧螺栓联接的变形规律,及对螺栓总拉力的影响; 4. 通过螺栓的动载实验,改变螺栓联接的相对刚度,观察螺栓动应力幅值的变化,以验证提高螺栓联接强度的各项措施。 二、 实验设备及工作原理 1. 单螺栓连接实验台(如图1-3所示)

基于ANSYS的某型压力容器静态与动态特性分析

第33卷第3期2 0 18年8月青岛大学学报(工程技术版)JOURNAL OF QINGDAO UNIVERSITY (E&T) Vol. 33 No. 3 Aug. 2 0 18文章编号 # 1006 - 9798(2018)03 -0120 - 05; DO * 10.13306/1 1006 - 9798.2018.03.022 基于ANSYS 的某型压力容器静态与动态特性分析 黄妮,戴作强 (青岛大学机电工程学院,山东青岛266071) 摘要:针对压力容器容易发生强度失效和稳定失效等问题,本文基于A N S Y S 软件对某型压力容 器的静态与动态特性进行研究,获取了其应力集中危险位置。在三维建模软件S o lid W o rk s 中,建 立压力容器的三维几何模型,使用自由边划分中面进行网格划分,并给出了载荷及边界条件,将前 处理完成的压力容器模型以c d b 格式导人A N S Y S 软件中进行求解,并在空罐状态下对压力容器 进行动力学特性分析。分析结果表明,该压力容器的静强度具有一定的余量,不会发生强度失效; 在空罐状态下,压力容器筒体和封头容易发生共振,可以在筒体位置适当增加阻尼和约朿,以加强 其稳定性,或者在振型最大处增大厚度以提高刚度,防止和避免共振带来的危害。该研究保障了压 力容器在操作工况下安全可靠。 关键词:压力容器;A N S Y S #静强度分析;模态分析 中图分类号:T H 49 文献标识码:A 压力容器是化工生产中极为重要的一类储运设备[1],随着存储介质质量和种类的变化,压力容器产生失效事 故的可能性在不断增加,所以对压力容器进行静态和动态特性研究,分析其结构可靠性具有重要意义。近年来, 对压力容器可靠性的研究有许多。郑云虎等人)]采用静强度和模态分析结合的方法,对立式圆柱薄壁容器的振 动特性进行了研究,获得了压力容器的强度和刚度薄弱位置;张自斌等人)]对压力容器的宏观力学响应进行了分 析,并作出应力安全评定,同时运用子模型技术对压力容器接管区域进行了更为精确的应力分析;赵积鹏等人)] 采用特征值屈曲分析方法,得出了压力容器屈曲模态形状和临界外压,提出了压力容器安全使用的临界条件;朱 国樑)]应用A N S Y S 分析了立式厚壁压力容器筒体与封头的应力分布特点,提出了优化措施;马言等人)]针对压 力容器分层缺陷的扩展问题,从动力学角度对压力容器进行模态分析,找到了分层缺陷扩展的原因。基于此,本 文从静态和动态两方面研究某型压力容器的静强度薄弱环节和抗振性能不足之处,根据有限元分析结果,对其进 行安全性能评价及动力学特性分析,保障压力容器在操作工况下安全可靠。该研究对分析压力容器的结构可靠 性具有重要意义,具有一定的实际应用价值。 1三维模型的建立 液体干燥器的容积约为51 m 3,由筒体、封头和裙座等组成。压力容器总长约为15 900 mm ,其中,筒体高度 10 BOOmm ,筒体前段厚度为26 mm ,筒体后段厚度为34 m m ,封头为标准椭圆形,其内径A =2 B O O mm ,两端封头厚度 为29. 62 m m ,裙座厚度为20 m m ,个地脚螺栓对称分布于裙座底端。压力容器材料为Q 345R ,材料性能如表1所示。 在三维建模软件S o lid W o rk s 中,建立压力容器三维几何模 型,压力容器三维图如图1所示。在有限元分析中,微小的结构 可能导致建模时间和计算量大幅增加,因此应抓住模型主要影 响因素,忽略其次要影响因素,对其进行简化处理78]。对该压力 容器焊缝、温度计热电偶口、露点仪口、放空口、公用工程口及小倒角等进行简化,压力容器简化模型如图2所示。2 有限元前处理2.1中面处理及网格划分 H y p e rM e sh 是一个高质量高效率的有限元前处理器,其强大的几何清理功能大大简化了对复杂几何进行仿收稿日期# 2017-12-10;修回日期# 2018 - 02 - 20 基金项目:黄妮(1994 -),女,湖南常德人,硕士研究生,主要研究方向为电动汽车智能化动力集成技术。 作者筒介:戴作强(1962 -),男,硕士,教授,主要研究方向为锂离子电池材料与系统。Email: daizuoqiangqdu@https://www.360docs.net/doc/ce13635889.html, 表1材料性能杨氏弹性密度/屈服极材泊松比模量/Pa k g /m 3限/ M P a Q 345R 2. 1X 1011 0.37 890345

简支梁振动系统动态特性综合测试方法分析

目录 一、设计题目 (1) 二、设计任务 (1) 三、所需器材 (1) 四、动态特性测量 (1) 1.振动系统固有频率的测量 (1) 2.测量并验证位移、速度、加速度之间的关系 (3) 3.系统强迫振动固有频率和阻尼的测量 (6) 4.系统自由衰减振动及固有频率和阻尼比的测量 (6) 5.主动隔振的测量 (9) 6.被动隔振的测量 (13) 7.复式动力吸振器吸振实验 (18) 五、心得体会 (21) 六、参考文献 (21)

一、设计题目 简支梁振动系统动态特性综合测试方法。 二、设计任务 1.振动系统固有频率的测量。 2.测量并验证位移、速度、加速度之间的关系。 3.系统强迫振动固有频率和阻尼的测量。 4.系统自由衰减振动及固有频率和阻尼比的测量。 5.主动隔振的测量。 6.被动隔振的测量。 7.复式动力吸振器吸振实验。 三、所需器材 振动实验台、激振器、加速度传感器、速度传感器、位移传感器、力传感器、扫描信号源、动态分析仪、力锤、质量块、可调速电机、空气阻尼器、复式吸振器。 四、动态特性测量 1.振动系统固有频率的测量 (1)实验装置框图:见(图1-1) (2)实验原理: 对于振动系统测定其固有频率,常用简谐力激振,引起系统共振,从而找到系统的各阶固有频率。在激振功率输出不变的情况下,由低到高调节激振器的激振频率,通过振动曲线,我们可以观察到在某一频率下,任一振动量(位移、速度、加速度)幅值迅速增加,这就是机械振动系统的某阶固有

频率。 (图1-1实验装置图) (3)实验方法: ①安装仪器 把接触式激振器安装在支架上,调节激振器高度,让接触头对简支梁产生一定的预压力,使激振杆上的红线与激振器端面平齐为宜,把激振器的信号输入端用连接线接到DH1301扫频信号源的输出接口上。把加速度传感器粘贴在简支梁上,输出信号接到数采分析仪的振动测试通道。 ②开机 打开仪器电源,进入DAS2003数采分析软件,设置采样率,连续采集,输入传感器灵敏度、设置量程范围,在打开的窗口内选择接入信号的测量通道。清零后开始采集数据。 ③测量 打开DH1301扫频信号源的电源开关,调节输出电压,注意不要过载,手动调节输出信号的频率,从0开始调节,当简支梁产生振动,且振动量最大时(共振),保持该频率一段时间,记录下此时信号源显示的频率,即为简支梁振动固有频率。继续增大频率可得到高阶振动频率。

橡胶件的静、动态特性及有限元分析

橡胶件的静、动态特性及有限元分析 北方交通大学 硕士学位论文   橡胶件的静、动态特性及有限元分析   姓名:郑明军 申请学位级别:硕士 专业:车辆工程 指导教师:谢基龙   2002.2.1 file:///E|/Material/new download/Y476948/Paper/pdf/fm.htm2007-7-3 11:31:00

目录 文摘 英文文摘 第一章绪论 1.1引言 1.2选题背景 1.3本论文的主要研究内容第二章橡胶类材料的本构关系 2.1引言 2.2橡胶材料的本构关系2.2.1橡胶材料的统计理论2.2.2橡胶材料的唯象理论2.3橡胶材料的应力应变关系2.4小结 第三章非线性橡胶材料的有限单元法 3.1引言 3.2非线性橡胶材料的罚有限元法3.3非线性橡胶材料的混合有限元法3.4非线性橡胶材料的杂交有限元法 3.5ANSYS软件的非线性有限元分析方法3.6小结 第四章橡胶材料常数的研究 4.1引言 4.2测定橡胶材料常数的实验方法 4.3 Mooney-Rivlin型橡胶材料常数C1和C2的测定4.4橡胶硬度对Mooney-Rivlin型橡胶材料常数的影响 4.4.1橡胶硬度与弹性模量的关系4.4.2橡胶柱的压缩试验 4.4.3橡胶柱的有限元分析 4.4.4橡胶支座的有限元分析 4.4.5不同硬度下橡胶材料常数C1和C2的确定5小结 第五章橡胶夹层的断裂分析 5.1引言 5.2双悬臂橡胶夹层梁的有限元分析5.2.1试验研究 5.2.2有限元分析 5.2.3计算结果分析 5.3双悬臂橡胶夹层梁的断裂力学分析5.3.1双悬臂橡胶夹层梁界面J积分5.3.2双悬臂橡胶夹层梁应变能释放率G 5.3.3双悬臂橡胶夹层梁的断裂力学分析5.4双剪切橡胶夹层的有限元分析 5.5双剪切橡胶夹层的断裂力学分析 5.5.1双剪切橡胶夹层界面断裂韧性 5.5.2双剪切橡胶夹层的断裂力学分析 6小结 第六章橡胶弹性车轮动态特性分析 6.1引言 6.2橡胶弹性车轮的特点 6.3橡胶弹性车轮的结构 6.4橡胶弹性车轮的有限元分析6.4.1橡胶弹性车轮的有限元分析 6.4.2橡胶弹性车轮的减振效果 6.4.3橡胶硬度对弹性车轮动态特性的影响6.5小结 第七章结论 7.1橡胶材料常数的研究 7.2橡胶夹层的断裂分析 7.3橡胶弹性车轮动态特性分析 参考文献 致谢

相关文档
最新文档